1
|
Garcia N, Rahman MM, Arellano CL, Banakh I, Yung-Chih C, Peter K, Cleland H, Lo CH, Akbarzadeh S. Graft-Host Interaction and Its Effect on Wound Repair Using Mouse Models. Int J Mol Sci 2023; 24:16277. [PMID: 38003467 PMCID: PMC10671506 DOI: 10.3390/ijms242216277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Autologous skin grafting has been commonly used in clinics for decades to close large wounds, yet the cellular and molecular interactions between the wound bed and the graft that mediates the wound repair are not fully understood. The aim of this study was to better understand the molecular changes in the wound triggered by autologous and synthetic grafting. Defining the wound changes at the molecular level during grafting sets the basis to test other engineered skin grafts by design. In this study, a full-thickness skin graft (SKH-1 hairless) mouse model was established. An autologous full-thickness skin graft (FTSG) or an acellular fully synthetic Biodegradable Temporising Matrix (BTM) was grafted. The wound bed/grafts were analysed at histological, RNA, and protein levels during the inflammation (day 1), proliferation (day 5), and remodelling (day 21) phases of wound repair. The results showed that in this mouse model, similar to others, inflammatory marker levels, including Il-6, Cxcl-1, and Cxcl-5/6, were raised within a day post-wounding. Autologous grafting reduced the expression of these inflammatory markers. This was different from the wounds grafted with synthetic dermal grafts, in which Cxcl-1 and Cxcl-5/6 remained significantly high up to 21 days post-grafting. Autologous skin grafting reduced wound contraction compared to wounds that were left to spontaneously repair. Synthetic grafts contracted significantly more than FTSG by day 21. The observed wound contraction in synthetic grafts was most likely mediated at least partly by myofibroblasts. It is possible that high TGF-β1 levels in days 1-21 were the driving force behind myofibroblast abundance in synthetic grafts, although no evidence of TGF-β1-mediated Connective Tissue Growth Factor (CTGF) upregulation was observed.
Collapse
Affiliation(s)
- Nicole Garcia
- Skin Bioengineering Laboratory, Victorian Adult Burns Service, Alfred Health, 89 Commercial Road, Melbourne, VIC 3004, Australia; (N.G.); (M.M.R.); (C.L.A.); (I.B.); (H.C.); (C.H.L.)
- Department of Surgery, Monash University, 99 Commercial Road, Melbourne, VIC 3004, Australia
| | - Md Mostafizur Rahman
- Skin Bioengineering Laboratory, Victorian Adult Burns Service, Alfred Health, 89 Commercial Road, Melbourne, VIC 3004, Australia; (N.G.); (M.M.R.); (C.L.A.); (I.B.); (H.C.); (C.H.L.)
- Department of Surgery, Monash University, 99 Commercial Road, Melbourne, VIC 3004, Australia
| | - Carlos Luis Arellano
- Skin Bioengineering Laboratory, Victorian Adult Burns Service, Alfred Health, 89 Commercial Road, Melbourne, VIC 3004, Australia; (N.G.); (M.M.R.); (C.L.A.); (I.B.); (H.C.); (C.H.L.)
- Department of Surgery, Monash University, 99 Commercial Road, Melbourne, VIC 3004, Australia
| | - Ilia Banakh
- Skin Bioengineering Laboratory, Victorian Adult Burns Service, Alfred Health, 89 Commercial Road, Melbourne, VIC 3004, Australia; (N.G.); (M.M.R.); (C.L.A.); (I.B.); (H.C.); (C.H.L.)
- Department of Surgery, Monash University, 99 Commercial Road, Melbourne, VIC 3004, Australia
| | - Chen Yung-Chih
- Atherothrombosis and Vascular, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; (C.Y.-C.); (K.P.)
| | - Karlheinz Peter
- Atherothrombosis and Vascular, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; (C.Y.-C.); (K.P.)
| | - Heather Cleland
- Skin Bioengineering Laboratory, Victorian Adult Burns Service, Alfred Health, 89 Commercial Road, Melbourne, VIC 3004, Australia; (N.G.); (M.M.R.); (C.L.A.); (I.B.); (H.C.); (C.H.L.)
