1
|
Nejabat M, Hadizadeh F, Sahebkar A. The Application of Kinesin Inhibitors in Medical Issues. Curr Rev Clin Exp Pharmacol 2024; 19:370-378. [PMID: 38275041 DOI: 10.2174/0127724328277623231204064614] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/27/2023] [Accepted: 11/01/2023] [Indexed: 01/27/2024]
Abstract
Kinesins are a group of motor proteins in charge of several crucial functions in the cell. These proteins often bind to microtubules and perform their functions using the energy produced by ATP hydrolysis. One function of mitotic kinesin, a subclass of kinesin that is expressed during cell division at the mitotic phase, is to create the mitotic spindle. Uncontrolled cell growth is one trait of cancerous cells. Traditional anticancer medications still used in clinics include taxanes (paclitaxel) and vinca alkaloids (vincristine, vinblastine), which interfere with microtubule dynamics. However, because non-dividing cells like post-mitotic neurons contain microtubules, unwanted side effects like peripheral neuropathy are frequently found in patients taking these medications. More than ten members of the mitotic kinesin family play distinct or complementary roles during mitosis. The mitotic kinesin family's KSP, or Eg5, is regarded as its most dramatic target protein. The current work systematically reviews the use of kinesin inhibitors in the medical field. The challenges of KSP and the practical solutions are also examined, and the outcomes of the previous works are reported. The significant gaps and shortcomings of the related works are also highlighted, which can be an onset topic for future works.
Collapse
Affiliation(s)
- Mojgan Nejabat
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzin Hadizadeh
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
2
|
Ren M, Li S, Gao Q, Qiao L, Cao Q, Yang Z, Chen C, Jiang Y, Wang G, Fu S. Advances in the Anti-Tumor Activity of Biflavonoids in Selaginella. Int J Mol Sci 2023; 24:ijms24097731. [PMID: 37175435 PMCID: PMC10178260 DOI: 10.3390/ijms24097731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
Despite the many strategies employed to slow the spread of cancer, the development of new anti-tumor drugs and the minimization of side effects have been major research hotspots in the anti-tumor field. Natural drugs are a huge treasure trove of drug development, and they have been widely used in the clinic as anti-tumor drugs. Selaginella species in the family Selaginellaceae are widely distributed worldwide, and they have been well-documented in clinical practice for the prevention and treatment of cancer. Biflavonoids are the main active ingredients in Selaginella, and they have good biological and anti-tumor activities, which warrant extensive research. The promise of biflavonoids from Selaginella (SFB) in the field of cancer therapy is being realized thanks to new research that offers insights into the multi-targeting therapeutic mechanisms and key signaling pathways. The pharmacological effects of SFB against various cancers in vitro and in vivo are reviewed in this review. In addition, the types and characteristics of biflavonoid structures are described in detail; we also provide a brief summary of the efforts to develop drug delivery systems or combinations to enhance the bioavailability of SFB monomers. In conclusion, SFB species have great potential to be developed as adjuvant or even primary therapeutic agents for cancer, with promising applications.
Collapse
Affiliation(s)
- Mengdie Ren
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, China
| | - Sihui Li
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, China
| | - Qiong Gao
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, China
| | - Lei Qiao
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, China
| | - Qianping Cao
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Ze Yang
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Chaoqiang Chen
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Yongmei Jiang
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Gang Wang
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, China
| | - Shaobin Fu
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, China
| |
Collapse
|
3
|
Pontecorvi V, Mori M, Picarazzi F, Zara S, Carradori S, Cataldi A, Angeli A, Berrino E, Chimenti P, Ciogli A, Secci D, Guglielmi P, Supuran CT. Novel Insights on Human Carbonic Anhydrase Inhibitors Based on Coumalic Acid: Design, Synthesis, Molecular Modeling Investigation, and Biological Studies. Int J Mol Sci 2022; 23:7950. [PMID: 35887299 PMCID: PMC9324074 DOI: 10.3390/ijms23147950] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/11/2022] [Accepted: 07/17/2022] [Indexed: 11/18/2022] Open
Abstract
Human carbonic anhydrase (hCA, EC 4.2.1.1) isoforms IX and XII are overexpressed in solid hypoxic tumors, and they are considered as prognostic tools and therapeutic targets for cancer. Based on a molecular simplification of the well-known coumarin scaffold, we developed a new series of derivatives of the pyran-2-one core. The new compounds are endowed with potent and selective inhibitory activity against the tumor-related hCA isoforms IX and XII, in the low nanomolar range, whereas they are inactive against the two cytosolic off-targets hCA I and II. The compounds exhibiting the best hCA inhibition were further investigated against the breast adenocarcinoma cell line (MCF7) in hypoxic conditions, evaluating their ability to eventually synergize with doxorubicin. The compounds' biocompatibility on healthy cells was also tested and confirmed on Human Gingival Fibroblasts (HGFs). Furthermore, the possible binding mode of all compounds to the active site of the tumor-associated human CA IX was investigated by computational techniques which predicted the binding conformations and the persistency of binding poses within the active site of the enzyme, furnishing relevant data for the design of tight binding inhibitors.
