1
|
Maiti S, Singh A, Maji T, Saibo NV, De S. Experimental methods to study the structure and dynamics of intrinsically disordered regions in proteins. Curr Res Struct Biol 2024; 7:100138. [PMID: 38707546 PMCID: PMC11068507 DOI: 10.1016/j.crstbi.2024.100138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 05/07/2024] Open
Abstract
Eukaryotic proteins often feature long stretches of amino acids that lack a well-defined three-dimensional structure and are referred to as intrinsically disordered proteins (IDPs) or regions (IDRs). Although these proteins challenge conventional structure-function paradigms, they play vital roles in cellular processes. Recent progress in experimental techniques, such as NMR spectroscopy, single molecule FRET, high speed AFM and SAXS, have provided valuable insights into the biophysical basis of IDP function. This review discusses the advancements made in these techniques particularly for the study of disordered regions in proteins. In NMR spectroscopy new strategies such as 13C detection, non-uniform sampling, segmental isotope labeling, and rapid data acquisition methods address the challenges posed by spectral overcrowding and low stability of IDPs. The importance of various NMR parameters, including chemical shifts, hydrogen exchange rates, and relaxation measurements, to reveal transient secondary structures within IDRs and IDPs are presented. Given the high flexibility of IDPs, the review outlines NMR methods for assessing their dynamics at both fast (ps-ns) and slow (μs-ms) timescales. IDPs exert their functions through interactions with other molecules such as proteins, DNA, or RNA. NMR-based titration experiments yield insights into the thermodynamics and kinetics of these interactions. Detailed study of IDPs requires multiple experimental techniques, and thus, several methods are described for studying disordered proteins, highlighting their respective advantages and limitations. The potential for integrating these complementary techniques, each offering unique perspectives, is explored to achieve a comprehensive understanding of IDPs.
Collapse
Affiliation(s)
| | - Aakanksha Singh
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, WB, 721302, India
| | - Tanisha Maji
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, WB, 721302, India
| | - Nikita V. Saibo
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, WB, 721302, India
| | - Soumya De
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, WB, 721302, India
| |
Collapse
|
2
|
Shahrajabian MH, Sun W. Characterization of Intrinsically Disordered Proteins in Healthy and Diseased States by Nuclear Magnetic Resonance. Rev Recent Clin Trials 2024; 19:176-188. [PMID: 38409704 DOI: 10.2174/0115748871271420240213064251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/10/2023] [Accepted: 12/13/2023] [Indexed: 02/28/2024]
Abstract
INTRODUCTION Intrinsically Disordered Proteins (IDPs) are active in different cellular procedures like ordered assembly of chromatin and ribosomes, interaction with membrane, protein, and ligand binding, molecular recognition, binding, and transportation via nuclear pores, microfilaments and microtubules process and disassembly, protein functions, RNA chaperone, and nucleic acid binding, modulation of the central dogma, cell cycle, and other cellular activities, post-translational qualification and substitute splicing, and flexible entropic linker and management of signaling pathways. METHODS The intrinsic disorder is a precise structural characteristic that permits IDPs/IDPRs to be involved in both one-to-many and many-to-one signaling. IDPs/IDPRs also exert some dynamical and structural ordering, being much less constrained in their activities than folded proteins. Nuclear magnetic resonance (NMR) spectroscopy is a major technique for the characterization of IDPs, and it can be used for dynamic and structural studies of IDPs. RESULTS AND CONCLUSION This review was carried out to discuss intrinsically disordered proteins and their different goals, as well as the importance and effectiveness of NMR in characterizing intrinsically disordered proteins in healthy and diseased states.
Collapse
Affiliation(s)
- Mohamad Hesam Shahrajabian
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wenli Sun
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
3
|
Capuz A, Osien S, Cardon T, Karnoub MA, Aboulouard S, Raffo-Romero A, Duhamel M, Cizkova D, Trerotola M, Devos D, Kobeissy F, Vanden Abeele F, Bonnefond A, Fournier I, Rodet F, Salzet M. Heimdall, an alternative protein issued from a ncRNA related to kappa light chain variable region of immunoglobulins from astrocytes: a new player in neural proteome. Cell Death Dis 2023; 14:526. [PMID: 37587118 PMCID: PMC10432539 DOI: 10.1038/s41419-023-06037-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 07/27/2023] [Accepted: 08/02/2023] [Indexed: 08/18/2023]
Abstract
The dogma "One gene, one protein" is clearly obsolete since cells use alternative splicing and generate multiple transcripts which are translated into protein isoforms, but also use alternative translation initiation sites (TISs) and termination sites on a given transcript. Alternative open reading frames for individual transcripts give proteins originate from the 5'- and 3'-UTR mRNA regions, frameshifts of mRNA ORFs or from non-coding RNAs. Longtime considered as non-coding, recent in-silico translation prediction methods enriched the protein databases allowing the identification of new target structures that have not been identified previously. To gain insight into the role of these newly identified alternative proteins in the regulation of cellular functions, it is crucial to assess their dynamic modulation within a framework of altered physiological modifications such as experimental spinal cord injury (SCI). Here, we carried out a longitudinal proteomic study on rat SCI from 12 h to 10 days. Based on the alternative protein predictions, it was possible to identify a plethora of newly predicted protein hits. Among these proteins, some presented a special interest due to high homology with variable chain regions of immunoglobulins. We focus our interest on the one related to Kappa variable light chains which is similarly highly produced by B cells in the Bence jones disease, but here expressed in astrocytes. This protein, name Heimdall is an Intrinsically disordered protein which is secreted under inflammatory conditions. Immunoprecipitation experiments showed that the Heimdall interactome contained proteins related to astrocyte fate keepers such as "NOTCH1, EPHA3, IPO13" as well as membrane receptor protein including "CHRNA9; TGFBR, EPHB6, and TRAM". However, when Heimdall protein was neutralized utilizing a specific antibody or its gene knocked out by CRISPR-Cas9, sprouting elongations were observed in the corresponding astrocytes. Interestingly, depolarization assays and intracellular calcium measurements in Heimdall KO, established a depolarization effect on astrocyte membranes KO cells were more likely that the one found in neuroprogenitors. Proteomic analyses performed under injury conditions or under lipopolysaccharides (LPS) stimulation, revealed the expression of neuronal factors, stem cell proteins, proliferation, and neurogenesis of astrocyte convertor factors such as EPHA4, NOTCH2, SLIT3, SEMA3F, suggesting a role of Heimdall could regulate astrocytic fate. Taken together, Heimdall could be a novel member of the gatekeeping astrocyte-to-neuroprogenitor conversion factors.
