1
|
Downes KW, Zanetti G. Mechanisms of COPII coat assembly and cargo recognition in the secretory pathway. Nat Rev Mol Cell Biol 2025:10.1038/s41580-025-00839-y. [PMID: 40133632 PMCID: PMC7617623 DOI: 10.1038/s41580-025-00839-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2025] [Indexed: 03/27/2025]
Abstract
One third of all proteins in eukaryotes transit between the endoplasmic reticulum (ER) and the Golgi to reach their functional destination inside or outside of the cell. During export, secretory proteins concentrate at transitional zones of the ER known as ER exit sites, where they are packaged into transport carriers formed by the highly conserved coat protein complex II (COPII). Despite long-standing knowledge of many of the fundamental pathways that govern traffic in the early secretory pathway, we still lack a complete mechanistic model to explain how the various steps of COPII-mediated ER exit are regulated to efficiently transport diverse cargoes. In this Review, we discuss the current understanding of the mechanisms underlying COPII-mediated vesicular transport, highlighting outstanding knowledge gaps. We focus on how coat assembly and disassembly dictate carrier morphogenesis, how COPII selectively recruits a vast number of cargo and cargo adaptors, and finally discuss how COPII mechanisms in mammals might have adapted to enable transport of large proteins.
Collapse
Affiliation(s)
- Katie W Downes
- Institute of Structural and Molecular Biology, UCL, London, UK
- Institute of Structural and Molecular Biology, Birkbeck College, London, UK
- The Francis Crick Institute, London, UK
| | - Giulia Zanetti
- Institute of Structural and Molecular Biology, UCL, London, UK.
- Institute of Structural and Molecular Biology, Birkbeck College, London, UK.
- The Francis Crick Institute, London, UK.
| |
Collapse
|
2
|
Malhotra V. The pathways of secretory cargo export at the endoplasmic reticulum. Nat Commun 2025; 16:2138. [PMID: 40032897 PMCID: PMC11876584 DOI: 10.1038/s41467-025-57408-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 02/21/2025] [Indexed: 03/05/2025] Open
Abstract
Palade's original model proposed that secretory cargo is transported between stable compartments via vesicles. However, recent findings challenge this view, suggesting that secretory pathway compartments are dynamic, with cargo itself dictating whether transfer occurs via vesicles or through the continuity and maturation of compartmental structures. At the heart of this process is TANGO1, a key component of a molecular machine that works in concert with COPII proteins to construct export routes tailored to the size and quantity of secretory cargo.
Collapse
Affiliation(s)
- Vivek Malhotra
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, 08003, Barcelona, Spain.
| |
Collapse
|
3
|
Maeda M, Arakawa M, Komatsu Y, Saito K. Small GTPase ActIvitY ANalyzing (SAIYAN) system: A method to detect GTPase activation in living cells. J Cell Biol 2024; 223:e202403179. [PMID: 39101946 PMCID: PMC11303508 DOI: 10.1083/jcb.202403179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/10/2024] [Accepted: 07/11/2024] [Indexed: 08/06/2024] Open
Abstract
Small GTPases are essential in various cellular signaling pathways, and detecting their activation within living cells is crucial for understanding cellular processes. The current methods for detecting GTPase activation using fluorescent proteins rely on the interaction between the GTPase and its effector. Consequently, these methods are not applicable to factors, such as Sar1, where the effector also functions as a GTPase-activating protein. Here, we present a novel method, the Small GTPase ActIvitY ANalyzing (SAIYAN) system, for detecting the activation of endogenous small GTPases via fluorescent signals utilizing a split mNeonGreen system. We demonstrated Sar1 activation at the endoplasmic reticulum (ER) exit site and successfully detected its activation state in various cellular conditions. Utilizing the SAIYAN system in collagen-secreting cells, we discovered activated Sar1 localized both at the ER exit sites and ER-Golgi intermediate compartment (ERGIC) regions. Additionally, impaired collagen secretion confined the activated Sar1 at the ER exit sites, implying the importance of Sar1 activation through the ERGIC in collagen secretion.
