1
|
Zheng J, Chen L, Liu L, Li H, Liu B, Zheng D, Liu T, Dong J, Sun L, Zhu Y, Yang J, Zhang X, Jin Q. Proteogenomic Analysis and Discovery of Immune Antigens in Mycobacterium vaccae. Mol Cell Proteomics 2017; 16:1578-1590. [PMID: 28733429 DOI: 10.1074/mcp.m116.065813] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 07/05/2017] [Indexed: 11/06/2022] Open
Abstract
Tuberculosis (TB) is one of the leading causes of death worldwide, especially in developing countries. Neonatal BCG vaccination occurs in various regions, but the level of protection varies in different populations. Recently, Mycobacterium vaccae is found to be an immunomodulating therapeutic agent that could confer a significant level of protection against TB. It is the only vaccine in a phase III trial from WHO to assess its efficacy and safety in preventing TB disease in people with latent TB infection. However, the mechanism of immunotherapy of M. vaccae remains poorly understood. In this study, the full genome of M. vaccae was obtained by next-generation sequencing technology, and a proteogenomic approach was successfully applied to further perform genome annotation using high resolution and high accuracy MS data. A total of 3,387 proteins (22,508 unique peptides) were identified, and 581 proteins annotated as hypothetical proteins in the genome database were confirmed. Furthermore, 38 novel protein products not annotated at the genome level were detected and validated. Additionally, the translational start sites of 445 proteins were confirmed, and 98 proteins were validated through extension of their translational start sites based on N terminus-derived peptides. The physicochemical characteristics of the identified proteins were determined. Thirty-five immunogenic proteins of M. vaccae were identified by immunoproteomic analysis, and 20 of them were selected to be expressed and validated by Western blot for immunoreactivity to serum from patients infected with M. tuberculosis The results revealed that eight of them showed strong specific reactive signals on the immunoblots. Furthermore, cellular immune response was further examined and one protein displayed a higher cellular immune level in pulmonary TB patients. Twelve identified immunogenic proteins have orthologous in H37Rv and BCG. This is the first study to obtain the full genome and annotation of M. vaccae using a proteogenomic approach, and some immunogenic proteins that were validated by immunoproteomic analysis could contribute to the understanding of the mechanism of M. vaccae immunotherapy.
Collapse
Affiliation(s)
- Jianhua Zheng
- ‡From the MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Centre for Tuberculosis, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lihong Chen
- ‡From the MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Centre for Tuberculosis, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liguo Liu
- ‡From the MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Centre for Tuberculosis, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haifeng Li
- ‡From the MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Centre for Tuberculosis, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bo Liu
- ‡From the MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Centre for Tuberculosis, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dandan Zheng
- ‡From the MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Centre for Tuberculosis, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tao Liu
- ‡From the MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Centre for Tuberculosis, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie Dong
- ‡From the MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Centre for Tuberculosis, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lilian Sun
- ‡From the MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Centre for Tuberculosis, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yafang Zhu
- ‡From the MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Centre for Tuberculosis, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jian Yang
- ‡From the MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Centre for Tuberculosis, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaobing Zhang
- ‡From the MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Centre for Tuberculosis, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qi Jin
- ‡From the MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Centre for Tuberculosis, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
2
|
Tao J, Sang Y, Teng Q, Ni J, Yang Y, Tsui SKW, Yao YF. Heat shock proteins IbpA and IbpB are required for NlpI-participated cell division in Escherichia coli. Front Microbiol 2015; 6:51. [PMID: 25699035 PMCID: PMC4316790 DOI: 10.3389/fmicb.2015.00051] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 01/15/2015] [Indexed: 11/29/2022] Open
Abstract
Lipoprotein NlpI of Escherichia coli is involved in the cell division, virulence, and bacterial interaction with eukaryotic host cells. To elucidate the functional mechanism of NlpI, we examined how NlpI affects cell division and found that induction of NlpI inhibits nucleoid division and halts cell growth. Consistent with these results, the cell division protein FtsZ failed to localize at the septum but diffused in the cytosol. Elevation of NlpI expression enhanced the transcription and the outer membrane localization of the heat shock protein IbpA and IbpB. Deletion of either ibpA or ibpB abolished the effects of NlpI induction, which could be restored by complementation. The C-terminus of NlpI is critical for the enhancement in IbpA and IbpB production, and the N-terminus of NlpI is required for the outer membrane localization of NlpI, IbpA, and IbpB. Furthermore, NlpI physically interacts with IbpB. These results indicate that over-expression of NlpI can interrupt the nucleoids division and the assembly of FtsZ at the septum, mediated by IbpA/IbpB, suggesting a role of the NlpI/IbpA/IbpB complex in the cell division.
Collapse
Affiliation(s)
- Jing Tao
- Laboratory of Bacterial Pathogenesis, Department of Microbiology and Immunology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine Shanghai, China
| | - Yu Sang
- Laboratory of Bacterial Pathogenesis, Department of Microbiology and Immunology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine Shanghai, China
| | - Qihui Teng
- Laboratory of Bacterial Pathogenesis, Department of Microbiology and Immunology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine Shanghai, China
| | - Jinjing Ni
- Laboratory of Bacterial Pathogenesis, Department of Microbiology and Immunology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine Shanghai, China
| | - Yi Yang
- School of Biomedical Sciences, The Chinese University of Hong Kong Hong Kong, China
| | | | - Yu-Feng Yao
- Laboratory of Bacterial Pathogenesis, Department of Microbiology and Immunology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine Shanghai, China
| |
Collapse
|
3
|
Rittershaus ESC, Baek SH, Sassetti CM. The normalcy of dormancy: common themes in microbial quiescence. Cell Host Microbe 2013; 13:643-51. [PMID: 23768489 DOI: 10.1016/j.chom.2013.05.012] [Citation(s) in RCA: 227] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
All microorganisms are exposed to periodic stresses that inhibit growth. Many bacteria and fungi weather these periods by entering a hardy, nonreplicating state, often termed quiescence or dormancy. When this occurs during an infection, the resulting slowly growing pathogen is able to tolerate both immune insults and prolonged antibiotic exposure. While the stresses encountered in a free-living environment may differ from those imposed by host immunity, these growth-limiting conditions impose common pressures, and many of the corresponding microbial responses appear to be universal. In this review, we discuss the common features of these growth-limited states, which suggest new approaches for treating chronic infections such as tuberculosis.
Collapse
Affiliation(s)
- Emily S C Rittershaus
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | | | |
Collapse
|
4
|
Role of oxidative stress in infectious diseases. A review. Folia Microbiol (Praha) 2013; 58:503-13. [PMID: 23504625 DOI: 10.1007/s12223-013-0239-5] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 03/05/2013] [Indexed: 12/30/2022]
Abstract
Oxidative stress plays a dual role in infections. Free radicals protect against invading microorganisms, and they can also cause tissue damage during the resulting inflammation. In the process of infection, there is generation of reactive species by myeloperoxidase, NADPH oxidase, and nitric oxide synthase. On the other hand, reactive species can be generated among others, by cytochrome P450, some metals, and xanthine oxidase. Some pathologies arising during infection can be attributed to oxidative stress and generation of reactive species in infection can even have fatal consequences. This article reviews the basic pathways in which reactive species can accumulate during infectious diseases and discusses the related health consequences.
Collapse
|