Collapse
Affiliation(s)
- Virginia Pontecorvi
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; (V.P.); (E.B.); (P.C.); (A.C.); (D.S.)
| | - Mattia Mori
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (M.M.); (F.P.)
| | - Francesca Picarazzi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (M.M.); (F.P.)
| | - Susi Zara
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (S.Z.); (S.C.); (A.C.)
| | - Simone Carradori
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (S.Z.); (S.C.); (A.C.)
| | - Amelia Cataldi
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (S.Z.); (S.C.); (A.C.)
| | - Andrea Angeli
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, 50019 Florence, Italy;
- Department of Food and Drug, University of Parma, Parco Area delle Scienze, 27/A, 43124 Parma, Italy
| | - Emanuela Berrino
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; (V.P.); (E.B.); (P.C.); (A.C.); (D.S.)
| | - Paola Chimenti
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; (V.P.); (E.B.); (P.C.); (A.C.); (D.S.)
| | - Alessia Ciogli
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; (V.P.); (E.B.); (P.C.); (A.C.); (D.S.)
| | - Daniela Secci
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; (V.P.); (E.B.); (P.C.); (A.C.); (D.S.)
| | - Paolo Guglielmi
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; (V.P.); (E.B.); (P.C.); (A.C.); (D.S.)
| | - Claudiu T. Supuran
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, 50019 Florence, Italy;
| |
Collapse
|
4
|
Darwati, Nurlelasari, Mayanti T, Ambardhani N, Kurnia D. Morelloflavone as Potential Anticancer Agent Against MCF-7 Breast
Cancer Cell Lines: In vitro and In silico Studies. LETT DRUG DES DISCOV 2022. [DOI: 10.2174/1570180818666210706110538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background:
Breast cancer is most commonly reported to contribute to people's death. Nowadays,
cancer treatment is focused on investigating anticancer drugs from natural compounds. Various
methods, including in vitro, in vivo, and in silico methods, are used to assess the potential of anticancer
compounds. The efficacy of bioactive compounds from medicinal plant origin lies in their affordability
and minimized side effects. The Garcinia genus contains bioactive compounds, such as xanthones, benzophenones,
triterpenes, biflavonoids, and benzoquinones.
Purpose:
The study aimed at investigating an active compound that can inhibit cancer cell growth and
proteins that contribute to cancer cell growth, such as Caspase-9, TNF-α, ER-α, and HER-2.
Methods:
This study is divided into three steps. The first step is the isolation of the active compound from
G. cymosa. The second step is an assessment of cytotoxic activity against MCF-7 cell by using MTT assay,
and the last one is an investigation of the molecular mechanism of an active compound against
Caspase-9, TNF-α, ER-α, and HER-2 by using in silico studies utilizing various programs, such as PyRx
0.8, PYMOL, and Discovery Studio.
Results:
Morelloflavone from G. cymosa stem barks has exhibited anticancer activity (55.84 μg/mL)
eight times lower than doxorubicin (6.99 μg/mL), but it can block the activity of Caspase-9, TNF-α, ER-
α, and HER-2. The binding affinity of morelloflavone is the strongest of all ligands.
Conclusion:
The natural flavonoid, morelloflavone, may be a new lead candidate for anticancer agent
inhibiting action mechanism of Caspase-9, TNF-α, ER-α, and HER-2, respectively.