Collapse
Affiliation(s)
- Miharu Maeda
- Department of Biological Informatics and Experimental Therapeutics, Graduate School of Medicine, Akita University, Akita, Japan
| | - Masashi Arakawa
- Department of Biological Informatics and Experimental Therapeutics, Graduate School of Medicine, Akita University, Akita, Japan
| | - Yukie Komatsu
- Department of Biological Informatics and Experimental Therapeutics, Graduate School of Medicine, Akita University, Akita, Japan
| | - Kota Saito
- Department of Biological Informatics and Experimental Therapeutics, Graduate School of Medicine, Akita University, Akita, Japan
| |
Collapse
|
4
|
Kasberg W, Luong P, Minushkin K, Pustova I, Swift KA, Zhao M, Audhya A. TFG regulates inner COPII coat recruitment to facilitate anterograde secretory protein transport. Mol Biol Cell 2024; 35:ar113. [PMID: 38985515 PMCID: PMC11321049 DOI: 10.1091/mbc.e24-06-0282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 07/03/2024] [Indexed: 07/12/2024] Open
Abstract
Coat protein complex II (COPII) governs the initial steps of biosynthetic secretory protein transport from the endoplasmic reticulum (ER), facilitating the movement of a wide variety of cargoes. Here, we demonstrate that Trk-fused gene (TFG) regulates the rate at which inner COPII coat proteins are concentrated at ER subdomains. Specifically, in cells lacking TFG, the GTPase-activating protein (GAP) Sec23 accumulates more rapidly at budding sites on the ER as compared with control cells, potentially altering the normal timing of GTP hydrolysis on Sar1. Under these conditions, anterograde trafficking of several secretory cargoes is delayed, irrespective of their predicted size. We propose that TFG controls the local, freely available pool of Sec23 during COPII coat formation and limits its capacity to prematurely destabilize COPII complexes on the ER. This function of TFG enables it to act akin to a rheostat, promoting the ordered recruitment of Sec23, which is critical for efficient secretory cargo export.
Collapse
Affiliation(s)
- William Kasberg
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53706
| | - Peter Luong
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53706
| | - Kayla Minushkin
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53706
| | - Iryna Pustova
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53706
| | - Kevin A. Swift
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53706
| | - Meixian Zhao
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53706
| | - Anjon Audhya
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53706
| |
Collapse
|
5
|
Yang K, Feng Z, Pastor-Pareja JC. p24-Tango1 interactions ensure ER-Golgi interface stability and efficient transport. J Cell Biol 2024; 223:e202309045. [PMID: 38470362 PMCID: PMC10932740 DOI: 10.1083/jcb.202309045] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/07/2024] [Accepted: 02/05/2024] [Indexed: 03/13/2024] Open
Abstract
The eukaryotic p24 family, consisting of α-, β-, γ- and δ-p24 subfamilies, has long been known to be involved in regulating secretion. Despite increasing interest in these proteins, fundamental questions remain about their role. Here, we systematically investigated Drosophila p24 proteins. We discovered that members of all four p24 subfamilies are required for general secretion and that their localizations between ER exit site (ERES) and Golgi are interdependent in an α→βδ→γ sequence. We also found that localization of p24 proteins and ERES determinant Tango1 requires interaction through their respective GOLD and SH3 lumenal domains, with Tango1 loss sending p24 proteins to the plasma membrane and vice versa. Finally, we show that p24 loss expands the COPII zone at ERES and increases the number of ER-Golgi vesicles, supporting a restrictive role of p24 proteins on vesicle budding for efficient transport. Our results reveal Tango1-p24 interplay as central to the generation of a stable ER-Golgi interface.