Collapse
Affiliation(s)
- Alice Capuz
- Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000, Lille, France
| | - Sylvain Osien
- Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000, Lille, France
| | - Tristan Cardon
- Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000, Lille, France
| | - Mélodie Anne Karnoub
- Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000, Lille, France
| | - Soulaimane Aboulouard
- Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000, Lille, France
| | - Antonella Raffo-Romero
- Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000, Lille, France
| | - Marie Duhamel
- Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000, Lille, France
| | - Dasa Cizkova
- Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000, Lille, France
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 10, Bratislava, Slovakia
- Centre for Experimental and Clinical Regenerative Medicine, University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovakia
| | - Marco Trerotola
- Laboratory of Cancer Pathology, Center for Advanced Studies and Technology (CAST), University 'G. d'Annunzio', Chieti, Italy
- Department of Medical, Oral and Biotechnological Sciences, University 'G. d'Annunzio', Chieti, Italy
| | - David Devos
- Université de Lille, INSERM, U1172, CHU-Lille, Lille Neuroscience Cognition Research Centre, 1 place de Verdun, 59000, Lille, France
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Fabien Vanden Abeele
- Université de Lille, INSERM U1003, Laboratory of Cell Physiology, 59650, Villeneuve d'Ascq, France
| | - Amélie Bonnefond
- Univ. Lille, Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, CHU de Lille, 1 place de Verdun, 59000, Lille, France
| | - Isabelle Fournier
- Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000, Lille, France
- Institut Universitaire de France, 75005, Paris, France
| | - Franck Rodet
- Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000, Lille, France.
| | - Michel Salzet
- Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000, Lille, France.
- Institut Universitaire de France, 75005, Paris, France.
| |
Collapse
|
4
|
Baidya L, Reddy G. pH Induced Switch in the Conformational Ensemble of Intrinsically Disordered Protein Prothymosin-α and Its Implications for Amyloid Fibril Formation. J Phys Chem Lett 2022; 13:9589-9598. [PMID: 36206480 DOI: 10.1021/acs.jpclett.2c01972] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Aggregation of intrinsically disordered proteins (IDPs) can lead to neurodegenerative diseases. Although there is experimental evidence that acidic pH promotes IDP monomer compaction leading to aggregation, the general mechanism is unclear. We studied the pH effect on the conformational ensemble of prothymosin-α (proTα), which is involved in multiple essential functions, and probed its role in aggregation using computer simulations. We show that compaction in the proTα dimension at low pH is due to the protein's collapse in the intermediate region (E41-D80) rich in glutamic acid residues, enhancing its β-sheet content. We observed by performing dimer simulations that the conformations with high β-sheet content could act as aggregation-prone (N*) states and nucleate the aggregation process. The simulations initiated using N* states form dimers within a microsecond time scale, whereas the non-N* states do not form dimers within this time scale. This study contributes to understanding the general principles of pH-induced IDP aggregation.
Collapse
Affiliation(s)
- Lipika Baidya
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru, Karnataka560012, India
| | - Govardhan Reddy
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru, Karnataka560012, India
| |
Collapse
|
5
|
Bokor M, Házy E, Tantos Á. Wide-Line NMR Melting Diagrams, Their Thermodynamic Interpretation, and Secondary Structure Predictions for A30P and E46K α-Synuclein. ACS OMEGA 2022; 7:18323-18330. [PMID: 35694516 PMCID: PMC9178613 DOI: 10.1021/acsomega.2c00477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Parkinson's disease is thought to be caused by aggregation of the intrinsically disordered protein, α-synuclein. Two amyloidogenic variants, A30P, and E46K familial mutants were investigated by wide-line 1H NMR spectrometry as a completion of our earlier work on wild-type and A53T α-synuclein (Bokor M. et al. WT and A53T α-synuclein systems: melting diagram and its new interpretation. Int. J. Mol. Sci.2020, 21, 3997.). A monolayer of mobile water molecules hydrates A30P α-synuclein at the lowest potential barriers (temperatures), while E46K α-synuclein has here third as much mobile hydration, insufficient for functionality. According to wide-line 1H NMR results and secondary structure predictions, E46K α-synuclein is more compact than the A30P variant and they are more compact than the wild type (WT) and A53T variants. Linear hydration vs potential barrier sections of A30P α-synuclein shows one and E46K shows two slopes. The different slopes of the latter between potential barriers E a,1 and E a,2 reflect a change in water-protein interactions. The 31-32% homogeneous potential barrier distribution of the protein-water bonds refers to a non-negligible amount of secondary structures in all four α-synuclein variants. The secondary structures detected by wide-line 1H NMR are solvent-exposed α-helices, which are predicted by secondary structure models. β-sheets are only minor components of the protein structures as three- and eight-state predicted secondary structures are dominated by α-helices and coils.
Collapse
Affiliation(s)
- Mónika Bokor
- Institute
for Solid State Physics and Optics, Wigner
Research Centre for Physics, 1121 Budapest, Hungary
| | - Eszter Házy
- Institute
of Enzymology, Research Centre for Natural
Sciences, 1117 Budapest, Hungary
| | - Ágnes Tantos
- Institute
of Enzymology, Research Centre for Natural
Sciences, 1117 Budapest, Hungary
| |
Collapse
|
6
|
Hibino E, Tenno T, Hiroaki H. Relevance of Amorphous and Amyloid-Like Aggregates of the p53 Core Domain to Loss of its DNA-Binding Activity. Front Mol Biosci 2022; 9:869851. [PMID: 35558561 PMCID: PMC9086241 DOI: 10.3389/fmolb.2022.869851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
The anti-oncogenic protein p53 is a transcription factor that prevents tumorigenesis by inducing gene repair proteins or apoptosis under DNA damage. Since the DNA-binding domain of p53 (p53C) is aggregation-prone, the anti-oncogenic function of p53 is often lost in cancer cells. This tendency is rather severe in some tumor-related p53 mutants, such as R175H. In this study, we examined the effect of salts, including KCl and sugars, on the aggregation of p53C by monitoring two distinct aggregates: amorphous-like and amyloid-like. The amorphous aggregates are detectable with 8-(phenylamino)-1-naphthalenesulfonic acid (ANS) fluorescence, whereas the amyloid aggregates are sensitive to thioflavin-T (ThT) fluorescence. We found that KCl inhibited the formation of amorphous aggregates but promoted the formation of amyloid aggregates in a p53C R175H mutant. The salts exhibited different effects against the wild-type and R175H mutants of p53C. However, the ratio of ANS/ThT fluorescence for the wild-type and R175H mutant remained constant. KCl also suppressed the structural transition and loss of the DNA-binding function of p53C. These observations indicate the existence of multiple steps of p53C aggregation, probably coupled with the dissociation of Zn. Notably, amorphous aggregates and amyloid aggregates have distinct properties that could be discriminated by various small additives upon aggregation.
