1
|
Veschetti L, Treccani M, De Tomi E, Malerba G. Genomic Instability Evolutionary Footprints on Human Health: Driving Forces or Side Effects? Int J Mol Sci 2023; 24:11437. [PMID: 37511197 PMCID: PMC10380557 DOI: 10.3390/ijms241411437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/30/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
In this work, we propose a comprehensive perspective on genomic instability comprising not only the accumulation of mutations but also telomeric shortening, epigenetic alterations and other mechanisms that could contribute to genomic information conservation or corruption. First, we present mechanisms playing a role in genomic instability across the kingdoms of life. Then, we explore the impact of genomic instability on the human being across its evolutionary history and on present-day human health, with a particular focus on aging and complex disorders. Finally, we discuss the role of non-coding RNAs, highlighting future approaches for a better living and an expanded healthy lifespan.
Collapse
Affiliation(s)
| | | | | | - Giovanni Malerba
- GM Lab, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (L.V.); (M.T.); (E.D.T.)
| |
Collapse
|
2
|
Wu M, Ma G, Lin Y, Oger P, Cao P, Zhang L. Biochemical Characterization and Mutational Studies of Endonuclease Q from the Hyperthermophilic Euryarchaeon Thermococcus gammatolerans. DNA Repair (Amst) 2023; 126:103490. [PMID: 37028219 DOI: 10.1016/j.dnarep.2023.103490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/25/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023]
Abstract
Endonuclease Q (EndoQ) can effectively cleave DNA containing deaminated base(s), thus providing a potential pathway for repair of deaminated DNA. EndoQ is ubiquitous in some Archaea, especially in Thermococcales, and in a small group of bacteria. Herein, we report biochemical characteristics of EndoQ from the hyperthermophilic euryarchaeon Thermococcus gammatolerans (Tga-EndoQ) and the roles of its six conserved residues in DNA cleavage. The enzyme can cleave uracil-, hypoxanthine-, and AP (apurinic/apyrimidinic) site-containing DNA with varied efficiencies at high temperature, among which uracil-containing DNA is its most preferable substrate. Additionally, the enzyme displays maximum cleavage efficiency at above 70 oC and pH 7.0 ∼ 8.0. Furthermore, Tga-EndoQ still retains 85% activity after heated at 100 oC for 2 hrs, suggesting that the enzyme is extremely thermostable. Moreover, the Tga-EndoQ activity is independent of a divalent ion and NaCl. Mutational data demonstrate that residues E167 and H195 in Tga-EndoQ are essential for catalysis since the E167A and H195A mutants completely abolish the cleavage activity. Besides, residues S18 and R204 in Tga-EndoQ are involved in catalysis due to the reduced activities observed for the S18A and R204A mutants. Overall, our work has augmented biochemical function of archaeal EndoQ and provided insight into its catalytic mechanism.
Collapse
Affiliation(s)
- Mai Wu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou City, China
| | - Guangyu Ma
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou City, China
| | - Yushan Lin
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou City, China
| | - Philippe Oger
- Université de Lyon, INSA de Lyon, CNRS UMR, 5240 Lyon, France
| | - Peng Cao
- Faculty of Environment and Life, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China.
| | - Likui Zhang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou City, China.
| |
Collapse
|
3
|
Biochemical and mutational studies of an endonuclease V from the hyperthermophilic crenarchaeon Sulfolobus islandicus REY15A. World J Microbiol Biotechnol 2023; 39:90. [PMID: 36752840 DOI: 10.1007/s11274-023-03526-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 01/16/2023] [Indexed: 02/09/2023]
Abstract
Endonuclease V (EndoV), which is widespread in bacteria, eukarya and Archaea, can cleave hypoxanthine (Hx)-containing DNA or RNA strand, and play an essential role in Hx repair. However, our understanding on archaeal EndoV's function remains incomplete. The model archaeon Sulfolobus islandicus REY15A encodes a putative EndoV protein (Sis-EndoV). Herein, we probed the biochemical characteristics of Sis-EndoV and dissected the roles of its seven conserved residues. Our biochemical data demonstrate that Sis-EndoV displays maximum cleavage efficiency at above 60 °C and at pH 7.0-9.0, and the enzyme activity is dependent on a divalent metal ion, among which Mg2+ is optimal. Importantly, we first measured the activation energy for cleaving Hx-containing ssDNA by Sis-EndoV to be 9.6 ± 0.8 kcal/mol by kinetic analyses, suggesting that chemical catalysis might be a rate-limiting step for catalysis. Mutational analyses show that residue D38 in Sis-EndoV is essential for catalysis, but has no role in DNA binding. Furthermore, we first revealed that residues Y41 and D189 in Sis-EndoV are involved in both DNA cleavage and DNA binding, but residues F77, H103, K156 and F161 are only responsible for DNA binding.
Collapse
|
4
|
A novel Family V uracil DNA glycosylase from Sulfolobus islandicus REY15A. DNA Repair (Amst) 2022; 120:103420. [DOI: 10.1016/j.dnarep.2022.103420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/09/2022] [Accepted: 10/16/2022] [Indexed: 11/18/2022]
|
5
|
Zeng D, Zheng Z, Liu Y, Liu T, Li T, Liu J, Luo Q, Xue Y, Li S, Chai N, Yu S, Xie X, Liu YG, Zhu Q. Exploring C-to-G and A-to-Y Base Editing in Rice by Using New Vector Tools. Int J Mol Sci 2022; 23:ijms23147990. [PMID: 35887335 PMCID: PMC9318980 DOI: 10.3390/ijms23147990] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 11/18/2022] Open
Abstract
CRISPR/Cas9-based cytosine base editors (CBEs) and adenine base editors (ABEs) can efficiently mediate C-to-T/G-to-A and A-to-G/T-to-C substitutions, respectively; however, achieving base transversions (C-to-G/C-to-A and A-to-T/A-to-C) is challenging and has been rarely studied in plants. Here, we constructed new plant C-to-G base editors (CGBEs) and new A-to-Y (T/C) base editors and explored their base editing characteristics in rice. First, we fused the highly active cytidine deaminase evoFENRY and the PAM-relaxed Cas9-nickase variant Cas9n-NG with rice and human uracil DNA N-glycosylase (rUNG and hUNG), respectively, to construct CGBE-rUNG and CGBE-hUNG vector tools. The analysis of five NG-PAM target sites showed that these CGBEs achieved C-to-G conversions with monoallelic editing efficiencies of up to 27.3% in T0 rice, with major byproducts being insertion/deletion mutations. Moreover, for the A-to-Y (C or T) editing test, we fused the highly active adenosine deaminase TadA8e and the Cas9-nickase variant SpGn (with NG-PAM) with Escherichia coli endonuclease V (EndoV) and human alkyladenine DNA glycosylase (hAAG), respectively, to generate ABE8e-EndoV and ABE8e-hAAG vectors. An assessment of five NG-PAM target sites showed that these two vectors could efficiently produce A-to-G substitutions in a narrow editing window; however, no A-to-Y editing was detected. Interestingly, the ABE8e-EndoV also generated precise small fragment deletions in the editing window from the 5′-deaminated A base to the SpGn cleavage site, suggesting its potential value in producing predictable small-fragment deletion mutations. Overall, we objectively evaluated the editing performance of CGBEs in rice, explored the possibility of A-to-Y editing, and developed a new ABE8e-EndoV tool, thus providing a valuable reference for improving and enriching base editing tools in plants.
