1
|
Kawamura Y, Sugiura S, Araseki H, Chisuga T, Nakano S. Structural and functional analysis of l-methionine oxidase identified through sequence data mining. J Biosci Bioeng 2024; 138:391-398. [PMID: 39142977 DOI: 10.1016/j.jbiosc.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 08/16/2024]
Abstract
l-Amino acid oxidase (LAAO), an FAD-dependent enzyme, catalyzes the oxidation of l-amino acids (l-AAs) to their corresponding imino acids. While LAAOs, which can oxidize charged or aromatic l-AAs specifically, have been extensively characterized across various species, LAAOs that have high specificity toward alkyl-chain l-AAs, such as l-Met, are hardly characterized for now. In this study, we screened a highly specific l-Met oxidizing LAAOs from Burkholderiales bacterium (BbMetOx) and Undibacterium sp. KW1 (UndMetOx) using sequence similarity network (SSN) analysis. These enzymes displayed an order of magnitude higher specific activity towards l-Met compared to other l-AAs. Enzyme activity assays showed that these LAAOs operate optimally at moderate condition because the optimal pH and Tm values were pH 7.0 and 58-60°C. We determined the crystal structures of wild-type BbMetOx (BbMetOx(WT)) and an inactivated mutant, BbMetOx (K304A), at 2.7 Å and 2.2 Å resolution, respectively. The overall structure of BbMetOx is closely similar to other known LAAOs of which structures were determined. Comparative analysis of the BbMetOx structures revealed significant conformational changes in the catalytic domain, particularly a movement of approximately 8 Å in the Cα atom of residue Y180. Further analysis highlighted four residues, i.e., Y180, M182, F300, and M302, as critical for l-Met recognition, with alanine substitution at these positions resulting in loss of activity. This study not only underscores the utility of SSN for discovering novel LAAOs but also advances our understanding of substrate specificity in this enzyme family.
Collapse
Affiliation(s)
- Yui Kawamura
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Sayaka Sugiura
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Hayato Araseki
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Taichi Chisuga
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Shogo Nakano
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| |
Collapse
|
2
|
Harikrishnan S, Mohamed Yacoob SA, Venkatraman A, Nagarajan Y, Kuppusam SG. In vivo studies on evaluation of endophytic fungi extract from Trichoderma viride against cervical cancer. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2023. [DOI: 10.1186/s43088-023-00348-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
Abstract
Background
The crude ethyl acetate Trichoderma viride extract obtained from Ziziphus mauritiana was initially analyzed by HPLC for identification of major bioactive compounds, and then, it was subjected for in vivo acute and sub-acute toxicity, cervical cancer studies using Wistar albino rats.
Result
During acute toxicity studies, animal groups treated with distinct dosage of 2000 mg/kg restrained toxicity signs in tested groups compared to controls for 14 days which established to be secure and non-toxic even at high dose. However, in terms of sub-acute toxicity studies, animals were given with repeated amount of (10 mg/kg, 20 mg/kg and 40 mg/kg) for a period of 28 days along with control group. Upon investigations of hematological, biochemical and histopathological studies repeated dose of 20 mg/kg and 40 mg/kg of T. viride extract found to be normal and no other major changes observed among treated groups. During in vivo studies, after treatment of T. viride extract (40 mg/kg) effectively inhibited the cervical cancer cell growth in DES-treated groups. Through HPLC analysis the major compound ursolic acid and 2,5-piperazinedione were mainly identified.
Conclusion
The secondary metabolites of endophytes have been used substantially for the sustainable production of therapeutically important compounds. The limited availability of bioactive principles in plant sources could be surpassed by exploiting the chemical entities in the endophytes. In the present investigation, it has been accomplished that ethyl acetate extract of T. viride was safe at higher and lower dosage could be considered for pharmacological studies from plant may provide an excellent avenue for the discovery of drug candidates against deadly cancer diseases.
Collapse
|
3
|
Motoyama T, Yamamoto Y, Ishida C, Hasebe F, Kawamura Y, Shigeta Y, Ito S, Nakano S. Reaction Mechanism of Ancestral l-Lys α-Oxidase from Caulobacter Species Studied by Biochemical, Structural, and Computational Analysis. ACS OMEGA 2022; 7:44407-44419. [PMID: 36506213 PMCID: PMC9730747 DOI: 10.1021/acsomega.2c06334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/09/2022] [Indexed: 06/17/2023]
Abstract
The flavin-dependent amine oxidase superfamily contains various l-amino acid oxidases (LAAOs) bearing different substrate specificities and enzymatic properties. LAAOs catalyze the oxidation of the α-amino group of l-amino acids (L-AAs) to produce imino acids and H2O2. In this study, an ancestral l-Lys α-oxidase (AncLLysO2) was designed utilizing genome-mined sequences from the Caulobacter species. The AncLLysO2 exhibited high specificity toward l-Lys; the k cat/K m values toward l-Lys were one and two orders larger than those of l-Arg and l-ornithine, respectively. Liquid chromatography-high resolution mass spectrometry analysis indicated that AncLLysO2 released imino acid immediately from the active site after completion of oxidation of the α-amino group. Crystal structures of the ligand-free, l-Lys- and l-Arg-bound forms of AncLLysO2 were determined at 1.4-1.6 Å resolution, indicating that the active site of AncLLysO2 kept an open state during the reaction and more likely to release products. The structures also indicated the substrate recognition mechanism of AncLLysO2; ε-amino, α-amino, and carboxyl groups of l-Lys formed interactions with Q357, A551, and R77, respectively. Biochemical and molecular dynamics simulation analysis of AncLLysO2 indicated that active site residues that indirectly interact with the substrate are also important to exhibit high activity; for example, the aromatic group of Y219 is important to ensure that the l-Lys substrate is placed in the correct position to allow the reaction to proceed efficiently. Taken together, we propose the reaction mechanism of AncLLysO2.