Collapse
Affiliation(s)
- Emi Hibino
- Laboratory of Structural Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Takeshi Tenno
- Laboratory of Structural Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
- BeCellBar LLC., Nagoya University, Nagoya, Japan
| | - Hidekazu Hiroaki
- Laboratory of Structural Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
- BeCellBar LLC., Nagoya University, Nagoya, Japan
- *Correspondence: Hidekazu Hiroaki,
| |
Collapse
|
7
|
Interactions of intrinsically disordered proteins with the unconventional chaperone human serum albumin: From mechanisms of amyloid inhibition to therapeutic opportunities. Biophys Chem 2022; 282:106743. [PMID: 35093643 DOI: 10.1016/j.bpc.2021.106743] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/09/2021] [Accepted: 12/09/2021] [Indexed: 12/29/2022]
Abstract
Human Serum Albumin (HSA), the most abundant protein in plasma, serves a diverse repertoire of biological functions including regulation of oncotic pressure and redox potential, transport of serum solutes, but also chaperoning of misfolded proteins. Here we review how HSA interacts with a wide spectrum of client proteins including intrinsically disordered proteins (IDPs) such as Aβ, the islet amyloid peptide (IAPP), alpha synuclein and stressed globular proteins such as insulin. The comparative analysis of the HSA chaperone - client interactions reveals that the amyloid-inhibitory function of HSA arises from at least four emerging mechanisms. Two mechanisms (the monomer stabilizer model and the monomer competitor model) involve the direct binding of HSA to either IDP monomers or oligomers, while other mechanisms (metal chelation and membrane protection) rely on the indirect modulation by HSA of other factors that drive IDP aggregation. While HSA is not the only extracellular chaperone, given its abundance, HSA is likely to account for a significant fraction of the chaperoning effects in plasma, thus opening new therapeutic opportunities in the context of the peripheral sink hypothesis.
Collapse
|
8
|
Choudhary S, Lopus M, Hosur RV. Targeting disorders in unstructured and structured proteins in various diseases. Biophys Chem 2021; 281:106742. [PMID: 34922214 DOI: 10.1016/j.bpc.2021.106742] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 12/05/2021] [Accepted: 12/09/2021] [Indexed: 12/31/2022]
Abstract
Intrinsically disordered proteins (IDPs) and intrinsically disordered protein regions (IDPRs) are proteins and protein segments that usually do not acquire well-defined folded structures even under physiological conditions. They are abundantly present and challenge the "one sequence-one structure-one function" theory due to a lack of stable secondary and/or tertiary structure. Due to conformational flexibility, IDPs/IDPRs can bind with multiple interacting partners with high-specificity and low-affinity and perform essential biological functions associated with signalling, recognition and regulation. Mis-functioning and mis-regulation of IDPs and IDPRs causes disorder in disordered proteins and disordered protein segments which results in numerous human diseases, such as cancer, Parkinson's disease (PD), Alzheimer's disease (AD), diabetes, metabolic disorders, systemic disorders and so on. Due to the strong connection of IDPs/IDPRs with human diseases they are considered potentential targets for drug therapy. Since they disobey the "one sequence-one structure-one function" concept, IDPs/IDPRs are complex systems for drug targeting. This review summarises various protein disorder diseases and different methods for therapeutic targeting of disordered proteins/segments. Targeting IDPs/IDPRs for diseases will open up a new era of rational drug design and drug discovery.
Collapse
Affiliation(s)
- Sinjan Choudhary
- UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Vidhyanagri Campus, Kalina, Mumbai 400098, India.
| | - Manu Lopus
- UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Vidhyanagri Campus, Kalina, Mumbai 400098, India.
| | - Ramakrishna V Hosur
- UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Vidhyanagri Campus, Kalina, Mumbai 400098, India.
| |
Collapse
|
9
|
Ahmadi H, Shogen K, Fujita K, Honjo T, Kakimi K, Futami J. Unusual aggregation property of recombinantly expressed cancer-testis antigens in mammalian cells. J Biochem 2021; 170:435-443. [PMID: 34247245 DOI: 10.1093/jb/mvab081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/02/2021] [Indexed: 11/13/2022] Open
Abstract
Transient expression of human intracellular proteins in human embryonic kidney (HEK) 293 cells is a reliable system for obtaining soluble proteins with biologically active conformations. Contrary to conventional concepts, we found that recombinantly expressed intracellular cancer-testis antigens (CTAs) showed frequent aggregation in HEK293 cells. Although experimental subcellular localization of recombinant CTAs displayed proper cytosolic or nuclear localization, some proteins showed aggregated particles in the cell. This aggregative property was not observed in recombinant housekeeping proteins. No significant correlation was found between the aggregative and biophysical properties, such as hydrophobicity, contents of intrinsically disordered regions, and expression levels, of CTAs. These results can be explained in terms of structural instability of CTAs, which are specifically expressed in the testis and aberrantly expressed in cancer cells and function as a hub in the protein-protein network using intrinsically disordered regions. Hence, we speculate that recombinantly expressed CTAs failed to form this protein complex. Thus, unfolded CTAs formed aggregated particles in the cell.