Collapse
Affiliation(s)
- Dongchang Zeng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (D.Z.); (Z.Z.); (Y.L.); (T.L.); (T.L.); (J.L.); (Q.L.); (Y.X.); (S.L.); (N.C.); (S.Y.); (X.X.); (Y.-G.L.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Zhiye Zheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (D.Z.); (Z.Z.); (Y.L.); (T.L.); (T.L.); (J.L.); (Q.L.); (Y.X.); (S.L.); (N.C.); (S.Y.); (X.X.); (Y.-G.L.)
| | - Yuxin Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (D.Z.); (Z.Z.); (Y.L.); (T.L.); (T.L.); (J.L.); (Q.L.); (Y.X.); (S.L.); (N.C.); (S.Y.); (X.X.); (Y.-G.L.)
| | - Taoli Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (D.Z.); (Z.Z.); (Y.L.); (T.L.); (T.L.); (J.L.); (Q.L.); (Y.X.); (S.L.); (N.C.); (S.Y.); (X.X.); (Y.-G.L.)
| | - Tie Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (D.Z.); (Z.Z.); (Y.L.); (T.L.); (T.L.); (J.L.); (Q.L.); (Y.X.); (S.L.); (N.C.); (S.Y.); (X.X.); (Y.-G.L.)
| | - Jianhong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (D.Z.); (Z.Z.); (Y.L.); (T.L.); (T.L.); (J.L.); (Q.L.); (Y.X.); (S.L.); (N.C.); (S.Y.); (X.X.); (Y.-G.L.)
| | - Qiyu Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (D.Z.); (Z.Z.); (Y.L.); (T.L.); (T.L.); (J.L.); (Q.L.); (Y.X.); (S.L.); (N.C.); (S.Y.); (X.X.); (Y.-G.L.)
| | - Yang Xue
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (D.Z.); (Z.Z.); (Y.L.); (T.L.); (T.L.); (J.L.); (Q.L.); (Y.X.); (S.L.); (N.C.); (S.Y.); (X.X.); (Y.-G.L.)
| | - Shengting Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (D.Z.); (Z.Z.); (Y.L.); (T.L.); (T.L.); (J.L.); (Q.L.); (Y.X.); (S.L.); (N.C.); (S.Y.); (X.X.); (Y.-G.L.)
| | - Nan Chai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (D.Z.); (Z.Z.); (Y.L.); (T.L.); (T.L.); (J.L.); (Q.L.); (Y.X.); (S.L.); (N.C.); (S.Y.); (X.X.); (Y.-G.L.)
| | - Suize Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (D.Z.); (Z.Z.); (Y.L.); (T.L.); (T.L.); (J.L.); (Q.L.); (Y.X.); (S.L.); (N.C.); (S.Y.); (X.X.); (Y.-G.L.)
| | - Xianrong Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (D.Z.); (Z.Z.); (Y.L.); (T.L.); (T.L.); (J.L.); (Q.L.); (Y.X.); (S.L.); (N.C.); (S.Y.); (X.X.); (Y.-G.L.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yao-Guang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (D.Z.); (Z.Z.); (Y.L.); (T.L.); (T.L.); (J.L.); (Q.L.); (Y.X.); (S.L.); (N.C.); (S.Y.); (X.X.); (Y.-G.L.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Qinlong Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (D.Z.); (Z.Z.); (Y.L.); (T.L.); (T.L.); (J.L.); (Q.L.); (Y.X.); (S.L.); (N.C.); (S.Y.); (X.X.); (Y.-G.L.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Correspondence:
| |
Collapse
|
6
|
Shiraishi M, Hidaka M, Iwai S. Endonuclease V from the archaeon Thermococcus kodakarensis is an inosine-specific ribonuclease. Biosci Biotechnol Biochem 2022; 86:313-320. [PMID: 34928335 DOI: 10.1093/bbb/zbab219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/11/2021] [Indexed: 11/14/2022]
Abstract
Endonuclease V (EndoV) is an inosine-specific endonuclease which is highly conserved in all domains of life: Bacteria, Archaea, and Eukarya; and, therefore, may play an important role in nucleic acid processes. It is currently thought that bacterial EndoVs are involved in DNA repair, while eukaryotic EndoVs are involved in RNA editing based on the differences in substrate preferences. However, the role of EndoV proteins, particularly in the archaeal domain, is still poorly understood. Here, we explored the biochemical properties of EndoV from the hyperthermophilic archaeon Thermococcus kodakarensis (TkoEndoV). We show that TkoEndoV has a strong preference for RNA over DNA. Further, we synthesized 1-methylinosine-containing RNA that is a simple TΨC loop mimic of archaeal tRNA and found that TkoEndoV discriminates between 1-methylinosine and inosine, and selectively acts on inosine. Our findings suggest a potential role of archaeal EndoV in the regulation of inosine-containing RNA.
Collapse
Affiliation(s)
- Miyako Shiraishi
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan
| | - Michihi Hidaka
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan
| | - Shigenori Iwai
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan
| |
Collapse
|
7
|
Lin T, Zhang L, Wu M, Jiang D, Li Z, Yang Z. Repair of Hypoxanthine in DNA Revealed by DNA Glycosylases and Endonucleases From Hyperthermophilic Archaea. Front Microbiol 2021; 12:736915. [PMID: 34531846 PMCID: PMC8438529 DOI: 10.3389/fmicb.2021.736915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/04/2021] [Indexed: 11/13/2022] Open
Abstract
Since hyperthermophilic Archaea (HA) thrive in high-temperature environments, which accelerate the rates of deamination of base in DNA, their genomic stability is facing a severe challenge. Hypoxanthine (Hx) is one of the common deaminated bases in DNA. Generally, replication of Hx in DNA before repaired causes AT → GC mutation. Biochemical data have demonstrated that 3-methyladenine DNA glycosylase II (AlkA) and Family V uracil DNA glycosylase (UDG) from HA could excise Hx from DNA, thus triggering a base excision repair (BER) process for Hx repair. Besides, three endonucleases have been reported from HA: Endonuclease V (EndoV), Endonuclease Q (EndoQ), and Endonuclease NucS (EndoNucS), capable of cleaving Hx-containing DNA, thereby providing alternative pathways for Hx repair. Both EndoV and EndoQ could cleave one DNA strand with Hx, thus forming a nick and further initiating an alternative excision repair (AER) process for the follow-up repair. By comparison, EndoNucS cleaves both strands of Hx-containing DNA in a restriction endonuclease manner, thus producing a double-stranded break (DSB). This created DSB might be repaired by homologous recombination (HR) or by a combination activity of DNA polymerase (DNA pol), flap endonuclease 1 (FEN1), and DNA ligase (DNA lig). Herein, we reviewed the most recent advances in repair of Hx in DNA triggered by DNA glycosylases and endonucleases from HA, and proposed future research directions.