Collapse
Affiliation(s)
- Tomoharu Motoyama
- Graduate
Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Yuta Yamamoto
- Department
of Physics, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Chiharu Ishida
- Graduate
Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Fumihito Hasebe
- Department
of Bioscience, Fukui Prefectural University, Fukui 910-1195, Japan
| | - Yui Kawamura
- Graduate
Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Yasuteru Shigeta
- Center
for Computational Sciences, University of
Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8577, Japan
| | - Sohei Ito
- Graduate
Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Shogo Nakano
- Graduate
Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
- PREST, Japan Science and Technology
Agency, Saitama 332-0012, Japan
| |
Collapse
|
4
|
Costa MN, Silva RN. Cytotoxic activity of l-lysine alpha-oxidase against leukemia cells. Semin Cancer Biol 2022; 86:590-599. [PMID: 34606983 DOI: 10.1016/j.semcancer.2021.09.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 01/27/2023]
Abstract
Cancer cells exhibit higher proliferation rates than normal cells, and as a consequence, a higher nutritional demand for metabolites such as amino acids. Such cells demonstrate high expression of amino acid transporters and are significantly dependent on the external uptake of amino acids. Moreover, some types of cancer cells exhibit oncogenic mutations that render them auxotrophic to certain amino acids. This metabolic difference between tumor and normal cells has been explored for developing anticancer drugs. Enzymes capable of depleting certain amino acids in the bloodstream can be employed to inhibit the proliferation of cancer cells and promote cell death. Certain microbial enzymes, such as l-asparaginase and l-amino acid oxidases, have been studied for this purpose. In this paper, we discuss the role of l-asparaginase, the only enzyme currently used as a chemotherapeutic agent. We also review the studies on a new potential antineoplastic agent, l-lysine α-oxidase, an enzyme of l-amino acid oxidase family.
Collapse
Affiliation(s)
- Mariana N Costa
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, SP, 14049-900, Brazil
| | - Roberto N Silva
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, SP, 14049-900, Brazil.
| |
Collapse
|
5
|
Monoclonal Antibody Functionalized, and L-lysine α-Oxidase Loaded PEGylated-Chitosan Nanoparticle for HER2/Neu Targeted Breast Cancer Therapy. Pharmaceutics 2022; 14:pharmaceutics14050927. [PMID: 35631513 PMCID: PMC9146122 DOI: 10.3390/pharmaceutics14050927] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 11/18/2022] Open
Abstract
Simple Summary Breast cancer is one of the dominant cancers that threaten human beings worldwide. Moreover, the treatment of HER2+ breast cancer is challenging due to heterogeneity. The L-lysine α-oxidase (LO) enzyme is a well-known antitumor enzyme, but its clinical utility has been limited due to side effects, decreased stability, and inability to target tumor cells. To overcome the clinical challenges in delivery of LO enzymes and improve HER2+ breast cancer therapeutics, the present study developed the dual stimuli responsive nanocarrier system (CS-LO-PEG-HER NPs) for pH sensitive and HER2/neu targeted breast cancer therapy. Abstract Herein, we designed a nanocarrier to deliver the LO specifically to HER2+ breast cancer (BC) cells, where functionalization of mAb (anti-HER2+) with PEGylated chitosan enabled it to target the HER2+ BC cells. Taking advantage of overexpression of HER2+ in cancer cells, our nanocarrier (CS-LO-PEG-HER NPs) exhibited promising potency and selectivity against HER2+ BC cells (BT474). The CS-LO-PEG-HER NPs demonstrated the cytotoxicity in BT474 cells by promoting reactive oxygen species, mitochondrial membrane potential loss, and nucleus damage. The biocompatibility of CS-LO-PEG-HER NPs was evidenced by the hemolysis assay and H & E staining of major organs. The CS-LO-PEG-HER NPs showed anticancer potency against the BT474-xenograft tumor-bearing mice, as evident by the reduction of tumor size and cell density. These results indicate that CS-LO-PEG-HER NPs are biocompatible with mice while inhibiting tumor growth through alter the oxidative stress. Overall, this work provides a promising approach for the delivery of LO for good therapeutic effect in combination with mAb.
Collapse
|
6
|
Lukasheva EV, Babayeva G, Karshieva SS, Zhdanov DD, Pokrovsky VS. L-Lysine α-Oxidase: Enzyme with Anticancer Properties. Pharmaceuticals (Basel) 2021; 14:1070. [PMID: 34832852 PMCID: PMC8618108 DOI: 10.3390/ph14111070] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 11/19/2022] Open
Abstract
L-lysine α-oxidase (LO), one of L-amino acid oxidases, deaminates L-lysine with the yield of H2O2, ammonia, and α-keto-ε-aminocaproate. Multiple in vitro and in vivo studies have reported cytotoxic, antitumor, antimetastatic, and antitumor activity of LO. Unlike asparaginase, LO has a dual mechanism of action: depletion of L-lysine and formation of H2O2, both targeting tumor growth. Prominent results were obtained on murine and human tumor models, including human colon cancer xenografts HCT 116, LS174T, and T47D with maximum T/C 12, 37, and 36%, respectively. The data obtained from human cancer xenografts in immunodeficient mice confirm the potential of LO as an agent for colon cancer treatment. In this review, we discuss recently discovered molecular mechanisms of biological action and the potential of LO as anticancer enzyme.
