1
|
Gao X, Jia K, Li H, Liu S, Wang Y, Tian J, Zhao X, Zhao P. Exploration of the Mechanism of Guaijaverin in Inhibiting Pancreatic Lipase Based on Multispectral Method, Molecular Docking, and Oral Lipid Tolerance Test in Rats. LUMINESCENCE 2024; 39:e70029. [PMID: 39632470 DOI: 10.1002/bio.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/21/2024] [Accepted: 10/27/2024] [Indexed: 12/07/2024]
Abstract
This study aims to investigate the action mechanism of guaijaverin on pancreatic lipase from multiple perspectives and provide a theoretical basis for the search for new pancreatic lipase inhibitors. The inhibition of pancreatic lipase by guaijaverin was investigated through enzyme inhibition activity experiments, and the IC50 was calculated to determine the type of inhibition of guaijaverin. The mechanism of action was studied by measuring fluorescence, ultraviolet spectra, and circular dichroism. Molecular docking technology was used to explore the binding situation. In addition, in vivo oral lipid tolerance tests in rats were carried out to investigate the inhibitory effect of guaijaverin on pancreatic lipase. Guaijaverin inhibited pancreatic lipase up to 90.63%, confirming its excellent inhibitory ability. The inhibition type was noncompetitive inhibition in reversible inhibition. The multispectral experiments indicated that its quenching type was static quenching and guaijaverin changed the microenvironment and spatial conformation of pancreatic lipase. The molecular docking results showed that the minimum binding energy between the two compounds was -6.96 kcal/mol. In vivo experiments demonstrated that guaijaverin inhibits pancreatic lipase by reducing TG uptake in the body. Guaijaverin has excellent inhibitory effects on pancreatic lipase and has the potential to function as a pancreatic lipase inhibitor.
Collapse
Affiliation(s)
- Xinyu Gao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Kaijie Jia
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hong Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shujun Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yang Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jinlong Tian
- ADC R & D Department, RemeGen Co., Ltd., Yantai, China
| | - Xin Zhao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Pan Zhao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
2
|
Zhou Y, Rernglit W, Fukamizo T, Sucharitakul J, Suginta W. A three-step "ping-pong" mechanism of a GH20 β-N-acetylglucosaminidase from Vibrio campbellii belonging to a major Clade A-I of the phylogenetic tree of the enzyme superfamily. Biochem Biophys Res Commun 2024; 729:150357. [PMID: 39002194 DOI: 10.1016/j.bbrc.2024.150357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 07/04/2024] [Indexed: 07/15/2024]
Abstract
β-N-acetylglucosaminidase (GlcNAcase) is an essential biocatalyst in chitin assimilation by marine Vibrio species, which rely on chitin as their main carbon source. Structure-based phylogenetic analysis of the GlcNAcase superfamily revealed that a GlcNAcase from Vibrio campbellii, formerly named V. harveyi, (VhGlcNAcase) belongs to a major clade, Clade A-I, of the phylogenetic tree. Pre-steady-state and steady-state kinetic analysis of the reaction catalysed by VhGlcNAcase with the fluorogenic substrate 4-methylumbelliferyl N-acetyl-β-D-glucosaminide suggested the following mechanism: (1) the Michaelis-Menten complex is formed in a rapid enzyme-substrate equilibrium with a Kd of 99.1 ± 1 μM. (2) The glycosidic bond is cleaved by the action of the catalytic residue Glu438, followed by the rapid release of the aglycone product with a rate constant (k2) of 53.3 ± 1 s-1. (3) After the formation of an oxazolinium ion intermediate with the assistance of Asp437, the anomeric carbon of the transition state is attacked by a catalytic water, followed by release of the glycone product with a rate constant (k3) of 14.6 s-1, which is rate-limiting. The result clearly indicated a three-step "ping-pong" mechanism for VhGlcNAcase.