Collapse
Affiliation(s)
- Tan Lin
- College of Environmental Science and Engineering, Marine Science and Technology Institute, Yangzhou University, Yangzhou, China
| | - Likui Zhang
- College of Environmental Science and Engineering, Marine Science and Technology Institute, Yangzhou University, Yangzhou, China.,Guangling College, Yangzhou University, Yangzhou, China
| | - Mai Wu
- College of Environmental Science and Engineering, Marine Science and Technology Institute, Yangzhou University, Yangzhou, China
| | - Donghao Jiang
- College of Environmental Science and Engineering, Marine Science and Technology Institute, Yangzhou University, Yangzhou, China
| | - Zheng Li
- College of Plant Protection, Agricultural University of Hebei, Baoding, China
| | - Zhihui Yang
- College of Plant Protection, Agricultural University of Hebei, Baoding, China
| |
Collapse
|
8
|
Evolutionary Origins of DNA Repair Pathways: Role of Oxygen Catastrophe in the Emergence of DNA Glycosylases. Cells 2021; 10:cells10071591. [PMID: 34202661 PMCID: PMC8307549 DOI: 10.3390/cells10071591] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 11/23/2022] Open
Abstract
It was proposed that the last universal common ancestor (LUCA) evolved under high temperatures in an oxygen-free environment, similar to those found in deep-sea vents and on volcanic slopes. Therefore, spontaneous DNA decay, such as base loss and cytosine deamination, was the major factor affecting LUCA’s genome integrity. Cosmic radiation due to Earth’s weak magnetic field and alkylating metabolic radicals added to these threats. Here, we propose that ancient forms of life had only two distinct repair mechanisms: versatile apurinic/apyrimidinic (AP) endonucleases to cope with both AP sites and deaminated residues, and enzymes catalyzing the direct reversal of UV and alkylation damage. The absence of uracil–DNA N-glycosylases in some Archaea, together with the presence of an AP endonuclease, which can cleave uracil-containing DNA, suggests that the AP endonuclease-initiated nucleotide incision repair (NIR) pathway evolved independently from DNA glycosylase-mediated base excision repair. NIR may be a relic that appeared in an early thermophilic ancestor to counteract spontaneous DNA damage. We hypothesize that a rise in the oxygen level in the Earth’s atmosphere ~2 Ga triggered the narrow specialization of AP endonucleases and DNA glycosylases to cope efficiently with a widened array of oxidative base damage and complex DNA lesions.
Collapse
|
9
|
Pérez-Arnaiz P, Dattani A, Smith V, Allers T. Haloferax volcanii-a model archaeon for studying DNA replication and repair. Open Biol 2020; 10:200293. [PMID: 33259746 PMCID: PMC7776575 DOI: 10.1098/rsob.200293] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/09/2020] [Indexed: 12/16/2022] Open
Abstract
The tree of life shows the relationship between all organisms based on their common ancestry. Until 1977, it comprised two major branches: prokaryotes and eukaryotes. Work by Carl Woese and other microbiologists led to the recategorization of prokaryotes and the proposal of three primary domains: Eukarya, Bacteria and Archaea. Microbiological, genetic and biochemical techniques were then needed to study the third domain of life. Haloferax volcanii, a halophilic species belonging to the phylum Euryarchaeota, has provided many useful tools to study Archaea, including easy culturing methods, genetic manipulation and phenotypic screening. This review will focus on DNA replication and DNA repair pathways in H. volcanii, how this work has advanced our knowledge of archaeal cellular biology, and how it may deepen our understanding of bacterial and eukaryotic processes.
Collapse
Affiliation(s)
| | | | | | - Thorsten Allers
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| |
Collapse
|
10
|
Marshall CJ, Santangelo TJ. Archaeal DNA Repair Mechanisms. Biomolecules 2020; 10:E1472. [PMID: 33113933 PMCID: PMC7690668 DOI: 10.3390/biom10111472] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 12/29/2022] Open
Abstract
Archaea often thrive in environmental extremes, enduring levels of heat, pressure, salinity, pH, and radiation that prove intolerable to most life. Many environmental extremes raise the propensity for DNA damaging events and thus, impact DNA stability, placing greater reliance on molecular mechanisms that recognize DNA damage and initiate accurate repair. Archaea can presumably prosper in harsh and DNA-damaging environments in part due to robust DNA repair pathways but surprisingly, no DNA repair pathways unique to Archaea have been described. Here, we review the most recent advances in our understanding of archaeal DNA repair. We summarize DNA damage types and their consequences, their recognition by host enzymes, and how the collective activities of many DNA repair pathways maintain archaeal genomic integrity.
Collapse
Affiliation(s)
| | - Thomas J. Santangelo
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA;
| |
Collapse
|
11
|
Kong XY, Vik ES, Nawaz MS, Berges N, Dahl TB, Vågbø C, Suganthan R, Segers F, Holm S, Quiles-Jiménez A, Gregersen I, Fladeby C, Aukrust P, Bjørås M, Klungland A, Halvorsen B, Alseth I. Deletion of Endonuclease V suppresses chemically induced hepatocellular carcinoma. Nucleic Acids Res 2020; 48:4463-4479. [PMID: 32083667 PMCID: PMC7192598 DOI: 10.1093/nar/gkaa115] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/08/2020] [Accepted: 02/13/2020] [Indexed: 12/13/2022] Open
Abstract
Endonuclease V (EndoV) is a conserved inosine-specific ribonuclease with unknown biological function. Here, we present the first mouse model lacking EndoV, which is viable without visible abnormalities. We show that endogenous murine EndoV cleaves inosine-containing RNA in vitro, nevertheless a series of experiments fails to link an in vivo function to processing of such transcripts. As inosine levels and adenosine-to-inosine editing often are dysregulated in hepatocellular carcinoma (HCC), we chemically induced HCC in mice. All mice developed liver cancer, however, EndoV−/− tumors were significantly fewer and smaller than wild type tumors. Opposed to human HCC, adenosine deaminase mRNA expression and site-specific editing were unaltered in our model. Loss of EndoV did not affect editing levels in liver tumors, however mRNA expression of a selection of cancer related genes were reduced. Inosines are also found in certain tRNAs and tRNAs are cleaved during stress to produce signaling entities. tRNA fragmentation was dysregulated in EndoV−/− livers and apparently, inosine-independent. We speculate that the inosine-ribonuclease activity of EndoV is disabled in vivo, but RNA binding allowed to promote stabilization of transcripts or recruitment of proteins to fine-tune gene expression. The EndoV−/− tumor suppressive phenotype calls for related studies in human HCC.