Collapse
Affiliation(s)
- Hannaneh Ahmadi
- Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan
| | - Kohei Shogen
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Kana Fujita
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Tomoko Honjo
- Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan
| | - Kazuhiro Kakimi
- Department of Immunotherapeutics, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Junichiro Futami
- Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan.,Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| |
Collapse
|
10
|
Direito I, Monteiro L, Melo T, Figueira D, Lobo J, Enes V, Moura G, Henrique R, Santos MAS, Jerónimo C, Amado F, Fardilha M, Helguero LA. Protein Aggregation Patterns Inform about Breast Cancer Response to Antiestrogens and Reveal the RNA Ligase RTCB as Mediator of Acquired Tamoxifen Resistance. Cancers (Basel) 2021; 13:cancers13133195. [PMID: 34206811 PMCID: PMC8269126 DOI: 10.3390/cancers13133195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/08/2021] [Accepted: 06/18/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Acquired resistance to antiestrogenic therapy remains the major obstacle to curing luminal subtype breast cancer. While current treatment in acquired endocrine-resistant settings includes combined therapy with receptor tyrosine kinase or cyclin-dependent kinase inhibitors, progression to incurable disease remains possible. In recent years, the antioxidant system and the protein quality control network have been associated with the enhanced resistance of breast cancer cells to hormonal therapy. In this work, we raise the hypothesis that antiestrogen treatment induces the accumulation of protein aggregates in sensitive cells, which in turn could hinder the activation of survival pathways. We present evidence concerning a novel way to identify antiestrogen response and disclose a novel protein, RTBC, that controls acquired antiestrogen resistance. This work opens a new avenue for research towards finding breast cancer prognostic markers and therapeutic targets, where the identification of proteins prone to aggregate could help to identify antiestrogen response and understand mechanisms of disease. Abstract The protein quality control network, including autophagy, the proteasome and the unfolded protein response (UPR), is triggered by stress and is overactive in acquired antiestrogen therapy resistance. We show for the first time that the aggresome load correlates with apoptosis and is increased in antiestrogen-sensitive cells compared to endocrine-resistant variants. LC-MS/MS analysis of the aggregated proteins obtained after 4OH-tamoxifen and Fulvestrant treatment identified proteins with essential function in protein quality control in antiestrogen-sensitive cells, but not in resistant variants. These include the UPR modulators RTCB and PDIA6, as well as many proteasome proteins such as PSMC2 and PSMD11. RTCB is a tRNA and XBP1 ligase and its aggregation induced by antiestrogens correlated with impaired XBP1s expression in sensitive cells. Knock down of RTCB was sufficient to restore sensitivity to tamoxifen in endocrine-resistant cells and increased the formation of aggresomes, leading to apoptotic cell death. Analysis of primary human breast cancer samples and their metastases appearing after endocrine treatment showed that RTCB is only localized to aggresomes in the primary tumors, while total aggresomes, including aggregated RTCB, were significantly reduced in the metastases. Therefore, different protein aggregation patterns may indicate loss of function of essential proteins resulting in enhanced protein aggregation that can be used to identify antiestrogen-resistant breast cancer cells and improve the response to antiestrogenic therapy.
Collapse
Affiliation(s)
- Inês Direito
- iBiMED—Institute of Biomedicine, University of Aveiro, 3810-193 Aveiro, Portugal; (I.D.); (L.M.); (D.F.); (V.E.); (G.M.); (M.A.S.S.); (M.F.)
| | - Liliana Monteiro
- iBiMED—Institute of Biomedicine, University of Aveiro, 3810-193 Aveiro, Portugal; (I.D.); (L.M.); (D.F.); (V.E.); (G.M.); (M.A.S.S.); (M.F.)
| | - Tânia Melo
- LaQV-REQUIMTE—Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology, University of Aveiro, 3810-193 Aveiro, Portugal; (T.M.); (F.A.)
| | - Daniela Figueira
- iBiMED—Institute of Biomedicine, University of Aveiro, 3810-193 Aveiro, Portugal; (I.D.); (L.M.); (D.F.); (V.E.); (G.M.); (M.A.S.S.); (M.F.)
| | - João Lobo
- Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), 4200-072 Porto, Portugal; (J.L.); (R.H.); (C.J.)
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto) & Porto Comprehensive Cancer Center (P.CCC), 4200-072 Porto, Portugal
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
| | - Vera Enes
- iBiMED—Institute of Biomedicine, University of Aveiro, 3810-193 Aveiro, Portugal; (I.D.); (L.M.); (D.F.); (V.E.); (G.M.); (M.A.S.S.); (M.F.)
| | - Gabriela Moura
- iBiMED—Institute of Biomedicine, University of Aveiro, 3810-193 Aveiro, Portugal; (I.D.); (L.M.); (D.F.); (V.E.); (G.M.); (M.A.S.S.); (M.F.)
| | - Rui Henrique
- Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), 4200-072 Porto, Portugal; (J.L.); (R.H.); (C.J.)
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto) & Porto Comprehensive Cancer Center (P.CCC), 4200-072 Porto, Portugal
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
| | - Manuel A. S. Santos
- iBiMED—Institute of Biomedicine, University of Aveiro, 3810-193 Aveiro, Portugal; (I.D.); (L.M.); (D.F.); (V.E.); (G.M.); (M.A.S.S.); (M.F.)
| | - Carmen Jerónimo
- Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), 4200-072 Porto, Portugal; (J.L.); (R.H.); (C.J.)
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto) & Porto Comprehensive Cancer Center (P.CCC), 4200-072 Porto, Portugal
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
| | - Francisco Amado
- LaQV-REQUIMTE—Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology, University of Aveiro, 3810-193 Aveiro, Portugal; (T.M.); (F.A.)
| | - Margarida Fardilha
- iBiMED—Institute of Biomedicine, University of Aveiro, 3810-193 Aveiro, Portugal; (I.D.); (L.M.); (D.F.); (V.E.); (G.M.); (M.A.S.S.); (M.F.)
| | - Luisa A. Helguero
- iBiMED—Institute of Biomedicine, University of Aveiro, 3810-193 Aveiro, Portugal; (I.D.); (L.M.); (D.F.); (V.E.); (G.M.); (M.A.S.S.); (M.F.)
- Correspondence:
| |
Collapse
|
11
|
Chen YW, Rahman SK. Fatal Attraction: The Case of Toxic Soluble Dimers of Truncated PQBP-1 Mutants in X-Linked Intellectual Disability. Int J Mol Sci 2021; 22:ijms22052240. [PMID: 33668121 PMCID: PMC7956452 DOI: 10.3390/ijms22052240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/20/2021] [Accepted: 02/20/2021] [Indexed: 11/16/2022] Open
Abstract
The frameshift mutants K192Sfs*7 and R153Sfs*41, of the polyglutamine tract-binding protein 1 (PQBP-1), are stable intrinsically disordered proteins (IDPs). They are each associated with the severe cognitive disorder known as the Renpenning syndrome, a form of X-linked intellectual disability (XLID). Relative to the monomeric wild-type protein, these mutants are dimeric, contain more folded contents, and have higher thermal stabilities. Comparisons can be drawn to the toxic oligomerisation in the “conformational diseases”, which collectively describe medical conditions involving a substantial protein structural transition in the pathogenic mechanism. At the molecular level, the end state of these diseases is often cytotoxic protein aggregation. The conformational disease proteins contain varying extents of intrinsic disorder, and the consensus pathogenesis includes an early oligomer formation. We reviewed the experimental characterisation of the toxic oligomers in representative cases. PQBP-1 mutant dimerisation was then compared to the oligomerisation of the conformational disease proteins. The PQBP-1 mutants are unique in behaving as stable soluble dimers, which do not further develop into higher oligomers or aggregates. The toxicity of the PQBP-1 mutant dimers lies in the native functions (in transcription regulation and possibly, RNA splicing) being compromised, rather than proceeding to aggregation. Other examples of stable IDP dimers were discussed and we speculated on the roles of IDP dimerisation in protein evolution.