- Department of Surgery, Monash University, 99 Commercial Road, Melbourne, VIC 3004, Australia
| | - Cheng Hean Lo
- Skin Bioengineering Laboratory, Victorian Adult Burns Service, Alfred Health, 89 Commercial Road, Melbourne, VIC 3004, Australia; (N.G.); (M.M.R.); (C.L.A.); (I.B.); (H.C.); (C.H.L.)
- Department of Surgery, Monash University, 99 Commercial Road, Melbourne, VIC 3004, Australia
| | - Shiva Akbarzadeh
- Skin Bioengineering Laboratory, Victorian Adult Burns Service, Alfred Health, 89 Commercial Road, Melbourne, VIC 3004, Australia; (N.G.); (M.M.R.); (C.L.A.); (I.B.); (H.C.); (C.H.L.)
- Department of Surgery, Monash University, 99 Commercial Road, Melbourne, VIC 3004, Australia
| |
Collapse
|
2
|
Nilforoushzadeh MA, Torkamaniha E, Dahmardehei M, Amirkhani MA, Heidari‐Kharaji M, Mansouri P, Hortamani S, Zare S. Treatment of superficial and deep partial width second degree burn's wound with allogeneic cord blood platelet gel. Skin Res Technol 2023; 29:e13471. [PMID: 37753692 PMCID: PMC10511837 DOI: 10.1111/srt.13471] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 09/07/2023] [Indexed: 09/28/2023]
Abstract
BACKGROUND Burns are caused by a variety of mechanisms, including flames, hot liquids, metallurgy, chemicals, electric current, and ionizing and non-ionizing radiation. The most significant burn wound management involves complete repair and regeneration as soon as possible while minimizing infection, contraction, and scarring in the damaged tissue area. Some factors such as delivery of nutrients, growth factors, and oxygen are essential to promote and stimulate the wound healing progress in the burns area. When these factors are not provided, the burn wound undergoes a physiological crisis. The use of growth factors is a promising approach to overcoming this limitation. Umbilical cord blood platelet concentrates are a rich natural source of growth factors. METHODS This clinical trial used growth factors released from the lysis of umbilical cord blood platelet concentrates that have a key role in promoting re-epithelization and regeneration of damaged tissues by forming a fibrin network. This study evaluated the effectiveness of allogeneic cord blood platelet gel topical dressing in a group of patients diagnosed with superficial and deep partial thickness (second-degree) burn wounds. Clinical outcomes were compared between the intervention group and a control group of patients with superficial second-degree burn wounds who received the standard routine treatment including paraffin gauze wound dressing and silver sulfadiazine ointment. RESULTS The study's results showed that the increased rate of recovery and tissue granulation completely promoted to wound healing and burn wound closure, decreased the recovery time, and reduced inflammation and scars caused by burn injuries. However, the use of cord blood platelet gel topical dressing is not currently a routine treatment method in patients suffering from burn wounds. However, the study's results showed that allogenic cord blood platelet gel could be used to treat superficial and deep second-degree burns as a routine treatment. It was also shown that allogenic cord blood platelet gel topical dressing could be a candidate for autograft or after autograft skin transplantation surgery (in donor and recipient sites) instead of skin surgery in some patients. CONCLUSION Allogeneic topical wound dressing provides an effective treatment that offers a faster rate of epithelialization and healing of wounds and also decreases patients' scar and inflammation level as well as the length of recovery time. This, finally, leads to better burn wound management and the improved quality of burn wound treatment.