Collapse
Affiliation(s)
- Yong Zhou
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong, 21210, Thailand
| | - Waraporn Rernglit
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Tamo Fukamizo
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong, 21210, Thailand.
| | - Jeerus Sucharitakul
- Department of Biochemistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Wipa Suginta
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong, 21210, Thailand.
| |
Collapse
|
3
|
Kadlecová A, Hendrychová R, Jirsa T, Čermák V, Huang M, Grundler FMW, Schleker ASS. Advanced screening methods for assessing motility and hatching in plant-parasitic nematodes. PLANT METHODS 2024; 20:108. [PMID: 39033124 PMCID: PMC11264999 DOI: 10.1186/s13007-024-01233-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/07/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND Plant-parasitic nematodes are economically important pests responsible for substantial losses in agriculture. Researchers focusing on plant-parasitic nematodes, especially on finding new ways of their control, often need to assess basic parameters such as their motility, viability, and reproduction. Traditionally, these assays involve visually counting juveniles and eggs under a dissecting microscope, making this investigation time-consuming and laborious. RESULTS In this study, we established a procedure to efficiently determine the motility of two plant-parasitic nematode species, Heterodera schachtii and Ditylenchus destructor, using the WMicrotracker ONE platform. Additionally, we demonstrated that hatching of the cyst nematode H. schachtii can be evaluated using both the WMicrotracker ONE and by assessing the enzymatic activity of chitinase produced during hatching. CONCLUSIONS We present fast and straightforward protocols for studying nematode motility and hatching that allow us to draw conclusions about viability and survival. Thus, these methods are useful tools for facilitating fast and efficient evaluation in various fields of research focused on plant-parasitic nematodes.
Collapse
Affiliation(s)
- Alena Kadlecová
- Department of Experimental Biology, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc, CZ-78371, Czech Republic.
- Molecular Phytomedicine, University of Bonn, Karlrobert-Kreiten-Straße 13, 53115, Bonn, Germany.
| | - Romana Hendrychová
- Department of Experimental Biology, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc, CZ-78371, Czech Republic
| | - Tomáš Jirsa
- Department of Experimental Biology, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc, CZ-78371, Czech Republic
| | - Václav Čermák
- Department of Plant Pests Diagnostics, Central Institute for Supervising and Testing in Agriculture, Šlechtitelů 773/23, Olomouc, CZ-77900, Czech Republic
| | - Mengmeng Huang
- Molecular Phytomedicine, University of Bonn, Karlrobert-Kreiten-Straße 13, 53115, Bonn, Germany
| | - Florian M W Grundler
- Molecular Phytomedicine, University of Bonn, Karlrobert-Kreiten-Straße 13, 53115, Bonn, Germany
| | - A Sylvia S Schleker
- Molecular Phytomedicine, University of Bonn, Karlrobert-Kreiten-Straße 13, 53115, Bonn, Germany
| |
Collapse
|
4
|
Meekrathok P, Bürger M, Porfetye AT, Kumsaoad S, Aunkham A, Vetter IR, Suginta W. Structural basis of chitin utilization by a GH20 β-N-acetylglucosaminidase from Vibrio campbellii strain ATCC BAA-1116. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2021; 77:674-689. [PMID: 33950022 PMCID: PMC8098473 DOI: 10.1107/s2059798321002771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 03/15/2021] [Indexed: 12/03/2022]
Abstract
Crystal structures of a GH20 β-N-acetylglucosaminidase from V. campbellii reveal substrate specificity in chitin utilization. Vibrio species play a crucial role in maintaining the carbon and nitrogen balance between the oceans and the land through their ability to employ chitin as a sole source of energy. This study describes the structural basis for the action of the GH20 β-N-acetylglucosaminidase (VhGlcNAcase) in chitin metabolism by Vibrio campbellii (formerly V. harveyi) strain ATCC BAA-1116. Crystal structures of wild-type VhGlcNAcase in the absence and presence of the sugar ligand, and of the unliganded D437A mutant, were determined. VhGlcNAcase contains three distinct domains: an N-terminal carbohydrate-binding domain linked to a small α+β domain and a C-terminal (β/α)8 catalytic domain. The active site of VhGlcNAcase has a narrow, shallow pocket that is suitable for accommodating a small chitooligosaccharide. VhGlcNAcase is a monomeric enzyme of 74 kDa, but its crystal structures show two molecules of enzyme per asymmetric unit, in which Gln16 at the dimeric interface of the first molecule partially blocks the entrance to the active site of the neighboring molecule. The GlcNAc unit observed in subsite −1 makes exclusive hydrogen bonds to the conserved residues Arg274, Tyr530, Asp532 and Glu584, while Trp487, Trp546, Trp582 and Trp505 form a hydrophobic wall around the −1 GlcNAc. The catalytic mutants D437A/N and E438A/Q exhibited a drastic loss of GlcNAcase activity, confirming the catalytic role of the acidic pair (Asp437–Glu438).