Collapse
Affiliation(s)
- Xiang Yi Kong
- Research Institute of Internal Medicine, Oslo University Hospital HF, Rikshospitalet, NO-0424 Oslo, Norway
| | - Erik Sebastian Vik
- Department of Microbiology, Oslo University Hospital HF, Rikshospitalet and University of Oslo, NO-0424 Oslo, Norway
| | - Meh Sameen Nawaz
- Department of Microbiology, Oslo University Hospital HF, Rikshospitalet and University of Oslo, NO-0424 Oslo, Norway
| | - Natalia Berges
- Department of Microbiology, Oslo University Hospital HF, Rikshospitalet and University of Oslo, NO-0424 Oslo, Norway
| | - Tuva Børresdatter Dahl
- Research Institute of Internal Medicine, Oslo University Hospital HF, Rikshospitalet, NO-0424 Oslo, Norway.,Department of Microbiology, Oslo University Hospital HF, Rikshospitalet and University of Oslo, NO-0424 Oslo, Norway
| | - Cathrine Vågbø
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Rajikala Suganthan
- Department of Microbiology, Oslo University Hospital HF, Rikshospitalet and University of Oslo, NO-0424 Oslo, Norway
| | - Filip Segers
- Research Institute of Internal Medicine, Oslo University Hospital HF, Rikshospitalet, NO-0424 Oslo, Norway
| | - Sverre Holm
- Research Institute of Internal Medicine, Oslo University Hospital HF, Rikshospitalet, NO-0424 Oslo, Norway
| | - Ana Quiles-Jiménez
- Research Institute of Internal Medicine, Oslo University Hospital HF, Rikshospitalet, NO-0424 Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, NO-0317 Oslo, Norway
| | - Ida Gregersen
- Research Institute of Internal Medicine, Oslo University Hospital HF, Rikshospitalet, NO-0424 Oslo, Norway
| | - Cathrine Fladeby
- Department of Microbiology, Oslo University Hospital HF, Rikshospitalet and University of Oslo, NO-0424 Oslo, Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital HF, Rikshospitalet, NO-0424 Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, NO-0317 Oslo, Norway.,Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital, Rikshospitalet, NO-0424 Oslo, Norway
| | - Magnar Bjørås
- Department of Microbiology, Oslo University Hospital HF, Rikshospitalet and University of Oslo, NO-0424 Oslo, Norway.,Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Arne Klungland
- Department of Microbiology, Oslo University Hospital HF, Rikshospitalet and University of Oslo, NO-0424 Oslo, Norway.,Department of Molecular Medicine, Institute of Basic Medical Sciences, University ofOslo, NO-0317 Oslo, Norway
| | - Bente Halvorsen
- Research Institute of Internal Medicine, Oslo University Hospital HF, Rikshospitalet, NO-0424 Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, NO-0317 Oslo, Norway
| | - Ingrun Alseth
- Department of Microbiology, Oslo University Hospital HF, Rikshospitalet and University of Oslo, NO-0424 Oslo, Norway
| |
Collapse
|
12
|
Zhang L, Jiang D, Wu M, Yang Z, Oger PM. New Insights Into DNA Repair Revealed by NucS Endonucleases From Hyperthermophilic Archaea. Front Microbiol 2020; 11:1263. [PMID: 32714287 PMCID: PMC7343888 DOI: 10.3389/fmicb.2020.01263] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/18/2020] [Indexed: 12/22/2022] Open
Abstract
Hyperthermophilic Archaea (HA) thrive in high temperature environments and their genome is facing severe stability challenge due to the increased DNA damage levels caused by high temperature. Surprisingly, HA display spontaneous mutation frequencies similar to mesophilic microorganisms, thereby indicating that the former must possess more efficient DNA repair systems than the latter to counteract the potentially enhanced mutation rates under the harsher environment. Although a few repair proteins or enzymes from HA have been biochemically and structurally characterized, the molecular mechanisms of DNA repair of HA remain largely unknown. Genomic analyses of HA revealed that they lack MutS/MutL homologues of the mismatch repair (MMR) pathway and the recognition proteins of the nucleotide excision repair (NER) pathway. Endonucleases play an essential role in DNA repair. NucS endonuclease, a novel endonuclease recently identified in some HA and bacteria, has been shown to act on branched, mismatched, and deaminated DNA, suggesting that this endonuclease is a multifunctional enzyme involved in NER, MMR, and deaminated base repair in a non-canonical manner. However, the catalytic mechanism and the physiological function of NucS endonucleases from HA need to be further clarified to determine how they participate in the different DNA repair pathways in cells from HA. In this review, we focus on recent advances in our understanding of the function of NucS endonucleases from HA in NER, MMR, and deaminated DNA repair, and propose directions for future studies of the NucS family of endonucleases.
Collapse
Affiliation(s)
- Likui Zhang
- College of Environmental Science and Engineering, Marine Science and Technology Institute, Yangzhou University, Yangzhou, China.,Guangling College, Yangzhou University, Yangzhou, China
| | - Donghao Jiang
- College of Environmental Science and Engineering, Marine Science and Technology Institute, Yangzhou University, Yangzhou, China
| | - Mai Wu
- College of Environmental Science and Engineering, Marine Science and Technology Institute, Yangzhou University, Yangzhou, China
| | - Zhihui Yang
- College of Plant Protection, Agricultural University of Hebei, Baoding, China
| | - Philippe M Oger
- Univ Lyon, INSA de Lyon, CNRS UMR 5240, Villeurbanne, France
| |
Collapse
|
13
|
Ishino Y. Studies on DNA-related enzymes to elucidate molecular mechanisms underlying genetic information processing and their application in genetic engineering. Biosci Biotechnol Biochem 2020; 84:1749-1766. [PMID: 32567488 DOI: 10.1080/09168451.2020.1778441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Recombinant DNA technology, in which artificially "cut and pasted" DNA in vitro is introduced into living cells, contributed extensively to the rapid development of molecular biology over the past 5 decades since the latter half of the 20th century. Although the original technology required special experiences and skills, the development of polymerase chain reaction (PCR) has greatly eased in vitro genetic manipulation for various experimental methods. The current development of a simple genome-editing technique using CRISPR-Cas9 gave great impetus to molecular biology. Genome editing is a major technique for elucidating the functions of many unknown genes. Genetic manipulation technologies rely on enzymes that act on DNA. It involves artificially synthesizing, cleaving, and ligating DNA strands by making good use of DNA-related enzymes present in organisms to maintain their life activities. In this review, I focus on key enzymes involved in the development of genetic manipulation technologies.
