1
|
Ta HP, Clarisse C, Maes E, Yamakawa N, Guérardel Y, Krzewinski F, Zarzycka W, Touboul D, Girardeau A, Fonseca F, Kermarrec A, Viau M, Riaublanc A, Ropers MH. Membrane lipid composition of Carnobacterium maltaromaticum CNCM I-3298, a highly cryoresistant lactic bacterium. Chem Phys Lipids 2023; 255:105326. [PMID: 37414116 DOI: 10.1016/j.chemphyslip.2023.105326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
The growing consumption of fermented products has led to an increasing demand for lactic acid bacteria (LAB), especially for LAB tolerant to freezing/thawing conditions. Carnobacterium maltaromaticum is a psychrotrophic and freeze-thawing resistant lactic acid bacterium. The membrane is the primary site of damage during the cryo-preservation process and requires modulation to improve cryoresistance. However, knowledge about the membrane structure of this LAB genus is limited. We presented here the first study of the membrane lipid composition of C. maltaromaticum CNCM I-3298 including the polar heads and the fatty acid compositions of each lipid family (neutral lipids, glycolipids, phospholipids). The strain CNCM I-3298 is principally composed of glycolipids (32%) and phospholipids (55%). About 95% of glycolipids are dihexaosyldiglycerides while less than 5% are monohexaosyldiglycerides. The disaccharide chain of dihexaosyldiglycerides is composed of α-Gal(1-2)-α-Glc chain, evidenced for the first time in a LAB strain other than Lactobacillus strains. Phosphatidylglycerol is the main phospholipid (94%). All polar lipids are exceptionally rich in C18:1 (from 70% to 80%). Regarding the fatty acid composition, C. maltaromaticum CNCM I-3298 is an atypical bacterium within the genus Carnobacterium due to its high C18:1 proportion but resemble the other Carnobacterium strains as they mostly do not contain cyclic fatty acids.
Collapse
Affiliation(s)
- H P Ta
- INRAE, BIA, F-44316 Nantes, France.
| | - C Clarisse
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, US 41-UAR 2014-PLBS, F-59000 Lille, France
| | - E Maes
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, US 41-UAR 2014-PLBS, F-59000 Lille, France
| | - N Yamakawa
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, US 41-UAR 2014-PLBS, F-59000 Lille, France
| | - Y Guérardel
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France; Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan
| | - F Krzewinski
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - W Zarzycka
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France
| | - D Touboul
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France
| | - A Girardeau
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, F-91120 Palaiseau, France
| | - F Fonseca
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, F-91120 Palaiseau, France
| | | | - M Viau
- INRAE, BIA, F-44316 Nantes, France
| | | | | |
Collapse
|
2
|
Tanaka K, Suzuki A, Aoki D, Iwamori M. Characterization of a novel glycolipid with a difucosylated H-antigen in human blood group O erythrocytes with monoclonal antibody HMMC-1 and its detection in human uterine cervical carcinoma tissues. Glycoconj J 2019; 36:219-226. [PMID: 31098851 DOI: 10.1007/s10719-019-09873-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/10/2019] [Accepted: 05/03/2019] [Indexed: 11/25/2022]
Abstract
Humanized monoclonal antibody HMMC-1 established by immunizing transchromosomal mice with a human uterine endometrial cancer cell line has been found to react with the H-antigen carried on core l O-glycans through cotransfection of glycosyltransferases for O-glycans and inhibition of antibody-binding with synthetic oligosaccharides. However, direct binding analysis of an antibody against glycosphingolipids from human erythrocytes with different ABO blood groups revealed that it was able to bind selectively with polar glycolipids in blood group O, but not blood group A, B and AB erythrocytes. Unexpectedly, typical monofucosylated H-glycolipids, IV2Fucα-nLc4Cer and VI2Fucα-nLc6Cer, which are the precursors for A and B-glycolipids, and were present not only in blood group O, but also A, B and AB-erythrocytes, were not the antigens for the HMMC-1 antibody. The antigen comprised less than 0.001% of the total glycolipids in blood group O-erythrocytes, and was purified by conventional silica gel column chromatography. Structural determination by permethylation, GC-MS, and ESI-TOFMS demonstrated that the structure was a novel glycolipid with a difucosylated H-antigen, Fucα1-2Galβ1-4GlcNAcβ1-3Gal(2-1αFuc)β1-4GlcNAcβ1-3Galβ1-4GlcNAcβ1-3Galβ1-4Glcβ1-1'Cer, VI2,VIII2(Fucα)2-nLc8Cer, whose terminal difucosylated structure was the epitope of the HMMC-1 antibody. The HMMC-1 glycolipid was detected in five out of 29 tissues from patients suffering from uterine cervical carcinomas, irrespective of their ABO-blood groups.