Collapse
Affiliation(s)
- Piyanat Meekrathok
- Biochemistry-Electrochemistry Research Unit, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Marco Bürger
- Max-Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Arthur T Porfetye
- Max-Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Sawitree Kumsaoad
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Payupnai, Wangchan, Rayong 21210, Thailand
| | - Anuwat Aunkham
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Payupnai, Wangchan, Rayong 21210, Thailand
| | - Ingrid R Vetter
- Max-Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Wipa Suginta
- Biochemistry-Electrochemistry Research Unit, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| |
Collapse
|
5
|
Meekrathok P, Stubbs KA, Aunkham A, Kaewmaneewat A, Kardkuntod A, Bulmer DM, Berg B, Suginta W. NAG‐thiazoline is a potent inhibitor of the
Vibrio campbellii
GH20 β‐
N
‐Acetylglucosaminidase. FEBS J 2020; 287:4982-4995. [DOI: 10.1111/febs.15283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/15/2020] [Accepted: 03/04/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Piyanat Meekrathok
- School of Chemistry Suranaree University of Technology Nakhon Ratchasima Thailand
| | - Keith A. Stubbs
- School of Molecular Sciences The University of Western Australia Crawley WA Australia
| | - Anuwat Aunkham
- School of Biomolecular Science and Engineering (BSE) Vidyasirimedhi Institute of Science and Technology (VISTEC) Rayong Thailand
| | - Anuphon Kaewmaneewat
- School of Biomolecular Science and Engineering (BSE) Vidyasirimedhi Institute of Science and Technology (VISTEC) Rayong Thailand
| | - Apinya Kardkuntod
- School of Biomolecular Science and Engineering (BSE) Vidyasirimedhi Institute of Science and Technology (VISTEC) Rayong Thailand
| | - David M. Bulmer
- Institute for Cell and Molecular Biosciences Newcastle University UK
| | - Bert Berg
- Institute for Cell and Molecular Biosciences Newcastle University UK
| | - Wipa Suginta
- School of Biomolecular Science and Engineering (BSE) Vidyasirimedhi Institute of Science and Technology (VISTEC) Rayong Thailand
| |
Collapse
|
6
|
Meekrathok P, Thongsom S, Aunkham A, Kaewmaneewat A, Kitaoku Y, Choowongkomon K, Suginta W. Novel GH-20 β-N-acetylglucosaminidase inhibitors: Virtual screening, molecular docking, binding affinity, and anti-tumor activity. Int J Biol Macromol 2020; 142:503-512. [DOI: 10.1016/j.ijbiomac.2019.09.122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 09/15/2019] [Accepted: 09/16/2019] [Indexed: 01/05/2023]
|
7
|
Enzymatic hydrolysis of ionic liquid-extracted chitin. Carbohydr Polym 2018; 199:228-235. [DOI: 10.1016/j.carbpol.2018.07.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/25/2018] [Accepted: 07/05/2018] [Indexed: 11/22/2022]
|
8
|
Meekrathok P, Stubbs KA, Suginta W. Potent inhibition of a GH20 exo-β-N-acetylglucosaminidase from marine Vibrio bacteria by reaction intermediate analogues. Int J Biol Macromol 2018; 115:1165-1173. [DOI: 10.1016/j.ijbiomac.2018.04.193] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/14/2018] [Accepted: 04/30/2018] [Indexed: 02/04/2023]
|
9
|
Zeng L, Ding H, Hu X, Zhang G, Gong D. Galangin inhibits α-glucosidase activity and formation of non-enzymatic glycation products. Food Chem 2018; 271:70-79. [PMID: 30236734 DOI: 10.1016/j.foodchem.2018.07.148] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 07/16/2018] [Accepted: 07/23/2018] [Indexed: 11/18/2022]
Abstract
Inhibition of α-glucosidase and non-enzymatic glycation is considered as an effective approach to treat type 2 diabetes. Herein, multispectroscopic techniques and molecular docking analysis were used to investigate the inhibition of galangin on α-glucosidase and non-enzymatic glycation. Galangin showed a reversible inhibition on α-glucosidase activity in a mixed-type manner through a monophasic kinetic process, and induced the fluorescence quenching and conformational changes of α-glucosidase by forming α-glucosidase-galgangin complex. Molecular docking revealed that galangin primarily interacted with the amino acid residues within the active site of α-glucosidase, which may prevent the entrance of substrate resulting in a decrease in catalytic efficiency of α-glucosidase. Moreover, galangin moderately inhibited the formation of intermediates of non-enzymatic glycation, fructosamine and α-dicarbonyl compounds and strongly inhibited the formation of advanced glycation end products.