Collapse
Affiliation(s)
- Mohammad Ali Nilforoushzadeh
- Skin and Stem Cell Research CenterTehran University of Medical SciencesTehranIran
- Skin Repair Research Center, Jordan Dermatology and Hair Transplantation CenterTehranIran
| | - Elham Torkamaniha
- Skin and Stem Cell Research CenterTehran University of Medical SciencesTehranIran
- Skin Repair Research Center, Jordan Dermatology and Hair Transplantation CenterTehranIran
- Department of Microbial BiotechnologyIslamic Azad UniversityKish BranchIran
| | | | - Mohammad Amir Amirkhani
- Stem Cell and Regenerative Medicine Center of ExcellenceTehran University of Medical SciencesTehranIran
| | - Maryam Heidari‐Kharaji
- Skin and Stem Cell Research CenterTehran University of Medical SciencesTehranIran
- Skin Repair Research Center, Jordan Dermatology and Hair Transplantation CenterTehranIran
- Institut National de la Recherche Scientifique (INRS)‐Centre Armand‐Frappier Santé Biotechnologie (CAFSB)LavalQuebecCanada
| | - Parvin Mansouri
- Skin and Stem Cell Research CenterTehran University of Medical SciencesTehranIran
| | - Shamim Hortamani
- University of British Columbia Faculty of Pharmaceutical SciencesVancouverCanada
| | - Sona Zare
- Skin and Stem Cell Research CenterTehran University of Medical SciencesTehranIran
- Laser Application in Medical Sciences Research CenterShahid Beheshti University of Medical SciencesTehranIran
- Stem Cell and Regenerative Medicine CenterSharif University of TechnologyTehranIran
- Department of Mechanical EngineeringSharif University of TechnologyTehranIran
| |
Collapse
|
3
|
Hamilton DW, Walker JT, Tinney D, Grynyshyn M, El-Warrak A, Truscott E, Flynn LE. The pig as a model system for investigating the recruitment and contribution of myofibroblasts in skin healing. Wound Repair Regen 2021; 30:45-63. [PMID: 34708478 DOI: 10.1111/wrr.12981] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 09/02/2021] [Accepted: 09/27/2021] [Indexed: 12/13/2022]
Abstract
In the skin-healing field, porcine models are regarded as a useful analogue for human skin due to their numerous anatomical and physiological similarities. Despite the widespread use of porcine models in skin healing studies, the initial origin, recruitment and transition of fibroblasts to matrix-secreting contractile myofibroblasts are not well defined for this model. In this review, we discuss the merit of the pig as an animal for studying myofibroblast origin, as well as the challenges associated with assessing their contributions to skin healing. Although a variety of wound types (incisional, partial thickness, full thickness, burns) have been investigated in pigs in attempts to mimic diverse injuries in humans, direct comparison of human healing profiles with regards to myofibroblasts shows evident differences. Following injury in porcine models, which often employ juvenile animals, myofibroblasts are described in the developing granulation tissue at 4 days, peaking at Days 7-14, and persisting at 60 days post-wounding, although variations are evident depending on the specific pig breed. In human wounds, the presence of myofibroblasts is variable and does not correlate with the age of the wound or clinical contraction. Our comparison of porcine myofibroblast-mediated healing processes with those in humans suggests that further validation of the pig model is essential. Moreover, we identify several limitations evident in experimental design that need to be better controlled, and standardisation of methodologies would be beneficial for the comparison and interpretation of results. In particular, we discuss anatomical location of the wounds, their size and depth, as well as the healing microenvironment (wet vs. moist vs. dry) in pigs and how this could influence myofibroblast recruitment. In summary, although a widespread model used in the skin healing field, further research is required to validate pigs as a useful analogue for human healing with regards to myofibroblasts.
Collapse
Affiliation(s)
- Douglas W Hamilton
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - John T Walker
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Dylan Tinney
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Michael Grynyshyn
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Alexander El-Warrak
- Animal Care and Veterinary Services, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Emily Truscott
- Animal Care and Veterinary Services, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Lauren E Flynn
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada.,Department of Chemical and Biochemical Engineering, Thompson Engineering Building, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|