1
|
Wu J, Yu S, Wang Y, Zhu J, Zhang Z. New insights into the role of ribonuclease P protein subunit p30 from tumor to internal reference. Front Oncol 2022; 12:1018279. [PMID: 36313673 PMCID: PMC9606464 DOI: 10.3389/fonc.2022.1018279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/28/2022] [Indexed: 11/13/2022] Open
Abstract
Ribonuclease P protein subunit p30 (RPP30) is a highly conserved housekeeping gene that exists in many species and tissues throughout the three life kingdoms (archaea, bacteria, and eukaryotes). RPP30 is closely related to a few types of tumors in human diseases but has a very stable transcription level in most cases. Based on this feature, increasing number of studies have used RPP30 as an internal reference gene. Here, the structure and basic functions of RPP30 are summarized and the likely relationship between RPP30 and various diseases in plants and human is outlined. Finally, the current application of RPP30 as an internal reference gene and its advantages over traditional internal reference genes are reviewed. RPP30 characteristics suggest that it has a good prospect of being selected as an internal reference; more work is needed to develop this research avenue.
Collapse
Affiliation(s)
- Junchao Wu
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Hospital of Anhui Medical University, Hefei, China
- Department of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Sijie Yu
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Hospital of Anhui Medical University, Hefei, China
- Department of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Yalan Wang
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Hospital of Anhui Medical University, Hefei, China
- Department of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Jie Zhu
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Hospital of Anhui Medical University, Hefei, China
| | - Zhenhua Zhang
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
2
|
Gao X, Oshima K, Ueda T, Nakashima T, Kimura M. A three-dimensional model of RNase P in the hyperthermophilic archaeon Pyrococcus horikoshii OT3. Biochem Biophys Res Commun 2017; 493:1063-1068. [PMID: 28935369 DOI: 10.1016/j.bbrc.2017.09.085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 08/31/2017] [Accepted: 09/15/2017] [Indexed: 02/02/2023]
Abstract
Ribonuclease P (RNase P) is an endoribonuclease involved in maturation of the 5'-end of tRNA. We found previously that RNase P in the hyperthermophilic archaeon Pyrococcus horikoshii OT3 consists of a catalytic RNase P RNA (PhopRNA) and five protein cofactors designated PhoPop5, PhoRpp21, PhoRpp29, PhoRpp30, and PhoRpp38. The crystal structures of the five proteins have been determined, a three-dimensional (3-D) model of PhopRNA has been constructed, and biochemical data, including protein-RNA interaction sites, have become available. Here, this information was combined to orient the crystallographic structures of the proteins relative to their RNA binding sites in the PhopRNA model. Some alterations were made to the PhopRNA model to improve the fit. In the resulting structure, a heterotetramer composed of PhoPop5 and PhoRpp30 bridges helices P3 and P16 in the PhopRNA C-domain, thereby probably stabilizing a double-stranded RNA structure (helix P4) containing catalytic Mg2+ ions, while a heterodimer of PhoRpp21 and PhoRpp29 locates on a single-stranded loop connecting helices P11 and P12 in the specificity domain (S-domain) in PhopRNA, probably forming an appropriate conformation of the precursor tRNA (pre-tRNA) binding site. The fifth protein PhoRpp38 binds each kink-turn (K-turn) motif in helices P12.1, P12.2, and P16 in PhopRNA. Comparison of the structure of the resulting 3-D model with that of bacterial RNase P suggests transition from RNA-RNA interactions in bacterial RNase P to protein-RNA interactions in archaeal RNase P. The proposed 3-D model of P. horikoshii RNase P will serve as a framework for further structural and functional studies on archaeal, as well as eukaryotic, RNase Ps.
Collapse
Affiliation(s)
- Xuzhu Gao
- Laboratory of Structural Biology, Graduate School of Systems Life Sciences, Hakozaki 6-10-1, Fukuoka, 812-8581, Japan
| | - Kosuke Oshima
- Laboratory of Biochemistry, Department of Bioscience and Biotechnology, Graduate School, Faculty of Agriculture, Kyushu University, Hakozaki 6-10-1, Fukuoka, 812-8581, Japan
| | - Toshifumi Ueda
- Laboratory of Biochemistry, Department of Bioscience and Biotechnology, Graduate School, Faculty of Agriculture, Kyushu University, Hakozaki 6-10-1, Fukuoka, 812-8581, Japan
| | - Takashi Nakashima
- Laboratory of Structural Biology, Graduate School of Systems Life Sciences, Hakozaki 6-10-1, Fukuoka, 812-8581, Japan; Laboratory of Biochemistry, Department of Bioscience and Biotechnology, Graduate School, Faculty of Agriculture, Kyushu University, Hakozaki 6-10-1, Fukuoka, 812-8581, Japan
| | - Makoto Kimura
- Laboratory of Structural Biology, Graduate School of Systems Life Sciences, Hakozaki 6-10-1, Fukuoka, 812-8581, Japan; Laboratory of Biochemistry, Department of Bioscience and Biotechnology, Graduate School, Faculty of Agriculture, Kyushu University, Hakozaki 6-10-1, Fukuoka, 812-8581, Japan.