Collapse
Affiliation(s)
- Li Zeng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Huafang Ding
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Xing Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Guowen Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Deming Gong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; New Zealand Institute of Natural Medicine Research, 8 Ha Crescent, Auckland 2104, New Zealand
| |
Collapse
|
10
|
Ding H, Wu X, Pan J, Hu X, Gong D, Zhang G. New Insights into the Inhibition Mechanism of Betulinic Acid on α-Glucosidase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:7065-7075. [PMID: 29902001 DOI: 10.1021/acs.jafc.8b02992] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Betulinic acid (BA), an important pentacyclic triterpene widely distributed in many foods, possesses high antidiabetic activity. In this study, BA was found to exhibit stronger inhibition of α-glucosidase than acarbose with an IC50 value of (1.06 ± 0.02) × 10-5 mol L-1 in a mixed-type manner. BA bound with α-glucosidase to form a BA-α-glucosidase complex, resulting in a more compact structure of the enzyme. The obtained concentrations and spectra profiles of the components resolved by the multivariate-curve resolution-alternating least-squares confirmed the formation of the BA-α-glucosidase complex. Molecular docking showed that BA tightly bound to the active cavity of α-glucosidase, which might hinder the entrance of the substrate leading to a decline in enzyme activity. The chemical modification of α-glucosidase verified the results of the computer simulation that the order of importance of the four amino acid residues in the binding process was His > Tyr > Lys > Arg.
Collapse
Affiliation(s)
- Huafang Ding
- State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang 330047 , China
| | - Xiaqing Wu
- State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang 330047 , China
| | - Junhui Pan
- State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang 330047 , China
| | - Xing Hu
- State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang 330047 , China
| | - Deming Gong
- State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang 330047 , China
- New Zealand Institute of Natural Medicine Research , 8 Ha Crescent , Auckland 2104 , New Zealand
| | - Guowen Zhang
- State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang 330047 , China
| |
Collapse
|
11
|
Bakunina I, Chadova O, Malyarenko O, Ermakova S. The Effect of Fucoidan from the Brown Alga Fucus evanescence on the Activity of α- N-Acetylgalactosaminidase of Human Colon Carcinoma Cells. Mar Drugs 2018; 16:E155. [PMID: 29748462 PMCID: PMC5983286 DOI: 10.3390/md16050155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 11/16/2022] Open
Abstract
α-N-acetylgalactosaminidase (EC 3.2.1.49) (alpha-NaGalase) catalyzes the hydrolysis of N-acetamido-2-deoxy-α-d-galactoside residues from non-reducing ends of various complex carbohydrates and glycoconjugates. It is known that human cancer cells express an alpha-NaGalase, which accumulates in the blood plasma of patients. The enzyme deglycosylates the Gc protein-derived macrophage activating factor (GcMAF) and inhibits macrophage activity acting as an immunosuppressor. The high specific activity 0.033 ± 0.002 μmol mg−1 min−1 of the enzyme was found in human colon carcinoma cells DLD-1. The alpha-NaGalase of DLD-1 cells was isolated and biochemical characterized. The enzyme exhibits maximum activity at pH 5.2 and temperature 55 °C. The Km is 2.15 mM, Vmax⁻0.021 μmol min−1 mL−1, kcat⁻1.55 min−1 and kcat/Km⁻0.72 min−1 mM−1 at 37 °C, pH 5.2. The effects of fucoidan from the brown alga Fucus evanescence on the activity of alpha-NaGalase in human colon carcinoma DLD-1 cells and on the biosynthesis of this enzyme were investigated. It was shown that fucoidan did not inhibit free alpha-NaGalase, however, it reduced the expression of the enzyme in the DLD-1 cells at IC50 73 ± 4 μg mL−1.