Collapse
Affiliation(s)
- Yu Wai Chen
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hunghom 999077, Hong Kong
- State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hunghom 999077, Hong Kong
- Correspondence:
| | - Shah Kamranur Rahman
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK;
| |
Collapse
|
12
|
Structure-based peptide design targeting intrinsically disordered proteins: Novel histone H4 and H2A peptidic inhibitors. Comput Struct Biotechnol J 2021; 19:934-948. [PMID: 33598107 PMCID: PMC7856395 DOI: 10.1016/j.csbj.2021.01.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/17/2021] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
Intrinsically disordered proteins/protein regions (IDPs/IDPRs) are emerging drug targets. Lack of fast methods hinders the discovery of inhibitors for IDPs/ IDPRs. Fast and inexpensive structure-based approaches have been developed. The developed methods were applied to succesfully design inhibitors targeting the disordered tail of histone H4 and H2A. The presented methods can be widely used to identify inhibitors for other IDPs/IDPRs.
A growing body of research has demonstrated that targeting intrinsically disordered proteins (IDPs) and intrinsically disordered protein regions (IDPRs) is feasible and represents a new trending strategy in drug discovery. However, the number of inhibitors targeting IDPs/IDPRs is increasing slowly due to limitations of the methods that can be used to accelerate the discovery process. We have applied structure-based methods to successfully develop the first peptidic inhibitor (HIPe - Histone Inhibitory Peptide) that targets histone H4 that are released from NETs (Neutrophil Extracellular Traps). HIPe binds stably to the disordered N-terminal tail of histone H4, thereby preventing histone H4-induced cell death. Recently, by utilisation of the same state-of-the-art approaches, we have developed a novel peptidic inhibitor (CHIP - Cyclical Histone H2A Interference Peptide) that binds to NET-resident histone H2A, which results in a blockade of monocyte adhesion and consequently reduction in atheroprogression. Here, we present comprehensive details on the computational methods utilised to design and develop HIPe and CHIP. We have exploited protein–protein complexes as starting structures for rational peptide design and then applied binding free energy methods to predict and prioritise binding strength of the designed peptides with histone H4 and H2A. By doing this way, we have modelled only around 20 peptides and from these were able to select 4–5 peptides, from a total of more than a trillion candidate peptides, for functional characterisation in different experiments. The developed computational protocols are generic and can be widely used to design and develop novel inhibitors for other disordered proteins.
Collapse
Key Words
- ARDS, acute respiratory distress syndrome
- BFE, binding free energy
- BRCA-1, breast cancer type1 susceptibility protein
- CCL5, chemokine ligand 5
- CHIP, cyclical histone H2A interference peptide
- Computer-aided molecular design (CAMD)
- DC, decomposition
- Disordered proteins
- H2A, histone H2A
- H2B, histone H2B
- H3, histone H3
- H4, histone H4
- HIPe, histone inhibitory peptide
- HNP1, human neutrophil peptide 1
- Histones
- IDPRs, intrinsically disordered protein regions
- IDPs, intrinsically disordered proteins
- MD, molecular dynamics
- MM/GBSA, molecular mechanics/generalised born surface area
- NETs, neutrophil extracellular traps
- Neutrophil extracellular traps (NETs)
- PDB, protein data bank
- PPIs, protein-protein interactions
- PTP1B, protein tyrosine phosphatase 1B
- Peptides
- Protein-protein interactions (PPIs)
- SMCs, smooth muscle cells
- aMD, accelerated molecular dynamics
- p53, tumor protein 53
Collapse
|
13
|
Regmi R, Srinivasan S, Latham AP, Kukshal V, Cui W, Zhang B, Bose R, Schlau-Cohen GS. Phosphorylation-Dependent Conformations of the Disordered Carboxyl-Terminus Domain in the Epidermal Growth Factor Receptor. J Phys Chem Lett 2020; 11:10037-10044. [PMID: 33179922 PMCID: PMC8063277 DOI: 10.1021/acs.jpclett.0c02327] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The epidermal growth factor receptor (EGFR), a receptor tyrosine kinase, regulates basic cellular functions and is a major target for anticancer therapeutics. The carboxyl-terminus domain is a disordered region of EGFR that contains the tyrosine residues, which undergo autophosphorylation followed by docking of signaling proteins. Local phosphorylation-dependent secondary structure has been identified and is thought to be associated with the signaling cascade. Deciphering and distinguishing the overall conformations, however, have been challenging because of the disordered nature of the carboxyl-terminus domain and resultant lack of well-defined three-dimensional structure for most of the domain. We investigated the overall conformational states of the isolated EGFR carboxyl-terminus domain using single-molecule Förster resonance energy transfer and coarse-grained simulations. Our results suggest that electrostatic interactions between charged residues emerge within the disordered domain upon phosphorylation, producing a looplike conformation. This conformation may enable binding of downstream signaling proteins and potentially reflect a general mechanism in which electrostatics transiently generate functional architectures in disordered regions of a well-folded protein.
Collapse
Affiliation(s)
- Raju Regmi
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Shwetha Srinivasan
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Andrew P Latham
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Vandna Kukshal
- Department of Medicine and Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Weidong Cui
- Department of Chemistry, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Ron Bose
- Department of Medicine and Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Gabriela S Schlau-Cohen
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
14
|
Iwaya N, Goda N, Matsuzaki M, Narita A, Shigemitsu Y, Tenno T, Abe Y, Hoshi M, Hiroaki H. Principal component analysis of data from NMR titration experiment of uniformly 15N labeled amyloid beta (1-42) peptide with osmolytes and phenolic compounds. Arch Biochem Biophys 2020; 690:108446. [PMID: 32593678 DOI: 10.1016/j.abb.2020.108446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 05/11/2020] [Accepted: 06/01/2020] [Indexed: 10/24/2022]
Abstract
A simple NMR method to analyze the data obtained by NMR titration experiment of amyloid formation inhibitors against uniformly 15N-labeled amyloid-β 1-42 peptide (Aβ(1-42)) was described. By using solution nuclear magnetic resonance (NMR) measurement, the simplest method for monitoring the effects of Aβ fibrilization inhibitors is the NMR chemical shift perturbation (CSP) experiment using 15N-labeled Aβ(1-42). However, the flexible and dynamic nature of Aβ(1-42) monomer may hamper the interpretation of CSP data. Here we introduced principal component analysis (PCA) for visualizing and analyzing NMR data of Aβ(1-42) in the presence of amyloid inhibitors including high concentration osmolytes. We measured 1H-15N 2D spectra of Aβ(1-42) at various temperatures as well as of Aβ(1-42) with several inhibitors, and subjected all the data to PCA (PCA-HSQC). The PCA diagram succeeded in differentiating the various amyloid inhibitors, including epigallocatechin gallate (EGCg), rosmarinic acid (RA) and curcumin (CUR) from high concentration osmolytes. We hypothesized that the CSPs reflected the conformational equilibrium of intrinsically disordered Aβ(1-42) induced by weak inhibitor binding rather than the specific molecular interactions.