Collapse
Affiliation(s)
- Kyoko Tanaka
- Department of Obstetrics and Gynecology, Ohashi Hospital, Toho University, 2-22-36, Ohashi, Meguro-ku, Tokyo, 153-8515, Japan
| | - Akemi Suzuki
- Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, 981-8558, Japan
| | - Daisuke Aoki
- Department of Obstetrics and Gynecology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Masao Iwamori
- Laboratory of Animal Models for Human Diseases, National Institute of Biomedical Innovation, Health and Nutrition, 7-6-8 Asagi-Saito, Osaka, Ibaraki, 567-0085, Japan.
| |
Collapse
|
3
|
Kaczmarek R, Pasciak M, Szymczak-Kulus K, Czerwinski M. CD1: A Singed Cat of the Three Antigen Presentation Systems. Arch Immunol Ther Exp (Warsz) 2017; 65:201-214. [PMID: 28386696 PMCID: PMC5434122 DOI: 10.1007/s00005-017-0461-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 02/20/2017] [Indexed: 02/07/2023]
Abstract
Contrary to general view that the MHC Class I and II are the kapellmeisters of recognition and response to antigens, there is another big player in that part of immunity, represented by CD1 glycoproteins. In contrast to MHC Class I or II, which present peptides, CD1 molecules present lipids. Humans express five CD1 proteins (CD1a-e), four of which (CD1a-d) are trafficked to the cell surface, where they may display lipid antigens to T-cell receptors. This interaction may lead to both non-cognate and cognate T cell help to B cells, the latter eliciting anti-lipid antibody response. All CD1 proteins can bind a broad range of structurally different exogenous and endogenous lipids, but each shows a preference to one or more lipid classes. This unorthodox binding behavior is the result of elaborate architectures of CD1 binding clefts and distinct intracellular trafficking routes. Together, these features make CD1 system a versatile player in immune response, sitting at the crossroads of innate and adaptive immunity. While CD1 system may be involved in numerous infectious, inflammatory, and autoimmune diseases, its involvement may lead to opposite outcomes depending on different pathologies. Despite these ambiguities and complexity, CD1 system draws growing attention and continues to show glimmers of therapeutic potential. In this review, we summarize the current knowledge about CD1 proteins, their structures, lipid-binding profiles, and roles in immunity, and evaluate the role of CD1 proteins in eliciting humoral immune response.
Collapse
Affiliation(s)
- Radoslaw Kaczmarek
- Laboratory of Glycoconjugate Immunochemistry, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Mariola Pasciak
- Laboratory of Medical Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Katarzyna Szymczak-Kulus
- Laboratory of Glycoconjugate Immunochemistry, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Marcin Czerwinski
- Laboratory of Glycoconjugate Immunochemistry, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland. .,Faculty of Physiotherapy and Physical Education, Opole University of Technology, Opole, Poland.
| |
Collapse
|
4
|
Iwamori M, Tanaka K, Adachi S, Aoki D, Nomura T. Enhanced fucosylation of GA1 in the digestive tracts of X-ray-irradiated mice. Glycoconj J 2016; 34:163-169. [PMID: 27858203 DOI: 10.1007/s10719-016-9746-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 10/27/2016] [Accepted: 10/31/2016] [Indexed: 10/20/2022]
Abstract
In mice at 4 days after X-ray-irradiation at 0.5 Gy/min for 16 min, the tissue weights of immune organs, i.e., thymus and spleen, were decreased due to injury to lymphocytes by the X-rays. The resulting immunosuppressive condition allowed the growth of lactobacilli, i.e., L. murinus, which contained LacβTH-DG and possessed the ability to induce transcription of the fucosyltransferase gene for synthesis of FGA1. LacβTH-DG was detected in the jejunal and ileal contents of X-ray-irradiated mice, but not in those of control mice, whereas LacTetH-DG of L. johnsonii was present in the stomach and caecal contents of both mice. The amounts of FGA1 in the duodenal and jejunal tissues of X-ray-irradiated mice increased to 4- and 9-fold of those in controls, respectively. Reflecting the enhanced fucosylation of GA1, the total amounts of FGA1 excreted into the contents of X-ray-irradiated mice were 1.4-times higher than those in controls. Also, when the extent of enhanced fucosylation of GA1 in several regions of the digestive tracts of X-ray-irradiated mice was compared with that in immune deficient nude, scid and pIgR(-/-) mice, the more than 4-fold increases of FGA1 observed in duodenal and jejunal tissues corresponded to those in pIgR(-/-) mice without secretory IgA. Since an increased amount of FGA1 in the small intestine was observed only 4 days after X-ray-irradiation, and diminished synthesis of FGA1 occurred on administration of penicillin and streptomycin, fucosylation of GA1 in the small intestine was revealed to occur quickly in response to a change in the intestinal bacterial population.