Collapse
Affiliation(s)
- Elena V. Lukasheva
- Department of Biochemistry, Peoples’ Friendship University of Russia (RUDN University), Miklukho—Maklaya Street 6, 117198 Moscow, Russia; (E.V.L.); (G.B.)
| | - Gulalek Babayeva
- Department of Biochemistry, Peoples’ Friendship University of Russia (RUDN University), Miklukho—Maklaya Street 6, 117198 Moscow, Russia; (E.V.L.); (G.B.)
- Laboratory of Combined Treatment, N.N. Blokhin Cancer Research Center, Kashirskoe Shosse 24, 115478 Moscow, Russia;
| | - Saida Sh. Karshieva
- Laboratory of Combined Treatment, N.N. Blokhin Cancer Research Center, Kashirskoe Shosse 24, 115478 Moscow, Russia;
| | - Dmitry D. Zhdanov
- Institute of Biomedical Chemistry, Pogodinskaya Street 10/8, 119121 Moscow, Russia;
| | - Vadim S. Pokrovsky
- Department of Biochemistry, Peoples’ Friendship University of Russia (RUDN University), Miklukho—Maklaya Street 6, 117198 Moscow, Russia; (E.V.L.); (G.B.)
- Laboratory of Combined Treatment, N.N. Blokhin Cancer Research Center, Kashirskoe Shosse 24, 115478 Moscow, Russia;
- Center of Genetics and Life Sciences, Sirius University of Science and Technology, Federal Territory Sirius, 1 Olimpiisky Prospect, 354340 Sochi, Russia
| |
Collapse
|
7
|
Sugiura S, Nakano S, Niwa M, Hasebe F, Matsui D, Ito S. Catalytic mechanism of ancestral L-lysine oxidase assigned by sequence data mining. J Biol Chem 2021; 297:101043. [PMID: 34358565 PMCID: PMC8405998 DOI: 10.1016/j.jbc.2021.101043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 07/26/2021] [Accepted: 08/02/2021] [Indexed: 11/23/2022] Open
Abstract
A large number of protein sequences are registered in public databases such as PubMed. Functionally uncharacterized enzymes are included in these databases, some of which likely have potential for industrial applications. However, assignment of the enzymes remained difficult tasks for now. In this study, we assigned a total of 28 original sequences to uncharacterized enzymes in the FAD-dependent oxidase family expressed in some species of bacteria including Chryseobacterium, Flavobacterium, and Pedobactor. Progenitor sequence of the assigned 28 sequences was generated by ancestral sequence reconstruction, and the generated sequence exhibited L-lysine oxidase activity; thus, we named the enzyme AncLLysO. Crystal structures of ligand-free and ligand-bound forms of AncLLysO were determined, indicating that the enzyme recognizes L-Lys by hydrogen bond formation with R76 and E383. The binding of L-Lys to AncLLysO induced dynamic structural change at a plug loop formed by residues 251 to 254. Biochemical assays of AncLLysO variants revealed the functional importance of these substrate recognition residues and the plug loop. R76A and E383D variants were also observed to lose their activity, and the kcat/Km value of G251P and Y253A mutations were approximately 800- to 1800-fold lower than that of AncLLysO, despite the indirect interaction of the substrates with the mutated residues. Taken together, our data demonstrate that combinational approaches to sequence classification from database and ancestral sequence reconstruction may be effective not only to find new enzymes using databases of unknown sequences but also to elucidate their functions.
Collapse
Affiliation(s)
- Sayaka Sugiura
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Suruga-ku, Shizuoka, Japan
| | - Shogo Nakano
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Suruga-ku, Shizuoka, Japan; PREST, Japan Science and Technology Agency, Kawaguchi, Japan.
| | - Masazumi Niwa
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Suruga-ku, Shizuoka, Japan
| | - Fumihito Hasebe
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Suruga-ku, Shizuoka, Japan
| | - Daisuke Matsui
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Sohei Ito
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Suruga-ku, Shizuoka, Japan
| |
Collapse
|
8
|
Kasai K, Nakano M, Ohishi M, Nakamura T, Miura T. Antimicrobial properties of L-amino acid oxidase: biochemical features and biomedical applications. Appl Microbiol Biotechnol 2021; 105:4819-4832. [PMID: 34106313 PMCID: PMC8188536 DOI: 10.1007/s00253-021-11381-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/17/2021] [Accepted: 05/28/2021] [Indexed: 12/19/2022]
Abstract
Abstract Mucus layer that covers the body surface of various animal functions as a defense barrier against microbes, environmental xenobiotics, and predators. Previous studies have reported that L-amino acid oxidase (LAAO), present in several animal fluids, has potent properties against pathogenic bacteria, viruses, and parasites. LAAO catalyzes the oxidative deamination of specific L-amino acids with the generation of hydrogen peroxide and L-amino acid metabolites. Further, the generated hydrogen peroxide is involved in oxidation (direct effect) while the metabolites activate immune responses (indirect effect). Therefore, LAAO exhibits two different mechanisms of bioactivation. Previously, we described the selective, specific, and local oxidative and potent antibacterial actions of various LAAOs as potential therapeutic strategies. In this review, we focus on their biochemical features, enzymatic regulations, and biomedical applications with a view of describing their probable role as biochemical agents and biomarkers for microbial infections, cancer, and autoimmune-mediated diseases. We consider that LAAOs hold implications in biomedicine owing to their antimicrobial activity wherein they can be used in treatment of infectious diseases and as diagnostic biomarkers in the above-mentioned diseased conditions. Key points •Focus on biochemical features, enzymatic regulation, and biomedical applications of LAAOs. •Mechanisms of antimicrobial activity, inflammatory regulation, and immune responses of LAAOs. •Potential biomedical application as an antimicrobial and anti-infection agent, and disease biomarker.