Collapse
Affiliation(s)
- Naoko Iwaya
- Research Fellowship for Young Scientists, Japan Society for the Promotion of Science, Japan; Laboratory of Structural Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa-ku, Nagoya, 464-8601, Japan.
| | - Natsuko Goda
- Laboratory of Structural Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa-ku, Nagoya, 464-8601, Japan.
| | - Mizuki Matsuzaki
- Structural Biology Research Center and Division of Biological Sciences, Graduate School of Science, Nagoya University, Furocho, Chikusa-ku, Nagoya, 464-8601, Japan.
| | - Akihiro Narita
- Structural Biology Research Center and Division of Biological Sciences, Graduate School of Science, Nagoya University, Furocho, Chikusa-ku, Nagoya, 464-8601, Japan.
| | - Yoshiki Shigemitsu
- Laboratory of Structural Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa-ku, Nagoya, 464-8601, Japan; School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuda, 4259, Midori-ku, Yokohama, Kanagawa, 226-8503, Japan.
| | - Takeshi Tenno
- Laboratory of Structural Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa-ku, Nagoya, 464-8601, Japan; Structural Biology Research Center and Division of Biological Sciences, Graduate School of Science, Nagoya University, Furocho, Chikusa-ku, Nagoya, 464-8601, Japan.
| | - Yoshito Abe
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.
| | - Minako Hoshi
- Institute of Biomedical Research and Innovation, Kobe, 650-0047, Japan.
| | - Hidekazu Hiroaki
- Laboratory of Structural Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa-ku, Nagoya, 464-8601, Japan; Structural Biology Research Center and Division of Biological Sciences, Graduate School of Science, Nagoya University, Furocho, Chikusa-ku, Nagoya, 464-8601, Japan.
| |
Collapse
|
15
|
Martinez Pomier K, Ahmed R, Melacini G. Catechins as Tools to Understand the Molecular Basis of Neurodegeneration. Molecules 2020; 25:E3571. [PMID: 32781559 PMCID: PMC7465241 DOI: 10.3390/molecules25163571] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/25/2020] [Accepted: 08/03/2020] [Indexed: 12/12/2022] Open
Abstract
Protein misfolding as well as the subsequent self-association and deposition of amyloid aggregates is implicated in the progression of several neurodegenerative disorders including Alzheimer's and Parkinson's diseases. Modulators of amyloidogenic aggregation serve as essential tools to dissect the underlying molecular mechanisms and may offer insight on potential therapeutic solutions. These modulators include green tea catechins, which are potent inhibitors of amyloid aggregation. Although catechins often exhibit poor pharmacokinetic properties and bioavailability, they are still essential tools for identifying the drivers of amyloid aggregation and for developing other aggregation modulators through structural mimicry. As an illustration of such strategies, here we review how catechins have been used to map the toxic surfaces of oligomeric amyloid-like species and develop catechin-based phenolic compounds with enhanced anti-amyloid activity.
Collapse
Affiliation(s)
- Karla Martinez Pomier
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON L8S 4M1, Canada;
| | - Rashik Ahmed
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4M1, Canada;
| | - Giuseppe Melacini
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON L8S 4M1, Canada;
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4M1, Canada;
| |
Collapse
|
16
|
Presence of intrinsically disordered proteins can inhibit the nucleation phase of amyloid fibril formation of Aβ(1-42) in amino acid sequence independent manner. Sci Rep 2020; 10:12334. [PMID: 32703978 PMCID: PMC7378830 DOI: 10.1038/s41598-020-69129-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/19/2020] [Indexed: 11/27/2022] Open
Abstract
The molecular shield effect was studied for intrinsically disordered proteins (IDPs) that do not adopt compact and stable protein folds. IDPs are found among many stress-responsive gene products and cryoprotective- and drought-protective proteins. We recently reported that some fragments of human genome-derived IDPs are cryoprotective for cellular enzymes, despite a lack of relevant amino acid sequence motifs. This sequence-independent IDP function may reflect their molecular shield effect. This study examined the inhibitory activity of IDPs against fibril formation in an amyloid beta peptide (Aβ(1–42)) model system. Four of five human genome-derived IDPs (size range 20 to 44 amino acids) showed concentration-dependent inhibition of amyloid formation (IC50 range between 60 and 130 μM against 20 μM Aβ(1–42)). The IC50 value was two orders of magnitude lower than that of polyethylene-glycol and dextran, used as neutral hydrophilic polymer controls. Nuclear magnetic resonance with 15 N-labeled Aβ(1–42) revealed no relevant molecular interactions between Aβ(1–42) and IDPs. The inhibitory activities were abolished by adding external amyloid-formation seeds. Therefore, IDPs seemed to act only at the amyloid nucleation phase but not at the elongation phase. These results suggest that IDPs (0.1 mM or less) have a molecular shield effect that prevents aggregation of susceptible molecules.
Collapse
|
17
|
Changes in hydrophobicity mainly promotes the aggregation tendency of ALS associated SOD1 mutants. Int J Biol Macromol 2020; 145:904-913. [PMID: 31669277 DOI: 10.1016/j.ijbiomac.2019.09.181] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/24/2019] [Accepted: 09/26/2019] [Indexed: 12/19/2022]
Abstract
Protein misfolding and aggregation due to mutations, are associated with fatal neurodegenerative disorders. The mutations in Cu/Zn superoxide dismutase (SOD1) causing its misfolding and aggregation are found linked to the motor neuron disorder, amyotrophic lateral sclerosis. Since the mutations are scattered throughout SOD1 structure, determining the exact molecular mechanism underlying the ALS pathology remains unresolved. In this study, we have investigated the major molecular factors that mainly contribute to SOD1 destabilization, intrinsic disorder, and misfolding using sequence and structural information. We have analysed 153 ALS causing SOD1 point mutants for aggregation tendency using four different aggregation prediction tools, viz., Aggrescan3D (A3D), CamSol, GAP and Zyggregator. Our results suggest that 74-79 mutants are susceptible to aggregation, due to distorted native interactions originated at the mutation site. Majority of the aggregation prone mutants are located in the buried regions of SOD1 molecule. Further, the mutations at the hydrophobic amino acids primarily promote the aggregation tendency of SOD1 protein through different destabilizing mechanisms including changes in hydrophobic free energy, loss of electrostatic interactions in the protein's surface and loss of hydrogen bonds that bridges the protein core and surface.