Collapse
Affiliation(s)
- Yoshizumi Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University , Fukuoka, Japan
| |
Collapse
|
14
|
Molecular Basis of Substrate Recognition of Endonuclease Q from the Euryarchaeon Pyrococcus furiosus. J Bacteriol 2020; 202:JB.00542-19. [PMID: 31685534 DOI: 10.1128/jb.00542-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/23/2019] [Indexed: 11/20/2022] Open
Abstract
Endonuclease Q (EndoQ), a DNA repair endonuclease, was originally identified in the hyperthermophilic euryarchaeon Pyrococcus furiosus in 2015. EndoQ initiates DNA repair by generating a nick on DNA strands containing deaminated bases and an abasic site. Although EndoQ is thought to be important for maintaining genome integrity in certain bacteria and archaea, the underlying mechanism catalyzed by EndoQ remains unclear. Here, we provide insights into the molecular basis of substrate recognition by EndoQ from P. furiosus (PfuEndoQ) using biochemical approaches. Our results of the substrate specificity range and the kinetic properties of PfuEndoQ demonstrate that PfuEndoQ prefers the imide structure in nucleobases along with the discovery of its cleavage activity toward 5,6-dihydrouracil, 5-hydroxyuracil, 5-hydroxycytosine, and uridine in DNA. The combined results for EndoQ substrate binding and cleavage activity analyses indicated that PfuEndoQ flips the target base from the DNA duplex, and the cleavage activity is highly dependent on spontaneous base flipping of the target base. Furthermore, we find that PfuEndoQ has a relatively relaxed substrate specificity; therefore, the role of EndoQ in restriction modification systems was explored. The activity of the EndoQ homolog from Bacillus subtilis was found not to be inhibited by the uracil glycosylase inhibitor from B. subtilis bacteriophage PBS1, whose genome is completely replaced by uracil instead of thymine. Our findings suggest that EndoQ not only has additional functions in DNA repair but also could act as an antiviral enzyme in organisms with EndoQ.IMPORTANCE Endonuclease Q (EndoQ) is a lesion-specific DNA repair enzyme present in certain bacteria and archaea. To date, it remains unclear how EndoQ recognizes damaged bases. Understanding the mechanism of substrate recognition by EndoQ is important to grasp genome maintenance systems in organisms with EndoQ. Here, we find that EndoQ from the euryarchaeon Pyrococcus furiosus recognizes the imide structure in nucleobases by base flipping, and the cleavage activity is enhanced by the base pair instability of the target base, along with the discovery of its cleavage activity toward 5,6-dihydrouracil, 5-hydroxyuracil, 5-hydroxycytosine, and uridine in DNA. Furthermore, a potential role of EndoQ in Bacillus subtilis as an antiviral enzyme by digesting viral genome is demonstrated.
Collapse
|
15
|
Miyazono KI, Ishino S, Makita N, Ito T, Ishino Y, Tanokura M. Crystal structure of the novel lesion-specific endonuclease PfuEndoQ from Pyrococcus furiosus. Nucleic Acids Res 2019; 46:4807-4818. [PMID: 29660024 PMCID: PMC5961232 DOI: 10.1093/nar/gky261] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 03/28/2018] [Indexed: 02/03/2023] Open
Abstract
Because base deaminations, which are promoted by high temperature, ionizing radiation, aerobic respiration and nitrosative stress, produce mutations during replication, deaminated bases must be repaired quickly to maintain genome integrity. Recently, we identified a novel lesion-specific endonuclease, PfuEndoQ, from Pyrococcus furiosus, and PfuEndoQ may be involved in the DNA repair pathway in Thermococcales of Archaea. PfuEndoQ recognizes a deaminated base and cleaves the phosphodiester bond 5' of the lesion site. To elucidate the structural basis of the substrate recognition and DNA cleavage mechanisms of PfuEndoQ, we determined the structure of PfuEndoQ using X-ray crystallography. The PfuEndoQ structure and the accompanying biochemical data suggest that PfuEndoQ recognizes a deaminated base using a highly conserved pocket adjacent to a Zn2+-binding site and hydrolyses a phosphodiester bond using two Zn2+ ions. The PfuEndoQ-DNA complex is stabilized by a Zn-binding domain and a C-terminal helical domain, and the complex may recruit downstream proteins in the DNA repair pathway.
Collapse
Affiliation(s)
- Ken-Ichi Miyazono
- Laboratory of Basic Science on Healthy Longevity, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Sonoko Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, and Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | - Naruto Makita
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, and Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | - Tomoko Ito
- Laboratory of Basic Science on Healthy Longevity, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Yoshizumi Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, and Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | - Masaru Tanokura
- Laboratory of Basic Science on Healthy Longevity, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|
16
|
White MF, Allers T. DNA repair in the archaea-an emerging picture. FEMS Microbiol Rev 2018; 42:514-526. [PMID: 29741625 DOI: 10.1093/femsre/fuy020] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/02/2018] [Indexed: 12/12/2022] Open
Abstract
There has long been a fascination in the DNA repair pathways of archaea, for two main reasons. Firstly, many archaea inhabit extreme environments where the rate of physical damage to DNA is accelerated. These archaea might reasonably be expected to have particularly robust or novel DNA repair pathways to cope with this. Secondly, the archaea have long been understood to be a lineage distinct from the bacteria, and to share a close relationship with the eukarya, particularly in their information processing systems. Recent discoveries suggest the eukarya arose from within the archaeal domain, and in particular from lineages related to the TACK superphylum and Lokiarchaea. Thus, archaeal DNA repair proteins and pathways can represent a useful model system. This review focuses on recent advances in our understanding of archaeal DNA repair processes including base excision repair, nucleotide excision repair, mismatch repair and double-strand break repair. These advances are discussed in the context of the emerging picture of the evolution and relationship of the three domains of life.
Collapse
Affiliation(s)
- Malcolm F White
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, Fife KY16 9ST, UK
| | - Thorsten Allers
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| |
Collapse
|
17
|
The mesophilic archaeon Methanosarcina acetivorans counteracts uracil in DNA with multiple enzymes: EndoQ, ExoIII, and UDG. Sci Rep 2018; 8:15791. [PMID: 30361558 PMCID: PMC6202378 DOI: 10.1038/s41598-018-34000-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 09/25/2018] [Indexed: 02/04/2023] Open
Abstract
Cytosine deamination into uracil is one of the most prevalent and pro-mutagenic forms of damage to DNA. Base excision repair is a well-known process of uracil removal in DNA, which is achieved by uracil DNA glycosylase (UDG) that is found in all three domains of life. However, other strategies for uracil removal seem to have been evolved in Archaea. Exonuclease III (ExoIII) from the euryarchaeon Methanothermobacter thermautotrophicus has been described to exhibit endonuclease activity toward uracil-containing DNA. Another uracil-acting protein, endonuclease Q (EndoQ), was recently identified from the euryarchaeon Pyrococcus furiosus. Here, we describe the uracil-counteracting system in the mesophilic euryarchaeon Methanosarcina acetivorans through genomic sequence analyses and biochemical characterizations. Three enzymes, UDG, ExoIII, and EndoQ, from M. acetivorans exhibited uracil cleavage activities in DNA with a distinct range of substrate specificities in vitro, and the transcripts for these three enzymes were detected in the M. acetivorans cells. Thus, this organism appears to conduct uracil repair using at least three distinct pathways. Distribution of the homologs of these uracil-targeting proteins in Archaea showed that this tendency is not restricted to M. acetivorans, but is prevalent and diverse in most Archaea. This work further underscores the importance of uracil-removal systems to maintain genome integrity in Archaea, including 'UDG lacking' organisms.