Collapse
Affiliation(s)
- Masao Iwamori
- Faculty of Science and Technology, Kinki University, 3-4-1 Kowakae, Higashiosaka, Osaka, 577-8502, Japan.
| | - Kyoko Tanaka
- Department of Obstetrics and Gynecology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Shigeki Adachi
- Animal Models of Human Diseases, National Institute of Biomedical Innovation, 7-6-8 Asagi-Saito, Osaka, Ibaraki, 567-0085, Japan
| | - Daisuke Aoki
- Department of Obstetrics and Gynecology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Taisei Nomura
- Animal Models of Human Diseases, National Institute of Biomedical Innovation, 7-6-8 Asagi-Saito, Osaka, Ibaraki, 567-0085, Japan
| |
Collapse
|
5
|
Paściak M, Górska S, Jawiarczyk N, Gamian A. Lactobacillus johnsonii glycolipids, their structure and immunoreactivity with sera from inflammatory bowel disease patients. Microb Biotechnol 2016; 10:456-468. [PMID: 27766756 PMCID: PMC5328823 DOI: 10.1111/1751-7915.12424] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 07/19/2016] [Accepted: 08/20/2016] [Indexed: 12/19/2022] Open
Abstract
Structural studies of the major glycolipids produced by two Lactobacillus johnsonii (LJ) strains, LJ 151 isolated from intestinal tract of healthy mice and LJ 142 isolated from mice with experimentally induced inflammatory bowel disease (IBD), were performed. Two major glycolipids, GL1 and GL2, were present in lipid extracts from L. johnsonii 142 and 151 strains. Glycolipid GL1 has been identified as β-D-Glcp-(1→6)-α-D-Galp-(1→2)-α-D-Glcp-diglyceride and GL2 as α-D-Galp-(1→2)-α-D-Glcp-diglyceride. The main fatty acid residues identified by gas-liquid chromatography-mass spectrometry were palmitic, stearic and lactobacillic acids. Besides structural elucidation of the major glycolipids, the aim of this study was to determine the immunochemical properties of these glycolipids and to compare their immunoreactivity to that of polysaccharides obtained from the same strains. Sera from rabbits immunized with bacterial cells possessed much higher serological reactivity with polysaccharides than with glycolipids. Inversely, reactivity of the glycolipids with human sera from patients with IBD was much higher than that determined for the polysaccharides, while reactivity of glycolipids with human sera from healthy individuals was much lower than one measured for the polysaccharides. Results indicate that glycoconjugates from Lactobacillus cell wall act as antigens and may represent new IBD diagnostic biomarkers.