Collapse
Affiliation(s)
- Darwati
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjdjaran, Jatinangor 45363,
Jawa Barat, Indonesia
| | - Nurlelasari
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjdjaran, Jatinangor 45363,
Jawa Barat, Indonesia
| | - Tri Mayanti
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjdjaran, Jatinangor 45363,
Jawa Barat, Indonesia
| | - Nurul Ambardhani
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjdjaran, Jatinangor 45363,
Jawa Barat, Indonesia
| | - Dikdik Kurnia
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjdjaran, Jatinangor 45363,
Jawa Barat, Indonesia
| |
Collapse
|
5
|
Chamariya R, Suvarna V. Role of KSP inhibitors as anti-cancer therapeutics: an update. Anticancer Agents Med Chem 2022; 22:2517-2538. [PMID: 35043768 DOI: 10.2174/1871520622666220119093105] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/03/2021] [Accepted: 12/02/2021] [Indexed: 11/22/2022]
Abstract
Regardless of the growing discovery of anticancer treatments, targeting cancer-specific pathways, cytotoxic therapy still maintained its abundant clinical significance based on the fact that tumours harbour a greater population of actively dividing cells than normal tissues. Conventional anti-mitotic agents or microtubule poisons acting on the major mitotic spindle protein tubulin have been effectively used in clinical settings for cancer chemotherapy over the last three decades. However, use of these drugs is associated with limited clinical utility due to serious side effects such as debilitating and dose-limiting peripheral neuropathy, myelosuppression, drug resistance and allergic reactions. Therefore, research initiatives have been undertaken to develop novel microtubule motor proteins inhibitors that can potentially circumvent the limitations associated with conventional microtubule poisons. Kinesin spindle proteins (KSP) belonging to the kinesin-5 family play a crucial role during mitosis and unregulated cell proliferation. Several evidences from preclinical studies and different phases of clinical trials have presented kinesin spindle protein as a promising target for cancer therapeutics. kinesin spindle protein inhibitors causing mitosis disruption without interfering with microtubule dynamics in non-dividing cells offer a potential therapeutic alternative for the management of several major cancer types and are devoid of side effects associated with classical anti-mitotic drugs. This review summarizes recent data highlighting progress in the discovery of targeted KSP inhibitors and presents the development of scaffolds, structure-activity relationships, and outcomes of biological, and enzyme inhibition studies. We reviewed the recent literature reports published over last decade, using various electronic database searches such as PubMed, Embase, Medline, Web of Science, and Google Scholar. Clinical trial data till 2021 was retrieved from ClinicalTrial.gov. Major chemical classes developed as selective KSP inhibitors include dihydropyrimidines, β-carbolines, carbazoles, benzimidazoles, fused aryl derivatives, pyrimidines, fused pyrimidines, quinazolines, quinolones, thiadiazolines, spiropyran and azobenzenes. Drugs such as filanesib, litronesib, ispinesib have entered clinical trials, the most advanced phase explored being Phase II. KSP inhibitors have exhibited promising results; however, continued exploration is greatly required to establish the clinical potential of KSP inhibitors.
Collapse
Affiliation(s)
- Rinkal Chamariya
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V.L. Mehta Road, Vile Parle (West), Mumbai - 400056, Maharashtra, India
| | - Vasanti Suvarna
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V.L. Mehta Road, Vile Parle (West), Mumbai - 400056, Maharashtra, India
| |
Collapse
|
6
|
Alrazi IMD, Ogunwa TH, Kolawole AO, Elekofehinti OO, Omotuyi OI, Miyanishi T, Maruta S. Kolaflavanone, a biflavonoid derived from medicinal plant Garcinia, is an inhibitor of mitotic kinesin Eg5. J Biochem 2021; 170:611-622. [PMID: 34264310 DOI: 10.1093/jb/mvab083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/05/2021] [Indexed: 11/14/2022] Open
Abstract
Mitotic kinesin Eg5 remains a validated target in antimitotic therapy because of its essential role in the formation and maintenance of bipolar mitotic spindles. Although numerous Eg5 inhibitors of synthetic origin are known, only a few inhibitors derived from natural products have been reported. In our study, we focused on identifying novel Eg5 inhibitors from medicinal plants, particularly Garcinia species. Herein, we report the inhibitory effect of kolaflavanone (KLF), a Garcinia biflavonoid, on the ATPase and microtubule-gliding activities of mitotic kinesin Eg5. Additionally, we showed the interaction mechanism between Eg5 and KLF via in vitro and in silico analyses. The results revealed that KLF inhibited both the basal and microtubule-activated ATPase activities of Eg5. The inhibitory mechanism is allosteric, without a direct competition with adenosine-5'-diphosphate for the nucleotide-binding site. KLF also suppressed the microtubule gliding of Eg5 in vitro. The Eg5-KLF model obtained from molecular docking showed that the biflavonoid exists within the α2/α3/L5 (α2: Lys111-Glu116 and Ile135-Asp149, α3: Asn206-Thr226; L5: Gly117-Gly134) pocket, with a binding pose comparable to known Eg5 inhibitors. Overall, our data suggest that KLF is a novel allosteric inhibitor of mitotic kinesin Eg5.