Collapse
Affiliation(s)
- Irina Bakunina
- Laboratory of Enzyme Chemistry of G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690022, Russia.
| | - Oksana Chadova
- School of Natural Sciences, Far Eastern Federal University, Vladivostok 690091, Russia.
| | - Olesya Malyarenko
- Laboratory of Enzyme Chemistry of G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690022, Russia.
| | - Svetlana Ermakova
- Laboratory of Enzyme Chemistry of G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690022, Russia.
| |
Collapse
|
12
|
Fan M, Zhang G, Hu X, Xu X, Gong D. Quercetin as a tyrosinase inhibitor: Inhibitory activity, conformational change and mechanism. Food Res Int 2017; 100:226-233. [PMID: 28873682 DOI: 10.1016/j.foodres.2017.07.010] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 07/02/2017] [Accepted: 07/02/2017] [Indexed: 11/30/2022]
Abstract
Quercetin, a flavonoid compound, was found to inhibit both monophenolase and diphenolase activities of tyrosinase, and its inhibition against diphenolase activity was in a reversible and competitive manner with an IC50 value of (3.08±0.74)×10-5molL-1. Quercetin bound to tyrosinase driven by hydrophobic interaction, thereby resulted in a conformational change of tyrosinase and its intrinsic fluorescence quenching. Tyrosinase had one binding site for quercetin with the binding constant in the order of magnitude of 104Lmol-1. The molecular docking revealed that quercetin bound to the active site of tyrosinase and chelated a copper with the 3', 4'-dihydroxy groups. It can be deduced that the chelation may prevent the entrance of substrate and then inhibit the catalytic activity of tyrosinase. These findings may be helpful to understand the inhibition mechanism of quercetin on tyrosinase and functional research of quercetin in the treatment of pigmentation disorders.
Collapse
Affiliation(s)
- Meihui Fan
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Guowen Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Xing Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Ximing Xu
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, 1801 Avenue of Zhongwu, Changzhou 213001, China
| | - Deming Gong
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China; New Zealand Institute of Natural Medicine Research, 8 Ha Crescent, Auckland 2104, New Zealand
| |
Collapse
|
13
|
Meekrathok P, Suginta W. Probing the Catalytic Mechanism of Vibrio harveyi GH20 β-N-Acetylglucosaminidase by Chemical Rescue. PLoS One 2016; 11:e0149228. [PMID: 26870945 PMCID: PMC4752478 DOI: 10.1371/journal.pone.0149228] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 01/28/2016] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Vibrio harveyi GH20 β-N-acetylglucosaminidase (VhGlcNAcase) is a chitinolytic enzyme responsible for the successive degradation of chitin fragments to GlcNAc monomers, activating the onset of the chitin catabolic cascade in marine Vibrios. METHODS Two invariant acidic pairs (Asp303-Asp304 and Asp437-Glu438) of VhGlcNAcase were mutated using a site-directed mutagenesis strategy. The effects of these mutations were examined and the catalytic roles of these active-site residues were elucidated using a chemical rescue approach. Enhancement of the enzymic activity of the VhGlcNAcase mutants was evaluated by a colorimetric assay using pNP-GlcNAc as substrate. RESULTS Substitution of Asp303, Asp304, Asp437 or Glu438 with Ala/Asn/Gln produced a dramatic loss of the GlcNAcase activity. However, the activity of the inactive D437A mutant was recovered in the presence of sodium formate. Our kinetic data suggest that formate ion plays a nucleophilic role by mimicking the β-COO-side chain of Asp437, thereby stabilizing the reaction intermediate during both the glycosylation and the deglycosylation steps. CONCLUSIONS Chemical rescue of the inactive D437A mutant of VhGlcNAcase by an added nucleophile helped to identify Asp437 as the catalytic nucleophile/base, and hence its acidic partner Glu438 as the catalytic proton donor/acceptor. GENERAL SIGNIFICANCE Identification of the catalytic nucleophile of VhGlcNAcases supports the proposal of a substrate-assisted mechanism of GH20 GlcNAcases, requiring the catalytic pair Asp437-Glu438 for catalysis. The results suggest the mechanistic basis of the participation of β-N-acetylglucosaminidase in the chitin catabolic pathway of marine Vibrios.
Collapse
Affiliation(s)
- Piyanat Meekrathok
- Biochemistry-Electrochemistry Research Unit and School of Biochemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Wipa Suginta
- Biochemistry-Electrochemistry Research Unit and School of Biochemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
- Center of Excellence in Advanced Functional Materials, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
- * E-mail:
| |
Collapse
|