Collapse
|
18
|
Wang Y, Zhang L, Zhu X, Li Y, Shi H, Oger P, Yang Z. Biochemical characterization of a thermostable endonuclease V from the hyperthermophilic euryarchaeon Thermococcus barophilus Ch5. Int J Biol Macromol 2018; 117:17-24. [DOI: 10.1016/j.ijbiomac.2018.05.155] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/20/2018] [Accepted: 05/22/2018] [Indexed: 01/13/2023]
|
19
|
Insights into the role of endonuclease V in RNA metabolism in Trypanosoma brucei. Sci Rep 2017; 7:8505. [PMID: 28819113 PMCID: PMC5561087 DOI: 10.1038/s41598-017-08910-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/14/2017] [Indexed: 01/05/2023] Open
Abstract
Inosine may arise in DNA as a result of oxidative deamination of adenine or misincorporation of deoxyinosine triphosphate during replication. On the other hand, the occurrence of inosine in RNA is considered a normal and essential modification induced by specific adenosine deaminases acting on mRNA and tRNA. In prokaryotes, endonuclease V (EndoV) can recognize and cleave inosine-containing DNA. In contrast, mammalian EndoVs preferentially cleave inosine-containing RNA, suggesting a role in RNA metabolism for the eukaryotic members of this protein family. We have performed a biochemical characterization of EndoV from the protozoan parasite Trypanosoma brucei. In vitro, TbEndoV efficiently processes single-stranded RNA oligonucleotides with inosine, including A to I-edited tRNA-like substrates but exhibits weak activity over DNA, except when a ribonucleotide is placed 3' to the inosine. Immunolocalization studies performed in procyclic forms indicate that TbEndoV is mainly cytosolic yet upon nutritional stress it redistributes and accumulates in stress granules colocalizing with the DEAD-box helicase TbDhh1. RNAi-mediated depletion of TbEndoV results in moderate growth defects in procyclic cells while the two EndoV alleles could be readily knocked out in bloodstream forms. Taken together, these observations suggest an important role of TbEndoV in RNA metabolism in procyclic forms of the parasite.
Collapse
|
20
|
Shiraishi M, Ishino S, Cann I, Ishino Y. A functional endonuclease Q exists in the bacterial domain: identification and characterization of endonuclease Q from Bacillus pumilus. Biosci Biotechnol Biochem 2017; 81:931-937. [PMID: 28095753 DOI: 10.1080/09168451.2016.1277946] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
DNA base deamination occurs spontaneously under physiological conditions and is promoted by high temperature. Therefore, hyperthermophiles are expected to have efficient repair systems of the deaminated bases in their genomes. Endonuclease Q (EndoQ) was originally identified from the hyperthermophlic archaeon, Pyrococcus furiosus, as a hypoxanthine-specific endonuclease recently. Further biochemical analyses revealed that EndoQ also recognizes uracil, xanthine, and the AP site in DNA, and is probably involved in a specific repair process for damaged bases. Initial phylogenetic analysis showed that an EndoQ homolog is found only in the Thermococcales and some of the methanogens in Archaea, and is not present in most members of the domains Bacteria and Eukarya. A better understanding of the distribution of the EndoQ-mediated repair system is, therefore, of evolutionary interest. We showed here that an EndoQ-like polypeptide from Bacillus pumilus, belonging to the bacterial domain, is functional and has similar properties with the archaeal EndoQs.
Collapse
Affiliation(s)
- Miyako Shiraishi
- a Graduate School of Bioresource and Bioenvironmental Sciences , Kyushu University , Fukuoka , Japan.,d Institute for Universal Biology , University of Illinois at Urbana-Champaign , Urbana , IL , USA.,e Carl R. Woese Institute for Genomic Biology , University of Illinois at Urbana-Champaign , Urbana , IL , USA
| | - Sonoko Ishino
- a Graduate School of Bioresource and Bioenvironmental Sciences , Kyushu University , Fukuoka , Japan
| | - Isaac Cann
- b Department of Animal Science , University of Illinois at Urbana-Champaign , Urbana , IL , USA.,c Department of Microbiology , University of Illinois at Urbana-Champaign , Urbana , IL , USA.,d Institute for Universal Biology , University of Illinois at Urbana-Champaign , Urbana , IL , USA.,e Carl R. Woese Institute for Genomic Biology , University of Illinois at Urbana-Champaign , Urbana , IL , USA
| | - Yoshizumi Ishino
- a Graduate School of Bioresource and Bioenvironmental Sciences , Kyushu University , Fukuoka , Japan.,d Institute for Universal Biology , University of Illinois at Urbana-Champaign , Urbana , IL , USA.,e Carl R. Woese Institute for Genomic Biology , University of Illinois at Urbana-Champaign , Urbana , IL , USA
| |
Collapse
|
21
|
Nie H, Huang H, Li W, Yang T. A Label-free Time-resolved Luminescent Platform for Sensitive Endonuclease V Detection Based on Exonuclease III Regulated DNA-Tb 3+ Luminescence. ANAL SCI 2016; 32:1245-1250. [PMID: 27829633 DOI: 10.2116/analsci.32.1245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Endonuclease V (EndoV) plays the important role of nucleotide excision repair (NER) in the maintenance of genomic stability. Highly sensitive detection of EndoV was achieved through an oligonucleotides sensitizing Tb3+ luminescent technique. We found that although both guanine-rich (G-rich) single-stranded DNA and dGMP could enhance the time-resolved luminescence of Tb3+, their efficiencies of enhancement were considerably different. Employing such interesting phenomenon, a label-free and time-resolved luminescent strategy for the sensitive detection of EndoV activity was developed based on DNA-enhanced time-resolved luminescence (TRL) of Tb3+. The EndoV was used to cut off the deoxyinosine site (dI) and convert the 3'-protruding termini to a recessed end, and Exonuclease III (Exo III) was used to enhance the signal contrast via digestion of G-rich DNA to dNTP. Combining with the natural advantages of the TRL, the proposed method exhibited a good linear response to EndoV ranging from 0.005 to 0.4 U/mL, with a low limit of detection of 0.005 U/mL.
Collapse
Affiliation(s)
- Huaijun Nie
- State Environmental Protection Key Laboratory of Drinking Water Source Management and Technology, Shenzhen Key Laboratory of Drinking Water Source Safety Control, Shenzhen Research Academy of Environmental Sciences
| | | | | | | |
Collapse
|
22
|
Archaeal DNA Polymerase-B as a DNA Template Guardian: Links between Polymerases and Base/Alternative Excision Repair Enzymes in Handling the Deaminated Bases Uracil and Hypoxanthine. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2016; 2016:1510938. [PMID: 27721668 PMCID: PMC5045986 DOI: 10.1155/2016/1510938] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/01/2016] [Indexed: 02/03/2023]
Abstract
In Archaea repair of uracil and hypoxanthine, which arise by deamination of cytosine and adenine, respectively, is initiated by three enzymes: Uracil-DNA-glycosylase (UDG, which recognises uracil); Endonuclease V (EndoV, which recognises hypoxanthine); and Endonuclease Q (EndoQ), (which recognises both uracil and hypoxanthine). Two archaeal DNA polymerases, Pol-B and Pol-D, are inhibited by deaminated bases in template strands, a feature unique to this domain. Thus the three repair enzymes and the two polymerases show overlapping specificity for uracil and hypoxanthine. Here it is demonstrated that binding of Pol-D to primer-templates containing deaminated bases inhibits the activity of UDG, EndoV, and EndoQ. Similarly Pol-B almost completely turns off EndoQ, extending earlier work that demonstrated that Pol-B reduces catalysis by UDG and EndoV. Pol-B was observed to be a more potent inhibitor of the enzymes compared to Pol-D. Although Pol-D is directly inhibited by template strand uracil, the presence of Pol-B further suppresses any residual activity of Pol-D, to near-zero levels. The results are compatible with Pol-D acting as the replicative polymerase and Pol-B functioning primarily as a guardian preventing deaminated base-induced DNA mutations.