Collapse
Affiliation(s)
- Ke Yang
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Zhi Feng
- School of Life Sciences, Tsinghua University, Beijing, China
| | - José Carlos Pastor-Pareja
- School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
- Institute of Neurosciences, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, San Juan de Alicante, Spain
| |
Collapse
|
6
|
Artlett CM, Connolly LM. TANGO1 Dances to Export of Procollagen from the Endoplasmic Reticulum. FIBROSIS (HONG KONG, CHINA) 2023; 1:10008. [PMID: 38650832 PMCID: PMC11034787 DOI: 10.35534/fibrosis.2023.10008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
The endoplasmic reticulum (ER) to Golgi secretory pathway is an elegantly complex process whereby protein cargoes are manufactured, folded, and distributed from the ER to the cisternal layers of the Golgi stack before they are delivered to their final destinations. The export of large bulky cargoes such as procollagen and its trafficking to the Golgi is a sophisticated mechanism requiring TANGO1 (Transport ANd Golgi Organization protein 1. It is also called MIA3 (Melanoma Inhibitory Activity protein 3). TANGO1 has two prominent isoforms, TANGO1-Long and TANGO1-Short, and each isoform has specific functions. On the luminal side, TANGO1-Long has an HSP47 recruitment domain and uses this protein to collect collagen. It can also tether its paralog isoforms cTAGE5 and TALI and along with these proteins enlarges the vesicle to accommodate procollagen. Recent studies show that TANGO1-Long combines retrograde membrane flow with anterograde cargo transport. This complex mechanism is highly activated in fibrosis and promotes the excessive deposition of collagen in the tissues. The therapeutic targeting of TANGO1 may prove successful in the control of fibrotic disorders. This review focuses on TANGO1 and its complex interaction with other procollagen export factors that modulate increased vesicle size to accommodate the export of procollagen.
Collapse
Affiliation(s)
- Carol M. Artlett
- Drexel University College of Medicine, Drexel University, Philadelphia, PA 19129, USA
| | - Lianne M. Connolly
- Drexel University College of Medicine, Drexel University, Philadelphia, PA 19129, USA
| |
Collapse
|
7
|
Connolly LM, McFalls CM, McMahon IG, Bhat AM, Artlett CM. Caspase 1 Enhances Transport and Golgi Organization Protein 1 Expression to Promote Procollagen Export From the Endoplasmic Reticulum in Systemic Sclerosis Contributing to Fibrosis. Arthritis Rheumatol 2023; 75:1831-1841. [PMID: 37067501 PMCID: PMC10543382 DOI: 10.1002/art.42535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/18/2023]
Abstract
OBJECTIVE Transport and Golgi Organization protein 1 (TANGO1) is a protein that regulates the export of procollagen from the endoplasmic reticulum and has a role in the organization of exit sites for general protein export. What regulates the expression of TANGO1 and the role of TANGO1 in fibrosis is poorly understood and has never been studied in the setting of systemic sclerosis (SSc). We undertook this study to determine the role of TANGO1 in SSc fibrosis. METHODS SSc (n = 15) and healthy (n = 12) primary fibroblast lung cell lines were investigated for the expression of TANGO1. Histologic analyses for TANGO1 were performed on lung biopsy samples (n = 12 SSc patient samples and n = 8 healthy control samples). RESULTS SSc fibroblasts showed increased expression of TANGO1 protein in cultured fibroblasts. TANGO1 colocalizes with α-smooth muscle actin (α-SMA)-positive cells in SSc lung tissue and is highly up-regulated in the neointima of SSc vessels. TANGO1 expression was dependent on the inflammasome activation of caspase 1. It was also dependent on signaling from the interleukin-1 (IL-1) and transforming growth factor β (TGFβ) receptors. The decrease in TANGO1 down-regulated export of larger cargos including collagen and laminin. Reduced TANGO1 protein had no effect on smaller molecular weight cargoes; however, the secretion of elastin was significantly reduced. CONCLUSION TANGO1 is markedly increased in SSc fibroblasts and was found to be elevated in lung tissue in association with α-SMA-positive cells. TANGO1 expression is driven by inflammasome-dependent caspase 1 activation and is mediated by IL-1 and TGFβ downstream signaling. These observations suggest that during fibrosis, caspase 1 promotes the up-regulation of TANGO1 and the organization of endoplasmic reticulum exits sites, ultimately contributing to procollagen export and fibrosis.