Collapse
|
18
|
Davey NE, Babu MM, Blackledge M, Bridge A, Capella-Gutierrez S, Dosztanyi Z, Drysdale R, Edwards RJ, Elofsson A, Felli IC, Gibson TJ, Gutmanas A, Hancock JM, Harrow J, Higgins D, Jeffries CM, Le Mercier P, Mészáros B, Necci M, Notredame C, Orchard S, Ouzounis CA, Pancsa R, Papaleo E, Pierattelli R, Piovesan D, Promponas VJ, Ruch P, Rustici G, Romero P, Sarntivijai S, Saunders G, Schuler B, Sharan M, Shields DC, Sussman JL, Tedds JA, Tompa P, Turewicz M, Vondrasek J, Vranken WF, Wallace BA, Wichapong K, Tosatto SCE. An intrinsically disordered proteins community for ELIXIR. F1000Res 2019; 8. [PMID: 31824649 PMCID: PMC6880265 DOI: 10.12688/f1000research.20136.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/18/2019] [Indexed: 01/20/2023] Open
Abstract
Intrinsically disordered proteins (IDPs) and intrinsically disordered regions (IDRs) are now recognised as major determinants in cellular regulation. This white paper presents a roadmap for future e-infrastructure developments in the field of IDP research within the ELIXIR framework. The goal of these developments is to drive the creation of high-quality tools and resources to support the identification, analysis and functional characterisation of IDPs. The roadmap is the result of a workshop titled “An intrinsically disordered protein user community proposal for ELIXIR” held at the University of Padua. The workshop, and further consultation with the members of the wider IDP community, identified the key priority areas for the roadmap including the development of standards for data annotation, storage and dissemination; integration of IDP data into the ELIXIR Core Data Resources; and the creation of benchmarking criteria for IDP-related software. Here, we discuss these areas of priority, how they can be implemented in cooperation with the ELIXIR platforms, and their connections to existing ELIXIR Communities and international consortia. The article provides a preliminary blueprint for an IDP Community in ELIXIR and is an appeal to identify and involve new stakeholders.
Collapse
Affiliation(s)
- Norman E Davey
- Division of Cancer Biology, Institute of Cancer Research, UK, London, SW3 6JB, UK
| | - M Madan Babu
- MRC Laboratory of Molecular Biology,, Cambridge, CB2 0QH, UK
| | - Martin Blackledge
- Institut de Biologie Structurale, Université Grenoble Alpes, Grenoble, 38000, France
| | - Alan Bridge
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, Geneva, Switzerland
| | | | - Zsuzsanna Dosztanyi
- Department of Biochemistry, Eötvös Loránd University, Budapest, H-1117, Hungary
| | | | - Richard J Edwards
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Arne Elofsson
- Department of Biochemistry and Biophysics and Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Isabella C Felli
- Department of Chemistry and CERM "Ugo Schiff", University of Florence, Florence, Italy
| | - Toby J Gibson
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Aleksandras Gutmanas
- Protein Data Bank in Europe, European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Cambridge, CB10 1SD, UK
| | - John M Hancock
- ELIXIR Hub, Wellcome Genome Campus, Cambridge, CB10 1SD, UK
| | - Jen Harrow
- ELIXIR Hub, Wellcome Genome Campus, Cambridge, CB10 1SD, UK
| | - Desmond Higgins
- Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin, D4, Ireland
| | - Cy M Jeffries
- European Molecular Biology Laboratory, Hamburg, Germany
| | - Philippe Le Mercier
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Balint Mészáros
- Department of Biochemistry, Eötvös Loránd University, Budapest, H-1117, Hungary
| | - Marco Necci
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Cedric Notredame
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, 08003, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Sandra Orchard
- European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Cambridge, CB10 1SD, UK
| | - Christos A Ouzounis
- BCPL-CPERI, Centre for Research & Technology Hellas (CERTH), Thessalonica, 57001, Greece
| | - Rita Pancsa
- Institute of Enzymology, Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Budapest, H-1117, Hungary
| | - Elena Papaleo
- Computational Biology Laboratory, Danish Cancer Society Research Center, Copenhagen, 2100, Denmark
| | - Roberta Pierattelli
- Department of Chemistry and CERM "Ugo Schiff", University of Florence, Florence, Italy
| | - Damiano Piovesan
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Vasilis J Promponas
- Bioinformatics Research Laboratory, Department of Biological Sciences, University of Cyprus, Nicosia, CY-1678, Cyprus
| | - Patrick Ruch
- HES-SO/HEG and SIB Text Mining, Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Gabriella Rustici
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK
| | - Pedro Romero
- University of Wisconsin-Madison, Madison, WI, 53706-1544, USA
| | | | - Gary Saunders
- ELIXIR Hub, Wellcome Genome Campus, Cambridge, CB10 1SD, UK
| | - Benjamin Schuler
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Malvika Sharan
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Denis C Shields
- Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin, D4, Ireland
| | - Joel L Sussman
- Department of Structural Biology and the Israel Structural Proteomics, Center (ISPC), Weizmann Institute of Science, Reḥovot, 7610001, Israel
| | | | - Peter Tompa
- VIB Center for Structural Biology (CSB), VIB Flemish Institute for Biotechnology, Brussels, 1050, Belgium
| | - Michael Turewicz
- Faculty of Medicine, Medizinisches Proteom-Center, Ruhr University Bochum, GesundheitsCampus 4, Bochum, 44801, Germany
| | - Jiri Vondrasek
- Institute of Organic Chemistry and Biochemistry, CAS, Prague, Czech Republic
| | - Wim F Vranken
- VUB/ULB Interuniversity Institute of Bioinformatics in Brussels and Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, B-1050, Belgium
| | - Bonnie Ann Wallace
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, WC1H 0HA, UK
| | - Kanin Wichapong
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | | |
Collapse
|
19
|
Modulation of p53 and prion protein aggregation by RNA. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:933-940. [DOI: 10.1016/j.bbapap.2019.02.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 02/19/2019] [Accepted: 02/25/2019] [Indexed: 02/07/2023]
|
20
|
Patel S, Krishnan B, Hosur RV, Chary KVR. Mechanistic Insights from Replica Exchange Molecular Dynamics Simulations into Mutation Induced Disordered-to-Ordered Transition in Hahellin, a βγ-Crystallin. J Phys Chem B 2019; 123:5086-5098. [DOI: 10.1021/acs.jpcb.9b03845] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Sunita Patel