Collapse
Affiliation(s)
- Islam M D Alrazi
- Department of Bioinformatics, Graduate School of Engineering, Soka University, 1-236 Tangi-cho, Hachioji, Tokyo 192-8577, Japan
| | - Tomisin H Ogunwa
- Department of Bioinformatics, Graduate School of Engineering, Soka University, 1-236 Tangi-cho, Hachioji, Tokyo 192-8577, Japan
| | - Ayodele O Kolawole
- Department of Biochemistry, The Federal University of Technology, Akure, Ondo State, PMB 704, Nigeria
| | - Olusola O Elekofehinti
- Department of Biochemistry, The Federal University of Technology, Akure, Ondo State, PMB 704, Nigeria
| | - Olaposi I Omotuyi
- Centre for Biocomputing and Drug Design, Biochemistry Department, Adekunle Ajasin University, Akungba-Akoko, Ondo State, PMB 001, Nigeria
| | - Takayuki Miyanishi
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - Shinsaku Maruta
- Department of Bioinformatics, Graduate School of Engineering, Soka University, 1-236 Tangi-cho, Hachioji, Tokyo 192-8577, Japan
| |
Collapse
|
7
|
Menezes JCJMDS, Diederich MF. Bioactivity of natural biflavonoids in metabolism-related disease and cancer therapies. Pharmacol Res 2021; 167:105525. [PMID: 33667686 DOI: 10.1016/j.phrs.2021.105525] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/06/2021] [Accepted: 02/27/2021] [Indexed: 12/17/2022]
Abstract
Natural biflavonoids, such as amentoflavone, bilobetin, ginkgetin, isoginkgetin, taiwaniaflavone, morelloflavone, delicaflavone, hinokiflavone, and other derivatives (~ 40 biflavonoids), are isolated from Selaginella sp., Ginkgo biloba, Garcinia sp., and several other species of plants. They are able to exert therapeutic benefits by regulating several proteins/enzymes (PPAR-γ, CCAAT/enhancer-binding protein α [C/EBPα], STAT5, pancreatic lipase, PTP1B, fatty acid synthase, α-glucosidase [AG]) and insulin signaling pathways (via PI3K-AKT), which are linked to metabolism, cell growth, and cell survival mechanisms. Deregulated insulin signaling can cause complications of obesity and diabetes, which can lead to cognitive disorders such as Alzheimer's, Parkinson's, and dementia; therefore, the therapeutic benefits of these biflavones in these areas are highlighted. Since biflavonoids have shown potential to regulate metabolism, growth- and survival-related protein/enzymes, their relation to tumor growth and metastasis of cancer associated with angiogenesis are highlighted. The translational role of biflavones in cancer with respect to the inhibition of metabolism-related processes/pathways, enzymes, or proteins, such as STAT3/SHP-1/PTEN, kinesins, tissue kallikreins, aromatase, estrogen, protein modifiers, antioxidant, autophagy, and apoptosis induction mechanisms, are discussed. Finally, considering their observed bioactivity potential, oral bioavailability studies of biflavones and related clinical trials are outlined.