Collapse
Affiliation(s)
- Lianne M Connolly
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Caya M McFalls
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Isabelle G McMahon
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Akash M Bhat
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Carol M Artlett
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
8
|
Zhang Y, Srivastava V, Zhang B. Mammalian cargo receptors for endoplasmic reticulum-to-Golgi transport: mechanisms and interactions. Biochem Soc Trans 2023:BST20220713. [PMID: 37334845 DOI: 10.1042/bst20220713] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/22/2023] [Accepted: 05/30/2023] [Indexed: 06/21/2023]
Abstract
Proteins that are destined to enter the secretory pathway are synthesized on the rough endoplasmic reticulum (ER) and then translocated into the ER lumen, where they undergo posttranslational modifications, folding, and assembly. After passing a quality control system, the cargo proteins are packaged into coat protein complex II (COPII) vesicles to exit the ER. In metazoans, most COPII subunits have multiple paralogs, enabling COPII vesicles the flexibility to transport a diverse range of cargo. The cytoplasmic domains of transmembrane proteins can interact with SEC24 subunits of COPII to enter the ER exit sites. Some transmembrane proteins may also act as cargo receptors that bind soluble secretory proteins within the ER lumen, enabling them to enter COPII vesicles. The cytoplasmic domains of cargo receptors also contain coat protein complex I binding motifs that allow for their cycling back to the ER after unloading their cargo in the ER-Golgi intermediate compartment and cis-Golgi. Once unloaded, the soluble cargo proteins continue maturation through the Golgi before reaching their final destinations. This review provides an overview of receptor-mediated transport of secretory proteins from the ER to the Golgi, with a focus on the current understanding of two mammalian cargo receptors: the LMAN1-MCFD2 complex and SURF4, and their roles in human health and disease.
Collapse
Affiliation(s)
- Yuan Zhang
- Genomic Medicine Institute, Lerner Research Institute of Cleveland Clinic, Cleveland, OH, U.S.A
| | - Vishal Srivastava
- Genomic Medicine Institute, Lerner Research Institute of Cleveland Clinic, Cleveland, OH, U.S.A
| | - Bin Zhang
- Genomic Medicine Institute, Lerner Research Institute of Cleveland Clinic, Cleveland, OH, U.S.A
| |
Collapse
|
9
|
MIA3 Splice Defect in Cane Corso Dogs with Dental-Skeletal-Retinal Anomaly (DSRA). Genes (Basel) 2021; 12:genes12101497. [PMID: 34680893 PMCID: PMC8535341 DOI: 10.3390/genes12101497] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 11/23/2022] Open
Abstract
We investigated a hereditary syndrome in Cane Corso dogs. Affected dogs developed dental-skeletal-retinal anomaly (DSRA), clinically characterized by brittle, discolored, translucent teeth, disproportionate growth and progressive retinal degeneration resulting in vision loss. Combined linkage and homozygosity mapping delineated a 5.8 Mb critical interval. The comparison of whole genome sequence data of an affected dog to 789 control genomes revealed a private homozygous splice region variant in the critical interval. It affected the MIA3 gene encoding the MIA SH3 domain ER export factor 3, which has an essential role in the export of collagen and other secreted proteins. The identified variant, XM_005640835.3:c.3822+3_3822+4del, leads to skipping of two exons from the wild type transcript, XM_005640835.3:r.3712_3822del. Genotypes at the variant were consistent with monogenic autosomal recessive mode of inheritance in a complete family and showed perfect genotype-phenotype association in 18 affected and 22 unaffected Cane Corso dogs. MIA3 variants had previously been shown to cause related phenotypes in humans and mice. Our data in dogs together with the existing functional knowledge of MIA3 variants in other mammalian species suggest the MIA3 splice defect and a near complete loss of gene function as causative molecular pathomechanism for the DSRA phenotype in the investigated dogs.