- UM-DAE Centre for Excellence in Basic Sciences, Mumbai University Campus, Mumbai 400098, India
- Tata Institute of Fundamental Research, Hyderabad 500107, India
| | - Bal Krishnan
- Indian Institute of Science Education and Research, Berhampur, 760010, India
| | - Ramakrishna V. Hosur
- UM-DAE Centre for Excellence in Basic Sciences, Mumbai University Campus, Mumbai 400098, India
- Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Kandala V. R. Chary
- Tata Institute of Fundamental Research, Hyderabad 500107, India
- Tata Institute of Fundamental Research, Mumbai 400005, India
- Indian Institute of Science Education and Research, Berhampur, 760010, India
| |
Collapse
|
21
|
Ho L, Zhao D, Ono K, Ruan K, Mogno I, Tsuji M, Carry E, Brathwaite J, Sims S, Frolinger T, Westfall S, Mazzola P, Wu Q, Hao K, Lloyd TE, Simon JE, Faith J, Pasinetti GM. Heterogeneity in gut microbiota drive polyphenol metabolism that influences α-synuclein misfolding and toxicity. J Nutr Biochem 2018; 64:170-181. [PMID: 30530257 DOI: 10.1016/j.jnutbio.2018.10.019] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 09/19/2018] [Accepted: 10/16/2018] [Indexed: 12/23/2022]
Abstract
The intestinal microbiota actively converts dietary flavanols into phenolic acids, some of which are bioavailable in vivo and may promote resilience to select neurological disorders by interfering with key pathologic mechanisms. Since every person harbors a unique set of gut bacteria, we investigated the influence of the gut microbiota's interpersonal heterogeneity on the production and bioavailability of flavonoid metabolites that may interfere with the misfolding of alpha (α)-synuclein, a process that plays a central role in Parkinson's disease and other α-synucleinopathies. We generated two experimental groups of humanized gnotobiotic mice with compositionally diverse gut bacteria and orally treated the mice with a flavanol-rich preparation (FRP). The two gnotobiotic mouse groups exhibited distinct differences in the generation and bioavailability of FRP-derived microbial phenolic acid metabolites that have bioactivity towards interfering with α-synuclein misfolding or inflammation. We also demonstrated that these bioactive phenolic acids are effective in modulating the development and progression of motor dysfunction in a Drosophila model of α-synucleinopathy. Lastly, through in vitro bacterial fermentation studies, we identified select bacteria that are capable of supporting the generation of these bioavailable and bioactive phenolic acids. Outcomes from our studies provide a better understanding of how interpersonal heterogeneity in the gut microbiota differentially modulates the efficacy of dietary flavanols to protect against select pathologic mechanisms. Collectively, our findings provide the basis for future developments of probiotic, prebiotic, or synbiotic approaches for modulating the onset and/or progression of α-synucleinopathies and other neurological disorders involving protein misfolding and/or inflammation.
Collapse
Affiliation(s)
- Lap Ho
- Department of Neurology, Icahn School of Medicine at Mount Sinai, NY, New York, USA 10029; Geriatric Research, Education and Clinical Center, James J. Peters Veterans Affairs Medical Center, Bronx, New York, USA 10468
| | - Danyue Zhao
- New Use Agriculture and Natural Plant Products Program, Department of Plant Biology, Rutgers University, New Brunswick, NJ, USA 08901
| | - Kenjiro Ono
- Department of Internal Medicine, Division of Neurology, Showa University School of Medicine, Tokyo, Japan
| | - Kai Ruan
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, USA, MD 21205
| | - Ilaria Mogno
- Precision Immunology Institute and Department of Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY, New York, USA 10029
| | - Mayumi Tsuji
- Department of Pharmacology, Showa University School of Medicine, Tokyo, Japan
| | - Eileen Carry
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Piscataway, NJ, USA 08854
| | - Justin Brathwaite
- Department of Neurology, Icahn School of Medicine at Mount Sinai, NY, New York, USA 10029
| | - Steven Sims
- Department of Neurology, Icahn School of Medicine at Mount Sinai, NY, New York, USA 10029
| | - Tal Frolinger
- Department of Neurology, Icahn School of Medicine at Mount Sinai, NY, New York, USA 10029
| | - Susan Westfall
- Department of Neurology, Icahn School of Medicine at Mount Sinai, NY, New York, USA 10029
| | - Paolo Mazzola
- Department of Neurology, Icahn School of Medicine at Mount Sinai, NY, New York, USA 10029
| | - Qingli Wu
- New Use Agriculture and Natural Plant Products Program, Department of Plant Biology, Rutgers University, New Brunswick, NJ, USA 08901
| | - Ke Hao
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA 10029; Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA 10029
| | - Thomas E Lloyd
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, USA, MD 21205; Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, USA, MD 21205
| | - James E Simon
- New Use Agriculture and Natural Plant Products Program, Department of Plant Biology, Rutgers University, New Brunswick, NJ, USA 08901
| | - Jeremiah Faith
- Precision Immunology Institute and Department of Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY, New York, USA 10029
| | - Giulio M Pasinetti
- Department of Neurology, Icahn School of Medicine at Mount Sinai, NY, New York, USA 10029; Geriatric Research, Education and Clinical Center, James J. Peters Veterans Affairs Medical Center, Bronx, New York, USA 10468.
| |
Collapse
|
22
|
Hanson J, Paliwal K, Zhou Y. Accurate Single-Sequence Prediction of Protein Intrinsic Disorder by an Ensemble of Deep Recurrent and Convolutional Architectures. J Chem Inf Model 2018; 58:2369-2376. [DOI: 10.1021/acs.jcim.8b00636] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Jack Hanson
- Signal Processing Laboratory, Griffith University, Brisbane, Queensland 4122, Australia
| | - Kuldip Paliwal
- Signal Processing Laboratory, Griffith University, Brisbane, Queensland 4122, Australia
| | - Yaoqi Zhou
- Institute for Glycomics and School of Information and Communication Technology, Griffith University, Southport, Queensland 4222, Australia
| |
Collapse
|
23
|
Mendoza-Hoffmann F, Zarco-Zavala M, Ortega R, García-Trejo JJ. Control of rotation of the F1FO-ATP synthase nanomotor by an inhibitory α-helix from unfolded ε or intrinsically disordered ζ and IF1 proteins. J Bioenerg Biomembr 2018; 50:403-424. [DOI: 10.1007/s10863-018-9773-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 09/13/2018] [Indexed: 12/14/2022]
|