Collapse
Affiliation(s)
- Mariola Paściak
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114, Wrocław, Poland
| | - Sabina Górska
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114, Wrocław, Poland
| | - Natalia Jawiarczyk
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114, Wrocław, Poland
| | - Andrzej Gamian
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114, Wrocław, Poland
| |
Collapse
|
6
|
Sohlenkamp C, Geiger O. Bacterial membrane lipids: diversity in structures and pathways. FEMS Microbiol Rev 2015; 40:133-59. [DOI: 10.1093/femsre/fuv008] [Citation(s) in RCA: 571] [Impact Index Per Article: 57.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2015] [Indexed: 12/22/2022] Open
|
7
|
Iwamori M, Tanaka K, Adachi S, Aoki D, Nomura T. Absence of lactobacilli containing glycolipids with the α-galactose epitope and the enhanced fucosylation of a receptor glycolipid GA1 in the digestive tracts of immune-deficient scid mice. J Biochem 2015; 158:73-82. [PMID: 25759397 DOI: 10.1093/jb/mvv021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 01/21/2015] [Indexed: 12/30/2022] Open
Abstract
The Lactobacillus species in the digestive tracts of immune-deficient scid mice was distinct from that in control mice, i.e. Lactobacillus murinus in scid and L. johnsonii in control mice, according to their 16S-rRNA, indicating that a symbiotic relationship between lactobacilli and a host is established under pressure from the immune system. The caecal and colonal contents rich in L. murinus of scid mice were loose with a strong sour smell, resulting in diarrhoea, and those with L. johnsonii in control mice included abundant solid materials. Lactobacillus glycolipids were revealed to be recognized by the immune system, and by TLC-immunostaining, LacTetH-DG (Galα1-6Galα1-6Galα1-2Glcα1-3'DG) of L. johnsonii was detected in the stomach, caecum and colon of control mice, but not in those of scid ones, in which fucosylation of a receptor GA1 for L. johnsonii was enhanced more than 4-fold compared with in the control mice. Thus, structural modification of receptor glycolipids was revealed to occur in the process of establishment of a symbiotic relationship between lactobacilli and a host. LacTetH-DG was also immunogenic to human, because of the presence of natural antibodies against it, and the antibody binding to it was comparable to that of blood group- and species-related glycosphingolipids.
Collapse
Affiliation(s)
- Masao Iwamori
- Department of Biochemistry, Faculty of Science and Technology, Kinki University, 3-4-1 Kowakae, Higashiosaka, Osaka 577-8502, Japan; Department of Obstetrics and Gynecology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; and Animal Models of Human Diseases, National Institute of Biomedical Innovation, 7-6-8 Asagi-Saito, Ibaraki, Osaka 567-0085, Japan
| | - Kyoko Tanaka
- Department of Biochemistry, Faculty of Science and Technology, Kinki University, 3-4-1 Kowakae, Higashiosaka, Osaka 577-8502, Japan; Department of Obstetrics and Gynecology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; and Animal Models of Human Diseases, National Institute of Biomedical Innovation, 7-6-8 Asagi-Saito, Ibaraki, Osaka 567-0085, Japan
| | - Shigeki Adachi
- Department of Biochemistry, Faculty of Science and Technology, Kinki University, 3-4-1 Kowakae, Higashiosaka, Osaka 577-8502, Japan; Department of Obstetrics and Gynecology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; and Animal Models of Human Diseases, National Institute of Biomedical Innovation, 7-6-8 Asagi-Saito, Ibaraki, Osaka 567-0085, Japan
| | - Daisuke Aoki
- Department of Biochemistry, Faculty of Science and Technology, Kinki University, 3-4-1 Kowakae, Higashiosaka, Osaka 577-8502, Japan; Department of Obstetrics and Gynecology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; and Animal Models of Human Diseases, National Institute of Biomedical Innovation, 7-6-8 Asagi-Saito, Ibaraki, Osaka 567-0085, Japan
| | - Taisei Nomura
- Department of Biochemistry, Faculty of Science and Technology, Kinki University, 3-4-1 Kowakae, Higashiosaka, Osaka 577-8502, Japan; Department of Obstetrics and Gynecology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; and Animal Models of Human Diseases, National Institute of Biomedical Innovation, 7-6-8 Asagi-Saito, Ibaraki, Osaka 567-0085, Japan
| |
Collapse
|
8
|
Iwamori M, Iwamori Y, Matsumoto S, Adachi S, Nomura T. Enhanced expression of fucosyl GA1 in the digestive tract of immune-deficient scid, nude and pIgR(-/-) mice. J Biochem 2013; 154:541-9. [PMID: 24089533 DOI: 10.1093/jb/mvt087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Fucosylation of GA1 in murine intestinal epithelia occurs through transcriptional induction of α1,2-fucosyltransferase along with bacterial infection, but the mechanism has not been clearly characterized as to whether it is induced as a result of an immune response to bacteria or of genetic manipulation of the host by bacteria. Accordingly, we analysed the expression of fucosyl GA1 (FGA1) and fucosyltransferase activity in the digestive tracts of immune-deficient scid, nude and pIgR(-/-) mice. In comparison with those in control mice bred under the same SPF circumstances, the amount of FGA1 and the α1,2-fucosyltransferase activity were significantly increased in the immune-deficient mice, indicating that the immune system is not involved in induction of the α1,2-fucosyltransferase gene. Reflecting the enhanced synthesis of FGA1, the total amounts of FGA1 in the intestinal contents of immune-deficient mice were higher than those in control mice. Also, the major faecal bacteria grown on a MRS agar plate were different in immune-deficient and control mice as follows, Lactobacillus murinus for scid and pIgR(-/-) mice, and Lactobacillus johnsonii for their control, and Enterococcus faecalis for nude mice and Lactococcus garvieae for the control, indicating that an alteration in the intestinal lactobacilli is partly involved in the induction of α1,2-fucosyltransferase.