Collapse
Affiliation(s)
- Kosuke Kasai
- Department of Biomedical Sciences, Division of Medical Life Sciences, Graduate School of Health Sciences, Hirosaki University, 66-1, Hon-cho, 036-8564, Hirosaki, Aomori, Japan
| | - Manabu Nakano
- Department of Biomedical Sciences, Division of Medical Life Sciences, Graduate School of Health Sciences, Hirosaki University, 66-1, Hon-cho, 036-8564, Hirosaki, Aomori, Japan
| | | | - Toshiya Nakamura
- Department of Biomedical Sciences, Division of Medical Life Sciences, Graduate School of Health Sciences, Hirosaki University, 66-1, Hon-cho, 036-8564, Hirosaki, Aomori, Japan
| | - Tomisato Miura
- Department of Risk Analysis and Biodosimetry, Institute of Radiation Emergency Medicine, Hirosaki University, 66-1, Hon-cho, 036-8564, Hirosaki, Aomori, Japan.
| |
Collapse
|
9
|
Yano Y, Matsuo S, Ito N, Tamura T, Kusakabe H, Inagaki K, Imada K. A new l-arginine oxidase engineered from l-glutamate oxidase. Protein Sci 2021; 30:1044-1055. [PMID: 33764624 DOI: 10.1002/pro.4070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/17/2021] [Accepted: 03/21/2021] [Indexed: 11/08/2022]
Abstract
The alternation of substrate specificity expands the application range of enzymes in industrial, medical, and pharmaceutical fields. l-Glutamate oxidase (LGOX) from Streptomyces sp. X-119-6 catalyzes the oxidative deamination of l-glutamate to produce 2-ketoglutarate with ammonia and hydrogen peroxide. LGOX shows strict substrate specificity for l-glutamate. Previous studies on LGOX revealed that Arg305 in its active site recognizes the side chain of l-glutamate, and replacement of Arg305 by other amino acids drastically changes the substrate specificity of LGOX. Here we demonstrate that the R305E mutant variant of LGOX exhibits strict specificity for l-arginine. The oxidative deamination activity of LGOX to l-arginine is higher than that of l-arginine oxidase form from Pseudomonas sp. TPU 7192. X-ray crystal structure analysis revealed that the guanidino group of l-arginine is recognized not only by Glu305 but also Asp433, Trp564, and Glu617, which interact with Arg305 in wild-type LGOX. Multiple interactions by these residues provide strict specificity and high activity of LGOX R305E toward l-arginine. LGOX R305E is a thermostable and pH stable enzyme. The amount of hydrogen peroxide, which is a byproduct of oxidative deamination of l-arginine by LGOX R305E, is proportional to the concentration of l-arginine in a range from 0 to 100 μM. The linear relationship is maintained around 1 μM of l-arginine. Thus, LGOX R305E is suitable for the determination of l-arginine.
Collapse
Affiliation(s)
- Yoshika Yano
- Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Shinsaku Matsuo
- Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Nanako Ito
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Takashi Tamura
- Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | | | - Kenji Inagaki
- Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Katsumi Imada
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| |
Collapse
|
10
|
Using D- and L-Amino Acid Oxidases to Generate the Imino Acid Substrate to Measure the Activity of the Novel Rid (Enamine/Imine Deaminase) Class of Enzymes. Methods Mol Biol 2021. [PMID: 33751437 DOI: 10.1007/978-1-0716-1286-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
This chapter describes a method to assay the activity of reactive intermediate deaminases (Rid), a large family of conserved soluble enzymes, which have been proposed to prevent damages from metabolic intermediates such as the highly reactive and unstable compounds enamines/imines. In this method, the flavin adenine dinucleotide-dependent L- or D-amino acid oxidases generate an imino acid starting from a L- or D- amino acid, respectively. This reaction is coupled to the hydrolysis of the imino acid to the corresponding α-keto acid and ammonium ion catalyzed by a Rid enzyme. The spectrophotometric assay consists of measuring the decrease of the initial rate of formation of the semicarbazone, derived from the spontaneous reaction of the imino acid and semicarbazide, caused by the presence of the Rid enzyme. The set-up and testing of this method imply a preliminary characterization of the ability of the amino acid oxidase to release the imino acid required for the subsequent reactions. To this purpose, the activity of the L- or D-amino acid oxidases with different amino acids can be measured as production of hydrogen peroxide or formation of semicarbazone in parallel assays. The advantages and limitations of this assay of Rid activity are discussed.
Collapse
|
11
|
Kitagawa M, Ito N, Matsumoto Y, Saito M, Tamura T, Kusakabe H, Inagaki K, Imada K. Structural basis of enzyme activity regulation by the propeptide of l-lysine α-oxidase precursor from Trichoderma viride. JOURNAL OF STRUCTURAL BIOLOGY-X 2021; 5:100044. [PMID: 33554108 PMCID: PMC7844570 DOI: 10.1016/j.yjsbx.2021.100044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/17/2020] [Accepted: 01/07/2021] [Indexed: 11/04/2022]
Abstract
The suppression mechanism of activity by propeptide remains unclear for most LAAOs. The crystal structures of the LysOX precursor (prLysOX) have been determined. The propeptide indirectly changes the active site structure to suppress the activity. prLysOX can adopt another conformation similar to mature LysOX. prLysOX is able to be activated without proteolytic processing.