Collapse
|
23
|
Shiraishi M, Ishino S, Yoshida K, Yamagami T, Cann I, Ishino Y. PCNA is involved in the EndoQ-mediated DNA repair process in Thermococcales. Sci Rep 2016; 6:25532. [PMID: 27150116 PMCID: PMC4858679 DOI: 10.1038/srep25532] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 04/14/2016] [Indexed: 01/01/2023] Open
Abstract
To maintain genome integrity for transfer to their offspring, and to maintain order in cellular processes, all living organisms have DNA repair systems. Besides the well-conserved DNA repair machineries, organisms thriving in extreme environments are expected to have developed efficient repair systems. We recently discovered a novel endonuclease, which cleaves the 5′ side of deoxyinosine, from the hyperthermophilic archaeon, Pyrococcus furiosus. The novel endonuclease, designated as Endonulcease Q (EndoQ), recognizes uracil, abasic site and xanthine, as well as hypoxanthine, and cuts the phosphodiester bond at their 5′ sides. To understand the functional process involving EndoQ, we searched for interacting partners of EndoQ and identified Proliferating Cell Nuclear Angigen (PCNA). The EndoQ activity was clearly enhanced by addition of PCNA in vitro. The physical interaction between the two proteins through a PIP-motif of EndoQ and the toroidal structure of PCNA are critical for the stimulation of the endonuclease activity. These findings provide us a clue to elucidate a unique DNA repair system in Archaea.
Collapse
Affiliation(s)
- Miyako Shiraishi
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan.,Institute for Universal Biology and University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Sonoko Ishino
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Kotaro Yoshida
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Takeshi Yamagami
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Isaac Cann
- Institute for Universal Biology and University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Department of Animal Science, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Yoshizumi Ishino
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan.,Institute for Universal Biology and University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
24
|
Ishino S, Nishi Y, Oda S, Uemori T, Sagara T, Takatsu N, Yamagami T, Shirai T, Ishino Y. Identification of a mismatch-specific endonuclease in hyperthermophilic Archaea. Nucleic Acids Res 2016; 44:2977-86. [PMID: 27001046 PMCID: PMC4838380 DOI: 10.1093/nar/gkw153] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/29/2016] [Indexed: 12/17/2022] Open
Abstract
The common mismatch repair system processed by MutS and MutL and their homologs was identified in Bacteria and Eukarya. However, no evidence of a functional MutS/L homolog has been reported for archaeal organisms, and it is not known whether the mismatch repair system is conserved in Archaea. Here, we describe an endonuclease that cleaves double-stranded DNA containing a mismatched base pair, from the hyperthermophilic archaeon Pyrococcus furiosus The corresponding gene revealed that the activity originates from PF0012, and we named this enzyme Endonuclease MS (EndoMS) as the mismatch-specific Endonuclease. The sequence similarity suggested that EndoMS is the ortholog of NucS isolated from Pyrococcus abyssi, published previously. Biochemical characterizations of the EndoMS homolog from Thermococcus kodakarensis clearly showed that EndoMS specifically cleaves both strands of double-stranded DNA into 5'-protruding forms, with the mismatched base pair in the central position. EndoMS cleaves G/T, G/G, T/T, T/C and A/G mismatches, with a more preference for G/T, G/G and T/T, but has very little or no effect on C/C, A/C and A/A mismatches. The discovery of this endonuclease suggests the existence of a novel mismatch repair process, initiated by the double-strand break generated by the EndoMS endonuclease, in Archaea and some Bacteria.
Collapse
Affiliation(s)
- Sonoko Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, Fukuoka 812-8581, Japan
| | - Yuki Nishi
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, Fukuoka 812-8581, Japan
| | - Soichiro Oda
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, Fukuoka 812-8581, Japan
| | - Takashi Uemori
- Takara Bio Inc., Nojihigashi 7-4-38, Kusatsu, Shiga 525-0058, Japan
| | - Takehiro Sagara
- Takara Bio Inc., Nojihigashi 7-4-38, Kusatsu, Shiga 525-0058, Japan
| | - Nariaki Takatsu
- Takara Bio Inc., Nojihigashi 7-4-38, Kusatsu, Shiga 525-0058, Japan
| | - Takeshi Yamagami
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, Fukuoka 812-8581, Japan
| | - Tsuyoshi Shirai
- Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga 526-0829, Japan
| | - Yoshizumi Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, Fukuoka 812-8581, Japan
| |
Collapse
|
25
|
Kuraoka I. Diversity of Endonuclease V: From DNA Repair to RNA Editing. Biomolecules 2015; 5:2194-206. [PMID: 26404388 PMCID: PMC4693234 DOI: 10.3390/biom5042194] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 09/09/2015] [Accepted: 09/11/2015] [Indexed: 11/16/2022] Open
Abstract
Deamination of adenine occurs in DNA, RNA, and their precursors via a hydrolytic reaction and a nitrosative reaction. The generated deaminated products are potentially mutagenic because of their structural similarity to natural bases, which in turn leads to erroneous nucleotide pairing and subsequent disruption of cellular metabolism. Incorporation of deaminated precursors into the nucleic acid strand occurs during nucleotide synthesis by DNA and RNA polymerases or base modification by DNA- and/or RNA-editing enzymes during cellular functions. In such cases, removal of deaminated products from DNA and RNA by a nuclease might be required depending on the cellular function. One such enzyme, endonuclease V, recognizes deoxyinosine and cleaves 3' end of the damaged base in double-stranded DNA through an alternative excision repair mechanism in Escherichia coli, whereas in Homo sapiens, it recognizes and cleaves inosine in single-stranded RNA. However, to explore the role of endonuclease V in vivo, a detailed analysis of cell biology is required. Based on recent reports and developments on endonuclease V, we discuss the potential functions of endonuclease V in DNA repair and RNA metabolism.
Collapse
Affiliation(s)
- Isao Kuraoka
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan.
| |
Collapse
|
26
|
EndoQ and EndoV work individually for damaged DNA base repair in Pyrococcus furiosus. Biochimie 2015; 118:264-9. [PMID: 26116888 DOI: 10.1016/j.biochi.2015.06.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 06/19/2015] [Indexed: 12/11/2022]
Abstract
Base deamination is a typical form of DNA damage, and it must be repaired quickly to maintain the genome integrity of living organisms. Endonuclease Q (EndoQ), recently found in the hyperthermophilic archaea, is an enzyme that cleaves the phosphodiester bond 5' from the damaged nucleotide in the DNA strand, and may primarily function to start the repair process for the damaged bases. Endonuclease V (EndoV) also hydrolyzes the second phosphodiester bond 3' from the damaged nucleotide, although the hyperthermophilic archaeal EndoV is a strictly hypoxanthine-specific endonuclease. To understand the relationships of the EndoQ and EndoV functions in hyperthermophilic archaea, we analyzed their interactions in hypoxanthine repair. EndoQ and EndoV do not directly interact with each other in either the presence or absence of DNA. However, EndoQ and EndoV individually worked on deoxyinosine (dI)-containing DNA at each cleavage site. EndoQ has higher affinity to dI-containing DNA than EndoV, and cells produce higher amounts of EndoQ, as compared to EndoV. These data support the proposal that EndoQ primarily functions for, at least, dI-containing DNA.