Collapse
Affiliation(s)
- Masao Iwamori
- Department of Biochemistry, Faculty of Science and Technology, Kinki University, 3-4-1 Kowakae, Higashiosaka, Osaka 577-8502; Yakult Central Institute for Microbiological Research, 1796 Yaho, Kunitachi-shi, Tokyo 186-8650; and Animal Models of Human Diseases, National Institute of Biomedical Innovation, 7-6-8 Asagi-Saito, Ibaraki, Osaka 567-0085, Japan
| | | | | | | | | |
Collapse
|
9
|
Iwamori M, Iwamori Y, Adachi S, Nomura T. Changes in bacterial glycolipids as an index of intestinal lactobacilli and epithelial glycolipids in the digestive tracts of mice after administration of penicillin and streptomycin. Glycoconj J 2013; 30:889-97. [PMID: 23996013 DOI: 10.1007/s10719-013-9494-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 07/30/2013] [Accepted: 08/04/2013] [Indexed: 12/11/2022]
Abstract
The major lipid constituent of symbiotic gram-positive bacteria in animals are phosphatidylglycerol, cardiolipin and dihexaosyl diglycerides (DH-DG), whose hydrophobic structures are characteristic of the environments, and the carbohydrate structures of DH-DGs are bacterial species-characteristic. Immunization of rabbits with intestinal lactobacilli generated antibodies against DH-DGs and their modified structures, among which Galα1-6-substituted DH-DG, i.e., Lactobacillus tetrahexaosyl diglyceride (LacTetH-DG), reacted with antibodies more intensely than DH-DG. Whereas, from the 16S-rRNA sequence, the intestinal lactobacilli in murine digestive tracts were revealed to be L. johnsonii, in which LacTetH-DG is present at the concentration of 2.2 ng per 1 × 10(6) cells. To obtain more accurate estimates of intestinal lactobacilli in several regions of the digestive tract of mice, LacTetH-DG was detected by TLC-immunostaining with anti-Lactobacillus antisera, being found in the stomach, cecum and colon of normal breeding mice, 1.0 × 10(9), 3.5 × 10(9) and 7.4 × 10(9) cells, respectively. Administration of penicillin and streptomycin for 6 days resulted in a reduction in the number of intestinal lactobacilli, the levels being 0 %, 30 % and 4 % of the control ones in the stomach, cecum and colon, respectively, which was associated with the accumulation of the contents in the tracts from the stomach to the cecum and with diarrhea. In addition, a reduced amount of fucosyl GA1 (FGA1) and a compensatory increase in GA1 due to the reduced activity of α1,2-fucosyltransferase in the small intestine and the enhanced discharge of FGA1 into the contents occurred in mice, probably due to the altered population of bacteria caused by administration of penicillin and streptomycin.
Collapse
Affiliation(s)
- Masao Iwamori
- Department of Biochemistry, Faculty of Science and Technology, Kinki University, 3-4-1 Kowakae, Higashiosaka, Osaka, 577-8502, Japan,
| | | | | | | |
Collapse
|
10
|
Isolation and structural characterisation of the major glycolipids from Lactobacillus plantarum. Carbohydr Res 2012; 357:151-6. [DOI: 10.1016/j.carres.2012.05.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Revised: 05/11/2012] [Accepted: 05/13/2012] [Indexed: 12/21/2022]
|
11
|
Bacterial species-characteristic profiles of molecular species, and the antigenicity of phospholipids and glycolipids in symbiotic Lactobacillus, Staphylococcus and Streptococcus species. Glycoconj J 2012; 29:199-209. [DOI: 10.1007/s10719-012-9393-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 05/07/2012] [Accepted: 05/08/2012] [Indexed: 11/26/2022]
|