Harmuful proteins are usually synthesized as inactive precursors and are activated by proteolytic processing. l-Amino acid oxidase (LAAO) is a flavoenzyme that catalyzes the oxidative deamination of l-amino acid to produce a 2-oxo acid with ammonia and highly toxic hydrogen peroxide and, therefore, is expressed as a precursor. The LAAO precursor shows significant variation in size and the cleavage pattern for activation. However, the molecular mechanism of how the propeptide suppresses the enzyme activity remains unclear except for deaminating/decarboxylating Pseudomonasl-phenylalanine oxidase (PAO), which has a short N-terminal propeptide composed of 14 residues. Here we show the inactivation mechanism of the l-lysine oxidase (LysOX) precursor (prLysOX), which has a long N-terminal propeptide composed of 77 residues, based on the crystal structure at 1.97 Å resolution. The propeptide of prLysOX indirectly changes the active site structure to inhibit the enzyme activity. prLysOX retains weak enzymatic activity with strict specificity for l-lysine and shows raised activity in acidic conditions. The structures of prLysOX crystals that soaked in a solution with various concentrations of l-lysine have revealed that prLysOX can adopt two conformations; one is the inhibitory form, and the other is very similar to mature LysOX. The propeptide region of the latter form is disordered, and l-lysine is bound to the latter form. These results indicate that prLysOX uses a different strategy from PAO to suppress the enzyme activity and suggest that prLysOX can be activated quickly in response to the environmental change without proteolytic processing.
Collapse
Affiliation(s)
- Masaki Kitagawa
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Nanako Ito
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Yuya Matsumoto
- Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | - Masaya Saito
- Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | - Takashi Tamura
- Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | | | - Kenji Inagaki
- Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | - Katsumi Imada
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
12
|
Pokrovsky VS, Lukashev AN, Babayeva G, Karshieva SS, Arinbasarova AY, Medentzev AG, Komarova MV, Lukasheva EV. Plasma pharmacokinetics and tissue distribution of L-lysine α-oxidase from Trichoderma cf. aureoviride RIFAI VKM F- 4268D in mice. Amino Acids 2021; 53:111-118. [PMID: 33398529 DOI: 10.1007/s00726-020-02930-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 12/12/2020] [Indexed: 10/22/2022]
Abstract
L-lysine α-oxidase (LO) is an L-amino acid oxidase with antitumor, antimicrobial and antiviral properties. Pharmacokinetic (PK) studies were carried out by measuring LO concentration in plasma and tissue samples by enzyme immunoassay. L-lysine concentration in samples was measured spectrophotometrically using LO. After single i.v. injection of 1.0, 1.5, 3.0 mg/kg the circulating T1/2 of enzyme in mice varied from 51 to 74 min and the AUC0-inf values were 6.54 ± 0.46, 8.66 ± 0.59, 9.47 ± 1.45 μg/ml × h, respectively. LO was distributed in tissues and determined within 48 h after administration with maximal accumulation in liver and heart tissues. Mean time to reach the maximum concentration was highest for the liver-9 h, kidney-1 h and 15 min for the tissues of heart, spleen and brain. T1/2 of LO in tissues ranged from 7.75 ± 0.73 to 26.10 ± 2.60 h. In mice, plasma L-lysine decreased by 79% 15 min after LO administration in dose 1.6 mg/kg. The serum L-lysine levels remained very low from 1 to 9 h (< 25 μM, 17%), indicating an acute lack of L-lysine in animals for at least 9 h. Concentration of L-lysine in serum restored only 24 h after LO administration. The results of LO PK study show that it might be considered as a promising enzyme for further investigation as a potential anticancer agent.
Collapse
Affiliation(s)
- V S Pokrovsky
- Department of Biochemistry, Peoples' Friendship University, Moscow, Russia. .,Laboratory of Combined Treatment, N.N. Blokhin Cancer Research Center, Moscow, Russia.
| | - A N Lukashev
- Tropical and Vector Borne Diseases, Martsinovsky Institute of Medical Parasitology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - G Babayeva
- Department of Biochemistry, Peoples' Friendship University, Moscow, Russia.,Laboratory of Combined Treatment, N.N. Blokhin Cancer Research Center, Moscow, Russia
| | - S Sh Karshieva
- Laboratory of Combined Treatment, N.N. Blokhin Cancer Research Center, Moscow, Russia
| | - A Yu Arinbasarova
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Moscow Region, Russia
| | - A G Medentzev
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Moscow Region, Russia
| | - M V Komarova
- Department of Laser and Biotechnical Systems, Samara University, Samara, Russia
| | - E V Lukasheva
- Department of Biochemistry, Peoples' Friendship University, Moscow, Russia
| |
Collapse
|
13
|
Luo F, Hong S, Chen B, Yin Y, Tang G, Hu F, Zhang H, Wang C. Unveiling of Swainsonine Biosynthesis via a Multibranched Pathway in Fungi. ACS Chem Biol 2020; 15:2476-2484. [PMID: 32786262 DOI: 10.1021/acschembio.0c00466] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The indolizidine alkaloid swainsonine (SW) is a deadly mycotoxin to livestock that can be produced by different plant-associated fungi, including the endophytic entomopathogenic fungi Metarhizium species. The SW biosynthetic gene cluster has been identified but the genetic mechanism of SW biosynthesis remains obscure. To unveil the SW biosynthetic pathway, we performed gene deletions in M. robertsii, heterologous expression of a core biosynthetic gene, substrate feedings, mass spectrometry, and bioassay analyses in this study. It was unveiled that SW is produced via a multibranched pathway by the hybrid nonribosomal peptide-polyketide synthase (NRPS-PKS) gene cluster in M. robertsii. The precursor pipecolic acid can be converted from lysine by both the SW biosynthetic cluster and the unclustered genes such as lysine cyclodeaminase. The hybrid NRPS-PKS enzyme produces three intermediates with and without domain skipping. Intriguingly, the biosynthetic process is coupled with the cis to trans nonenzymatic epimerization of C1-OH for both hydroxyl- and dihydroxyl-indolizidine intermediates. We also found that SW production was dispensable for fungal colonization of plants and infection of insect hosts. Functional characterization of the SW biosynthetic genes in this study may benefit the safe use of Metarhizium fungi as insect biocontrol agents and the management of livestock pastures from SW contamination by genetic manipulation of the toxin-producing fungi.