Collapse
Affiliation(s)
- José C J M D S Menezes
- Faculty of Pharmaceutical Sciences, Nagasaki International University, 2825-7 Huis Ten Bosch, Sasebo, Nagasaki 859-3298, Japan
| | - Marc F Diederich
- Department of Pharmacy, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea.
| |
Collapse
|
8
|
Wan Salleh WMNH, Ogunwa TH. Insights into the inhibitory mechanism and molecular interaction of novel alkaloids from Beilschmiedia glabra with lipoxygenase and acetylcholinesterase. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2020. [DOI: 10.1142/s021963361950038x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this study, the mechanism underlying acetylcholinesterase (AChE) and 5-lipoxygenase (LOX) inhibition by two novel alkaloids, beilschglabrine A and beilschglabrine B, as well as their interaction footprints on the binding pockets were investigated. The results showed that beilschglabrine A and beilschglabrine B inhibit both AChE and LOX in a competitive manner by binding to their active sites thereby interfering with substrate access. The interaction of the alkaloids with the enzymes was favorable and stable with low binding energy values which correlate well with their IC[Formula: see text]. The depicted molecular interaction, structure-energetic pattern and binding conformations confirmed that beilschglabrine A is more potent than beilschglabrine B. The differences in the binding pose and potency of the alkaloids is occasioned by an extra methyl moiety on beilschglabrine B. The chemical scaffold of the alkaloids respected Lipinski’s rule of five and may be relevant in the development of new anti-inflammatory and anti-neurodegenerative disease drugs acting via AChE and LOX inhibition.
Collapse
Affiliation(s)
- Wan Mohd Nuzul Hakimi Wan Salleh
- Department of Chemistry, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris (UPSI), 35900 Tanjong Malim, Perak, Malaysia
| | - Tomisin Happy Ogunwa
- Centre for Biocomputing and Drug Design, Adekunle Ajasin University, Akungba-Akoko, Ondo State, Nigeria
- Department of Biochemistry, Adekunle Ajasin University, Akungba-Akoko, Ondo State, Nigeria
| |
Collapse
|
9
|
Ogunwa TH, Laudadio E, Galeazzi R, Miyanishi T. Insights into the Molecular Mechanisms of Eg5 Inhibition by (+)-Morelloflavone. Pharmaceuticals (Basel) 2019; 12:ph12020058. [PMID: 30995725 PMCID: PMC6630617 DOI: 10.3390/ph12020058] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/10/2019] [Accepted: 04/12/2019] [Indexed: 12/17/2022] Open
Abstract
(+)-Morelloflavone (MF) is an antitumor biflavonoid that is found in the Garcinia species. Recently, we reported MF as a novel inhibitor of ATPase and microtubules-gliding activities of the kinesin spindle protein (Eg5) in vitro. Herein, we provide dynamical insights into the inhibitory mechanisms of MF against Eg5, which involves binding of the inhibitor to the loop5/α2/α3 allosteric pocket. Molecular dynamics simulations were carried out for 100 ns on eight complexes: Eg5-Adenosine diphosphate (Eg5-ADP), Eg5-ADP-S-trityl-l-cysteine (Eg5-ADP-STLC), Eg5-ADP-ispinesib, Eg5-ADP-MF, Eg5-Adenosine triphosphate (Eg5-ATP), Eg5-ATP-STLC, Eg5-ATP-ispinesib, and Eg5-ATP-MF complexes. Structural and energetic analyses were done using Umbrella sampling, Molecular Mechanics Poisson–Boltzmann Surface Area (MM/PBSA) method, GROMACS analysis toolkit, and virtual molecular dynamics (VMD) utilities. The results were compared with those of the known Eg5 inhibitors; ispinesib, and STLC. Our data strongly support a stable Eg5-MF complex, with significantly low binding energy and reduced flexibility of Eg5 in some regions, including loop5 and switch I. Furthermore, the loop5 Trp127 was trapped in a downward position to keep the allosteric pocket of Eg5 in the so-called “closed conformation”, comparable to observations for STLC. Altered structural conformations were also visible within various regions of Eg5, including switch I, switch II, α2/α3 helices, and the tubulin-binding region, indicating that MF might induce modifications in the Eg5 structure to compromise its ATP/ADP binding and conversion process as well as its interaction with microtubules. The described mechanisms are crucial for understanding Eg5 inhibition by MF.
Collapse
Affiliation(s)
- Tomisin Happy Ogunwa
- Department of Environmental Studies, Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan.
| | - Emiliano Laudadio
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy.
| | - Roberta Galeazzi
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy.
| | - Takayuki Miyanishi
- Department of Environmental Studies, Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan.
| |
Collapse
|