Collapse
|
10
|
Assembly and Cellular Exit of Coronaviruses: Hijacking an Unconventional Secretory Pathway from the Pre-Golgi Intermediate Compartment via the Golgi Ribbon to the Extracellular Space. Cells 2021; 10:cells10030503. [PMID: 33652973 PMCID: PMC7996754 DOI: 10.3390/cells10030503] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/18/2021] [Accepted: 02/18/2021] [Indexed: 12/20/2022] Open
Abstract
Coronaviruses (CoVs) assemble by budding into the lumen of the intermediate compartment (IC) at the endoplasmic reticulum (ER)-Golgi interface. However, why CoVs have chosen the IC as their intracellular site of assembly and how progeny viruses are delivered from this compartment to the extracellular space has remained unclear. Here we address these enigmatic late events of the CoV life cycle in light of recently described properties of the IC. Of particular interest are the emerging spatial and functional connections between IC elements and recycling endosomes (REs), defined by the GTPases Rab1 and Rab11, respectively. The establishment of IC-RE links at the cell periphery, around the centrosome and evidently also at the noncompact zones of the Golgi ribbon indicates that—besides traditional ER-Golgi communication—the IC also promotes a secretory process that bypasses the Golgi stacks, but involves its direct connection with the endocytic recycling system. The initial confinement of CoVs to the lumen of IC-derived large transport carriers and their preferential absence from Golgi stacks is consistent with the idea that they exit cells following such an unconventional route. In fact, CoVs may share this pathway with other intracellularly budding viruses, lipoproteins, procollagen, and/or protein aggregates experimentally introduced into the IC lumen.
Collapse
|
11
|
Abstract
The functions of coat protein complex II (COPII) coats in cargo packaging and the creation of vesicles at the endoplasmic reticulum are conserved in eukaryotic protein secretion. Standard COPII vesicles, however, cannot handle the secretion of metazoan-specific cargoes such as procollagens, apolipoproteins, and mucins. Metazoans have thus evolved modules centered on proteins like TANGO1 (transport and Golgi organization 1) to engage COPII coats and early secretory pathway membranes to engineer a novel mode of cargo export at the endoplasmic reticulum.
Collapse
Affiliation(s)
- I Raote
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain; ,
| | - V Malhotra
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain; , .,Universitat Pompeu Fabra (UPF), Barcelona 08002, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain
| |
Collapse
|
12
|
Maeda M, Komatsu Y, Saito K. Mitotic ER exit site dynamics: insights into blockade of secretion from the ER during mitosis. Mol Cell Oncol 2020; 7:1832420. [PMID: 33241113 DOI: 10.1080/23723556.2020.1832420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
How ER exit sites disassemble during mitosis is not well understood. Transport ANd Golgi Organization 1 (TANGO1, also known as MIA3), a cargo receptor originally identified for collagens, acts as a hub for ER exit site disassembly under the control of Casein Kinase 1 (CK1)-mediated phosphorylation and Protein Phosphatase 1 (PP1)-mediated dephosphorylation. Impaired dephosphorylation during mitosis induces ER exit site disassembly.
Collapse
Affiliation(s)
- Miharu Maeda
- Department of Biological Informatics and Experimental Therapeutics, Graduate School of Medicine, Akita University, Akita, Japan
| | - Yukie Komatsu
- Department of Biological Informatics and Experimental Therapeutics, Graduate School of Medicine, Akita University, Akita, Japan
| | - Kota Saito
- Department of Biological Informatics and Experimental Therapeutics, Graduate School of Medicine, Akita University, Akita, Japan
| |
Collapse
|
13
|
Mitotic ER Exit Site Disassembly and Reassembly Are Regulated by the Phosphorylation Status of TANGO1. Dev Cell 2020; 55:237-250.e5. [DOI: 10.1016/j.devcel.2020.07.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 06/24/2020] [Accepted: 07/22/2020] [Indexed: 11/20/2022]
|
14
|
Raote I, Ernst AM, Campelo F, Rothman JE, Pincet F, Malhotra V. TANGO1 membrane helices create a lipid diffusion barrier at curved membranes. eLife 2020; 9:57822. [PMID: 32452385 PMCID: PMC7266638 DOI: 10.7554/elife.57822] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/21/2020] [Indexed: 12/22/2022] Open
Abstract
We have previously shown TANGO1 organises membranes at the interface of the endoplasmic reticulum (ER) and ERGIC/Golgi (Raote et al., 2018). TANGO1 corrals retrograde membranes at ER exit sites to create an export conduit. Here the retrograde membrane is, in itself, an anterograde carrier. This mode of forward transport necessitates a mechanism to prevent membrane mixing between ER and the retrograde membrane. TANGO1 has an unusual membrane helix organisation, composed of one membrane-spanning helix (TM) and another that penetrates the inner leaflet (IM). We have reconstituted these membrane helices in model membranes and shown that TM and IM together reduce the flow of lipids at a region of defined shape. We have also shown that the helices align TANGO1 around an ER exit site. We suggest this is a mechanism to prevent membrane mixing during TANGO1-mediated transfer of bulky secretory cargos from the ER to the ERGIC/Golgi via a tunnel.