Collapse
Affiliation(s)
- Feifei Luo
- School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Song Hong
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Bo Chen
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ying Yin
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Guirong Tang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Fenglin Hu
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei 230061, China
| | - Huizhan Zhang
- School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Chengshu Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
14
|
Kondo H, Kitagawa M, Matsumoto Y, Saito M, Amano M, Sugiyama S, Tamura T, Kusakabe H, Inagaki K, Imada K. Structural basis of strict substrate recognition of l-lysine α-oxidase from Trichoderma viride. Protein Sci 2020; 29:2213-2225. [PMID: 32894626 DOI: 10.1002/pro.3946] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 11/07/2022]
Abstract
l-Lysine oxidase (LysOX) is a FAD-dependent homodimeric enzyme that catalyzes the oxidative deamination of l-lysine to produce α-keto-ε-aminocaproate with ammonia and hydrogen peroxide. LysOX shows strict substrate specificity for l-lysine, whereas most l-amino acid oxidases (LAAOs) exhibit broad substrate specificity for l-amino acids. Previous studies of LysOX showed that overall structural similarity to the well-studied snake venom LAAOs. However, the molecular mechanism of strict specificity for l-lysine was still unclear. We here determined the structure of LysOX in complex with l-lysine at 1.7 Å resolution. The structure revealed that the hydrogen bonding network formed by D212, D315, and A440 with two water molecules is responsible for the recognition of the side chain amino group. In addition, a narrow hole formed by five hydrophobic residues in the active site contributes to strict substrate specificity. Mutation studies demonstrated that D212 and D315 are essential for l-lysine recognition, and the D212A/D315A double mutant LysOX showed different substrate specificity from LysOX. Moreover, the structural basis of the substrate specificity change has also been revealed by the structural analysis of the mutant variant and its substrate complexes. These results clearly explain the molecular mechanism of the strict specificity of LysOX and suggest that LysOX is a potential candidate for a template to design LAAOs specific to other l-amino acids.
Collapse
Affiliation(s)
- Hiroki Kondo
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Osaka, Japan
| | - Masaki Kitagawa
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Osaka, Japan
| | - Yuya Matsumoto
- Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Masaya Saito
- Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Marie Amano
- Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Shigeru Sugiyama
- Faculty of Science and Technology, Kochi University, Kochi, Japan
| | - Takashi Tamura
- Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | | | - Kenji Inagaki
- Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Katsumi Imada
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Osaka, Japan
| |
Collapse
|
15
|
Microbial enzymes for deprivation of amino acid metabolism in malignant cells: biological strategy for cancer treatment. Appl Microbiol Biotechnol 2020; 104:2857-2869. [PMID: 32037468 DOI: 10.1007/s00253-020-10432-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/23/2020] [Accepted: 02/03/2020] [Indexed: 12/17/2022]
Abstract
Amino acid deprivation therapy (AADT) is emerging as a promising strategy for the development of novel therapeutics against cancer. This biological therapy relies upon the differences in the metabolism of cancer and normal cells. The rapid growth of tumors results in decreased expression of certain enzymes leading to auxotrophy for some specific amino acids. These auxotrophic tumors are targeted by amino acid-depleting enzymes. The depletion of amino acid selectively inhibits tumor growth as the normal cells can synthesize amino acids by their usual machinery. The enzymes used in AADT are mostly obtained from microbes for their easy availability. Microbial L-asparaginase is already approved by FDA for the treatment of acute lymphoblastic leukemia. Arginine deiminase and methionase are under clinical trials and the therapeutic potential of lysine oxidase, glutaminase and phenylalanine ammonia lyase is also being explored. The present review provides an overview of microbial amino acid depriving enzymes. Various attributes of these enzymes like structure, mode of action, production, formulations, and targeted cancers are discussed. The challenges faced and the combat strategies to establish AADT in standard cancer armamentarium are also reviewed.Key Points • Amino acid deprivation therapy is a potential therapy for auxotrophic tumors. • Microbial enzymes are used due to their ease of manipulation and high productivity. • Enzyme properties are improved by PEGylation, encapsulation, and genetic engineering. • AADT can be employed as combinational therapy for better containment of cancer.