Collapse
|
27
|
Ishino Y, Narumi I. DNA repair in hyperthermophilic and hyperradioresistant microorganisms. Curr Opin Microbiol 2015; 25:103-12. [PMID: 26056771 DOI: 10.1016/j.mib.2015.05.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 04/22/2015] [Accepted: 05/20/2015] [Indexed: 10/23/2022]
Abstract
The genome of a living cell is continuously under attack by exogenous and endogenous genotoxins. Especially, life at high temperature inflicts additional stress on genomic DNA, and very high rates of potentially mutagenic DNA lesions, including deamination, depurination, and oxidation, are expected. However, the spontaneous mutation rates in hyperthermophiles are similar to that in Escherichia coli, and it is interesting to determine how the hyperthermophiles preserve their genomes under such grueling environmental conditions. In addition, organisms with extremely radioresistant phenotypes are targets for investigating special DNA repair mechanisms in extreme environments. Multiple DNA repair mechanisms have evolved in all organisms to ensure genomic stability, by preventing impediments that result in genome destabilizing lesions.
Collapse
Affiliation(s)
- Yoshizumi Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Fukuoka, Fukuoka 812-8581, Japan.
| | - Issay Narumi
- Radiation Microbiology Laboratory, Department of Life Sciences, Faculty of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura, Gunma 374-0193, Japan
| |
Collapse
|
28
|
Dalhus B, Alseth I, Bjørås M. Structural basis for incision at deaminated adenines in DNA and RNA by endonuclease V. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2015; 117:134-142. [PMID: 25824682 DOI: 10.1016/j.pbiomolbio.2015.03.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Revised: 03/19/2015] [Accepted: 03/20/2015] [Indexed: 01/15/2023]
Abstract
Deamination of the exocyclic amines in adenine, guanine and cytosine forms base lesions that may lead to mutations if not removed by DNA repair proteins. Prokaryotic endonuclease V (EndoV/Nfi) has long been known to incise DNA 3' to a variety of base lesions, including deaminated adenine, guanine and cytosine. Biochemical and genetic data implicate that EndoV is involved in repair of these deaminated bases. In contrast to DNA glycosylases that remove a series of modified/damaged bases in DNA by direct excision of the nucleobase, EndoV cleaves the DNA sugar phosphate backbone at the second phosphodiester 3' to the lesion without removing the deaminated base. Structural investigation of this unusual incision by EndoV has unravelled an enzyme with separate base lesion and active site pockets. A novel wedge motif was identified as a DNA strand-separation feature important for damage detection. Human EndoV appears inactive on DNA, but has been shown to incise various RNA substrates containing inosine. Inosine is the deamination product of adenosine and is frequently found in RNA. The structural basis for discrimination between DNA and RNA by human EndoV remains elusive.
Collapse
Affiliation(s)
- Bjørn Dalhus
- Department of Medical Biochemistry, Institute for Clinical Medicine, University of Oslo, PO Box 4950, Nydalen, N-0424 Oslo, Norway; Department of Microbiology, Clinic for Diagnostics and Intervention, Oslo University Hospital, Rikshospitalet, PO Box 4950, Nydalen, N-0424 Oslo, Norway.
| | - Ingrun Alseth
- Department of Microbiology, Clinic for Diagnostics and Intervention, Oslo University Hospital, Rikshospitalet, PO Box 4950, Nydalen, N-0424 Oslo, Norway
| | - Magnar Bjørås
- Department of Microbiology, Clinic for Diagnostics and Intervention, Oslo University Hospital, Rikshospitalet, PO Box 4950, Nydalen, N-0424 Oslo, Norway
| |
Collapse
|
29
|
Shiraishi M, Ishino S, Yamagami T, Egashira Y, Kiyonari S, Ishino Y. A novel endonuclease that may be responsible for damaged DNA base repair in Pyrococcus furiosus. Nucleic Acids Res 2015; 43:2853-63. [PMID: 25694513 PMCID: PMC4357722 DOI: 10.1093/nar/gkv121] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DNA is constantly damaged by endogenous and environmental influences. Deaminated adenine (hypoxanthine) tends to pair with cytosine and leads to the A:T→G:C transition mutation during DNA replication. Endonuclease V (EndoV) hydrolyzes the second phosphodiester bond 3′ from deoxyinosine in the DNA strand, and was considered to be responsible for hypoxanthine excision repair. However, the downstream pathway after EndoV cleavage remained unclear. The activity to cleave the phosphodiester bond 5′ from deoxyinosine was detected in a Pyrococcus furiosus cell extract. The protein encoded by PF1551, obtained from the mass spectrometry analysis of the purified fraction, exhibited the corresponding cleavage activity. A putative homolog from Thermococcus kodakarensis (TK0887) showed the same activity. Further biochemical analyses revealed that the purified PF1551 and TK0887 proteins recognize uracil, xanthine and the AP site, in addition to hypoxanthine. We named this endonuclease Endonuclease Q (EndoQ), as it may be involved in damaged base repair in the Thermococcals of Archaea.
Collapse
Affiliation(s)
- Miyako Shiraishi
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, Fukuoka 812-8581, Japan
| | - Sonoko Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, Fukuoka 812-8581, Japan
| | - Takeshi Yamagami
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, Fukuoka 812-8581, Japan
| | - Yuriko Egashira
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, Fukuoka 812-8581, Japan
| | - Shinichi Kiyonari
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, Fukuoka 812-8581, Japan
| | - Yoshizumi Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, Fukuoka 812-8581, Japan
| |
Collapse
|
30
|
Base excision repair in Archaea: back to the future in DNA repair. DNA Repair (Amst) 2014; 21:148-57. [PMID: 25012975 DOI: 10.1016/j.dnarep.2014.05.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 05/24/2014] [Indexed: 11/22/2022]
Abstract
Together with Bacteria and Eukarya, Archaea represents one of the three domain of life. In contrast with the morphological difference existing between Archaea and Eukarya, these two domains are closely related. Phylogenetic analyses confirm this evolutionary relationship showing that most of the proteins involved in DNA transcription and replication are highly conserved. On the contrary, information is scanty about DNA repair pathways and their mechanisms. In the present review the most important proteins involved in base excision repair, namely glycosylases, AP lyases, AP endonucleases, polymerases, sliding clamps, flap endonucleases, and ligases, will be discussed and compared with bacterial and eukaryotic ones. Finally, possible applications and future perspectives derived from studies on Archaea and their repair pathways, will be taken into account.
Collapse
|