| |
Collapse
|
3
|
Kimura M. Structural basis for activation of an archaeal ribonuclease P RNA by protein cofactors. Biosci Biotechnol Biochem 2017; 81:1670-1680. [PMID: 28715256 DOI: 10.1080/09168451.2017.1353404] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ribonuclease P (RNase P) is an endoribonuclease that catalyzes the processing of the 5'-leader sequence of precursor tRNA (pre-tRNA) in all phylogenetic domains. We have found that RNase P in the hyperthermophilic archaeon Pyrococcus horikoshii OT3 consists of RNase P RNA (PhopRNA) and five protein cofactors designated PhoPop5, PhoRpp21, PhoRpp29, PhoRpp30, and PhoRpp38. Biochemical characterizations over the past 10 years have revealed that PhoPop5 and PhoRpp30 fold into a heterotetramer and cooperate to activate a catalytic domain (C-domain) in PhopRNA, whereas PhoRpp21 and PhoRpp29 form a heterodimer and function together to activate a specificity domain (S-domain) in PhopRNA. PhoRpp38 plays a role in elevation of the optimum temperature of RNase P activity, binding to kink-turn (K-turn) motifs in two stem-loops in PhopRNA. This review describes the structural and functional information on P. horikoshii RNase P, focusing on the structural basis for the PhopRNA activation by the five RNase P proteins.
Collapse
Affiliation(s)
- Makoto Kimura
- a Laboratory of Biochemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School , Kyushu University , Fukuoka , Japan
| |
Collapse
|
4
|
Jiang D, Izumi K, Ueda T, Oshima K, Nakashima T, Kimura M. Functional characterization of archaeal homologs of human nuclear RNase P proteins Rpp21 and Rpp29 provides insights into the molecular basis of their cooperativity in catalysis. Biochem Biophys Res Commun 2017; 482:68-74. [DOI: 10.1016/j.bbrc.2016.10.142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 10/29/2016] [Indexed: 10/20/2022]
|
5
|
Oshima K, Kakiuchi Y, Tanaka Y, Ueda T, Nakashima T, Kimura M, Yao M. Structural basis for recognition of a kink-turn motif by an archaeal homologue of human RNase P protein Rpp38. Biochem Biophys Res Commun 2016; 474:541-546. [PMID: 27114305 DOI: 10.1016/j.bbrc.2016.04.118] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 04/21/2016] [Indexed: 11/16/2022]
Abstract
PhoRpp38 in the hyperthermophilic archaeon Pyrococcus horikoshii, a homologue of human ribonuclease P (RNase P) protein Rpp38, belongs to the ribosomal protein L7Ae family that specifically recognizes a kink-turn (K-turn) motif. A previous biochemical study showed that PhoRpp38 specifically binds to two stem-loops, SL12 and SL16, containing helices P12.1/12.2 and P15/16 respectively, in P. horikoshii RNase P RNA (PhopRNA). In order to gain insight into the PhoRpp38 binding mode to PhopRNA, we determined the crystal structure of PhoRpp38 in complex with the SL12 mutant (SL12M) at a resolution of 3.4 Å. The structure revealed that Lys35 on the β-strand (β1) and Asn38, Glu39, and Lys42 on the α-helix (α2) in PhoRpp38 interact with characteristic G•A and A•G pairs in SL12M, where Ile93, Glu94, and Val95, on a loop between α4 and β4 in PhoRpp38, interact with the 3-nucleotide bulge (G-G-U) in the SL12M. The structure demonstrates the previously proposed secondary structure of SL12, including helix P12.2. Structure-based mutational analysis indicated that amino acid residues involved in the binding to SL12 are also responsible for the binding to SL16. This result suggested that each PhoRpp38 binds to the K-turns in SL12 and SL16 in PhopRNA. A pull-down assay further suggested the presence of a second K-turn in SL12. Based on the present results, together with available data, we discuss a structural basis for recognition of K-turn motifs in PhopRNA by PhoRpp38.
Collapse
Affiliation(s)
- Kosuke Oshima
- Laboratory of Biochemistry, Department of Bioscience and Biotechnology, Graduate School, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | - Yosuke Kakiuchi
- Laboratory of Biochemistry, Department of Bioscience and Biotechnology, Graduate School, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | - Yoshikazu Tanaka
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan; Japan Science and Technology Agency, PRESTO, Sapporo 060-0810, Japan
| | - Toshifumi Ueda
- Laboratory of Biochemistry, Department of Bioscience and Biotechnology, Graduate School, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | - Takashi Nakashima
- Laboratory of Biochemistry, Department of Bioscience and Biotechnology, Graduate School, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | - Makoto Kimura
- Laboratory of Biochemistry, Department of Bioscience and Biotechnology, Graduate School, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan.
| | - Min Yao
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|