Collapse
|
16
|
Production of nonnatural straight-chain amino acid 6-aminocaproate via an artificial iterative carbon-chain-extension cycle. Metab Eng 2019; 55:23-32. [DOI: 10.1016/j.ymben.2019.06.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 06/13/2019] [Accepted: 06/15/2019] [Indexed: 12/23/2022]
|
17
|
Pokrovsky VS, Chepikova OE, Davydov DZ, Zamyatnin AA, Lukashev AN, Lukasheva EV. Amino Acid Degrading Enzymes and their Application in Cancer Therapy. Curr Med Chem 2019; 26:446-464. [PMID: 28990519 DOI: 10.2174/0929867324666171006132729] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 09/12/2017] [Accepted: 09/28/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND Amino acids are essential components in various biochemical pathways. The deprivation of certain amino acids is an antimetabolite strategy for the treatment of amino acid-dependent cancers which exploits the compromised metabolism of malignant cells. Several studies have focused on the development and preclinical and clinical evaluation of amino acid degrading enzymes, namely L-asparaginase, L-methionine γ-lyase, L-arginine deiminase, L-lysine α-oxidase. Further research into cancer cell metabolism may therefore define possible targets for controlling tumor growth. OBJECTIVE The purpose of this review was to summarize recent progress in the relationship between amino acids metabolism and cancer therapy, with a particular focus on Lasparagine, L-methionine, L-arginine and L-lysine degrading enzymes and their formulations, which have been successfully used in the treatment of several types of cancer. METHODS We carried out a structured search among literature regarding to amino acid degrading enzymes. The main aspects of search were in vitro and in vivo studies, clinical trials concerning application of these enzymes in oncology. RESULTS Most published research are on the subject of L-asparaginase properties and it's use for cancer treatment. L-arginine deiminase has shown promising results in a phase II trial in advanced melanoma and hepatocellular carcinoma. Other enzymes, in particular Lmethionine γ-lyase and L-lysine α-oxidase, were effective in vitro and in vivo. CONCLUSION The findings of this review revealed that therapy based on amino acid depletion may have the potential application for cancer treatment but further clinical investigations are required to provide the efficacy and safety of these agents.
Collapse
Affiliation(s)
- Vadim S Pokrovsky
- Blokhin Cancer Research Center, Moscow, Russian Federation.,Orekhovich Institute of Biomedical Chemistry, Moscow, Russian Federation.,People's Friendship University, Russia (RUDN University), Moscow, Russian Federation
| | - Olga E Chepikova
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | | | - Andrey A Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russian Federation.,Belozersky Institute of Physico- Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Alexander N Lukashev
- People's Friendship University, Russia (RUDN University), Moscow, Russian Federation.,Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Elena V Lukasheva
- People's Friendship University, Russia (RUDN University), Moscow, Russian Federation
| |
Collapse
|
18
|
Asano Y, Yasukawa K. Identification and development of amino acid oxidases. Curr Opin Chem Biol 2019; 49:76-83. [DOI: 10.1016/j.cbpa.2018.10.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/16/2018] [Accepted: 10/22/2018] [Indexed: 12/23/2022]
|
19
|
Asano Y. Screening and development of enzymes for determination and transformation of amino acids. Biosci Biotechnol Biochem 2019; 83:1402-1416. [PMID: 30621552 DOI: 10.1080/09168451.2018.1559027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The high stereo- and substrate specificities of enzymes have been utilized for micro-determination of amino acids. Here, I review the discovery of l-Phe dehydrogenase and its practical use in the diagnosis of phenylketonuria in more than 5,400,000 neonates over two decades in Japan. Screening and uses of other selective enzymes for micro-determination of amino acids have also been discussed. In addition, novel enzymatic assays with the systematic use of known enzymes, including assays based on a pyrophosphate detection system using pyrophosphate dikinase for a variety of l-amino acids with amino-acyl-tRNA synthetase have been reviewed. Finally, I review the substrate specificities of a few amino acid-metabolizing enzymes that have been altered, using protein engineering techniques, mainly for production of useful chemicals, thus enabling the wider use of natural enzymes.
Collapse
Affiliation(s)
- Yasuhisa Asano
- a Biotechnology Research Center and Department of Biotechnology , Toyama Prefectural University , Imizu , Toyama , Japan
| |
Collapse
|
20
|
Im D, Matsui D, Arakawa T, Isobe K, Asano Y, Fushinobu S. Ligand complex structures of l-amino acid oxidase/monooxygenase from Pseudomonas sp. AIU 813 and its conformational change. FEBS Open Bio 2018; 8:314-324. [PMID: 29511608 PMCID: PMC5832979 DOI: 10.1002/2211-5463.12387] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/26/2017] [Accepted: 01/16/2018] [Indexed: 11/06/2022] Open
Abstract
l-Amino acid oxidase/monooxygenase from Pseudomonas sp. AIU 813 (l-AAO/MOG) catalyzes both the oxidative deamination and oxidative decarboxylation of the α-group of l-Lys to produce a keto acid and amide, respectively. l-AAO/MOG exhibits limited specificity for l-amino acid substrates with a basic side chain. We previously determined its ligand-free crystal structure and identified a key residue for maintaining the dual activities. Here, we determined the structures of l-AAO/MOG complexed with l-Lys, l-ornithine, and l-Arg and revealed its substrate recognition. Asp238 is located at the ceiling of a long hydrophobic pocket and forms a strong interaction with the terminal, positively charged group of the substrates. A mutational analysis on the D238A mutant indicated that the interaction is critical for substrate binding but not for catalytic control between the oxidase/monooxygenase activities. The catalytic activities of the D238E mutant unexpectedly increased, while the D238F mutant exhibited altered substrate specificity to long hydrophobic substrates. In the ligand-free structure, there are two channels connecting the active site and solvent, and a short region located at the dimer interface is disordered. In the l-Lys complex structure, a loop region is displaced to plug the channels. Moreover, the disordered region in the ligand-free structure forms a short helix in the substrate complex structures and creates the second binding site for the substrate. It is assumed that the amino acid substrate enters the active site of l-AAO/MOG through this route. Database The atomic coordinates and structure factors (codes 5YB6, 5YB7, and 5YB8) have been deposited in the Protein Data Bank (http://wwpdb.org/). EC numbers 1.4.3.2 (l-amino acid oxidase), 1.13.12.2 (lysine 2-monooxygenase).