Collapse
Affiliation(s)
- Ishier Raote
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Andreas M Ernst
- Department of Cell Biology, Yale School of Medicine, New Haven, United States
| | - Felix Campelo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Spain
| | - James E Rothman
- Department of Cell Biology, Yale School of Medicine, New Haven, United States
| | - Frederic Pincet
- Department of Cell Biology, Yale School of Medicine, New Haven, United States.,Laboratoire de Physique de l'Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, Paris, France
| | - Vivek Malhotra
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| |
Collapse
|
15
|
Abstract
In consistent with other membrane-bound and secretory proteins, immune checkpoint proteins go through a set of modifications in the endoplasmic reticulum (ER) to acquire their native functional structures before they function at their destinations. There are various ER-resident chaperones and enzymes synergistically regulate and catalyze the glycosylation, folding and transporting of proteins. The whole processing is under the surveillance of ER quality control system which allows the correctly folded proteins to exit from the ER with the help of coat proteinII(COPII) coated vesicles, while retains the rest of terminally misfolded ones in the ER and then eliminates them via ER-associated degradation (ERAD) or ER-to-lysosomes-associated degradation (ERLAD). The dysfunction of the ER causes ER stress which triggers unfolded protein response (UPR) to restore ER proteostasis. Unsolvable prolonged ER stress ultimately results in cell death. This chapter reviews the process that proteins undergo in the ER, and the glycosylation, folding and degradation of immune checkpoint proteins as well as the associated potential immunotherapies to date.
Collapse
|
16
|
ER-to-Golgi Transport: A Sizeable Problem. Trends Cell Biol 2019; 29:940-953. [DOI: 10.1016/j.tcb.2019.08.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/22/2019] [Accepted: 08/23/2019] [Indexed: 11/16/2022]
|
17
|
Lu Y, Zhang S, Wang Y, Ren X, Han J. Molecular mechanisms and clinical manifestations of rare genetic disorders associated with type I collagen. Intractable Rare Dis Res 2019; 8:98-107. [PMID: 31218159 PMCID: PMC6557237 DOI: 10.5582/irdr.2019.01064] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Type I collagen is an important structural protein of bone, skin, tendon, ligament and other connective tissues. It is initially synthesized as a precursor form, procollagen, consisting of two identical pro-α1(I) and one proα2(I) chains, encoded by COL1A1 and COL1A2, respectively. The N- and C- terminal propeptides of procollagen are cleavage by N-proteinase and C-proteinase correspondingly, to form the central triple helix structure with Gly-X-Y repeat units. Mutations of COL1A1 and COL1A2 genes are associated with osteogenesis imperfecta, some types of Ehlers-Danlos syndrome, Caffey diseases, and osteogenesis imperfect/Ehlers- Danlos syndrome overlapping diseases. Clinical symptoms caused by different variations can be variable or similar, mild to lethal, and vice versa. We reviewed the relationship between clinical manifestations and type I collagen - related rare genetic disorders and their possible molecular mechanisms for different mutations and disorders.
Collapse
Affiliation(s)
- Yanqin Lu
- Key Laboratory for Biotech-Drugs of National Health Commission, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, China
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Ji'nan, China
- Address correspondence to:Dr. Yanqin Lu, Shandong First Medical University & Shandong Academy of Medical Sciences, 18877 Jingshi Road, Ji'nan 250062, China. E-mail:
| | - Shie Zhang
- Key Laboratory for Biotech-Drugs of National Health Commission, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, China
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Ji'nan, China
| | - Yanzhou Wang
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji'nan, China
| | - Xiuzhi Ren
- Department of Orthopaedic Surgery, The People’s Hospital of Wuqing District, Tianjin, China
| | - Jinxiang Han
- Key Laboratory for Biotech-Drugs of National Health Commission, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, China
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Ji'nan, China
| |
Collapse
|