Collapse
Affiliation(s)
- Dohyun Im
- Department of Biotechnology The University of Tokyo Japan.,Present address: Department of Cell Biology Graduate School of Medicine Kyoto University Yoshidakonoe-cho, Sakyo-ku Kyoto 606-8501 Japan
| | - Daisuke Matsui
- Department of Biotechnology Biotechnology Research Center Toyama Prefectural University Imizu Japan.,Asano Active Enzyme Molecule Project ERATOJS TImizu Japan
| | | | - Kimiyasu Isobe
- Asano Active Enzyme Molecule Project ERATOJS TImizu Japan
| | - Yasuhisa Asano
- Department of Biotechnology Biotechnology Research Center Toyama Prefectural University Imizu Japan.,Asano Active Enzyme Molecule Project ERATOJS TImizu Japan
| | | |
Collapse
|
21
|
Krupyanko VI, Medentsev AG, Lukasheva EV, Arinbasarova AY. Kinetic characteristics of L-lysine α- oxidase from Trichoderma cf. aureoviride Rifai VKM F-4268D: Substrate specificity and allosteric effects. Biochem Biophys Rep 2017; 9:9-12. [PMID: 29114579 PMCID: PMC5632708 DOI: 10.1016/j.bbrep.2016.11.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 10/30/2016] [Accepted: 11/07/2016] [Indexed: 11/23/2022] Open
Abstract
The present work aims to investigate the kinetic characteristics of homodimer enzyme L-lysine α-oxidase from Trichoderma cf. aureoviride Rifai VKM F-4268D, taking into account allosteric effects. The enzyme was first shown to reveal positive cooperativeness, h=2.05±0.15. Using additional opportunities of Hill coefficient the value of the Michaelis-Menten constant has been estimated, Km=1.015∙10-5М, indicating high strength of substrate binding to the active site of each subunit. High selectivity and absolute L-stereospecificity of the enzyme were shown. The inhibition of L-lysine conversion by non-cleavable lysine analogs as well as the reaction product was found out to take place. These effects have been evaluated only as the inhibition coefficients (%). A more detailed study of these inhibition effects was complicated because of the cooperativeness of enzyme subunits mentioned above. The kinetic scheme of L-lysine α-oxidase was proposed involving parallel-subsequent action of each of two subunits in the catalytic act. We think that the results obtained will be useful for studying the kinetic properties of other multi-subunit enzymes and improve understanding of the mechanisms of their action.
Collapse
Affiliation(s)
- Vladimir I. Krupyanko
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, RAS, Pushchino, Russia
| | - Alexander G. Medentsev
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, RAS, Pushchino, Russia
| | | | - Anna Yu. Arinbasarova
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, RAS, Pushchino, Russia
| |
Collapse
|
22
|
Campillo-Brocal JC, Lucas-Elío P, Sanchez-Amat A. Distribution in Different Organisms of Amino Acid Oxidases with FAD or a Quinone As Cofactor and Their Role as Antimicrobial Proteins in Marine Bacteria. Mar Drugs 2015; 13:7403-18. [PMID: 26694422 PMCID: PMC4699246 DOI: 10.3390/md13127073] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 11/27/2015] [Accepted: 12/08/2015] [Indexed: 12/27/2022] Open
Abstract
Amino acid oxidases (AAOs) catalyze the oxidative deamination of amino acids releasing ammonium and hydrogen peroxide. Several kinds of these enzymes have been reported. Depending on the amino acid isomer used as a substrate, it is possible to differentiate between l-amino acid oxidases and d-amino acid oxidases. Both use FAD as cofactor and oxidize the amino acid in the alpha position releasing the corresponding keto acid. Recently, a novel class of AAOs has been described that does not contain FAD as cofactor, but a quinone generated by post-translational modification of residues in the same protein. These proteins are named as LodA-like proteins, after the first member of this group described, LodA, a lysine epsilon oxidase synthesized by the marine bacterium Marinomonas mediterranea. In this review, a phylogenetic analysis of all the enzymes described with AAO activity has been performed. It is shown that it is possible to recognize different groups of these enzymes and those containing the quinone cofactor are clearly differentiated. In marine bacteria, particularly in the genus Pseudoalteromonas, most of the proteins described as antimicrobial because of their capacity to generate hydrogen peroxide belong to the group of LodA-like proteins.
Collapse
Affiliation(s)
- Jonatan C Campillo-Brocal
- Department of Genetics and Microbiology, Faculty of Biology, University of Murcia, Murcia 30100, Spain.
| | - Patricia Lucas-Elío
- Department of Genetics and Microbiology, Faculty of Biology, University of Murcia, Murcia 30100, Spain.
| | - Antonio Sanchez-Amat
- Department of Genetics and Microbiology, Faculty of Biology, University of Murcia, Murcia 30100, Spain.
| |
Collapse
|