1
|
Flasco MT, Heck DW, Cieniewicz EJ, Cooper ML, Pethybridge SJ, Fuchs MF. A decade of grapevine red blotch disease epidemiology reveals zonal roguing as novel disease management. NPJ VIRUSES 2025; 3:29. [PMID: 40295834 PMCID: PMC12000371 DOI: 10.1038/s44298-025-00111-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 03/31/2025] [Indexed: 04/30/2025]
Abstract
Red blotch disease, a threat to the grape industry, is caused by grapevine red blotch virus. This work is the first to study epidemiological patterns in a vineyard over the course of a decade, revealing an increase in disease incidence from 3.9% in 2014 to 36.4% in 2023 with rapid virus spread proximal to a transmission hotspot. Logistic and exponential models provided the best fit of spread in areas of high and low disease incidence and aggregation, respectively. An inverse spatial incidence of virus strains 1 and 2 suggested secondary spread mostly from diseased to neighboring vines and virus influx from background sources. Precipitation (3-4 years later) and air temperature (the same or 1 year later) significantly influenced epidemic parameters. Finally, asymptomatic infections contributed to spatial aggregations at increasing lags. These findings were salient for considering zonal roguing, the removal of diseased and surrounding vines, as a disease management option.
Collapse
Affiliation(s)
- M T Flasco
- Plant Pathology and Plant-Microbe Biology Section, Cornell University, Geneva, NY, USA.
- Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, LA, USA.
| | - D W Heck
- Plant Pathology and Plant-Microbe Biology Section, Cornell University, Geneva, NY, USA
- Plant Pathology and Plant-Microbe Biology, Cornell University, Long Island Horticultural Research and Extension Center, Riverhead, NY, USA
| | - E J Cieniewicz
- Plant Pathology and Plant-Microbe Biology Section, Cornell University, Geneva, NY, USA
- Plant and Environmental Sciences, Clemson University, Clemson, SC, USA
| | - M L Cooper
- UC Cooperative Extension, University of California, Napa, CA, USA
| | - S J Pethybridge
- Plant Pathology and Plant-Microbe Biology Section, Cornell University, Geneva, NY, USA
| | - M F Fuchs
- Plant Pathology and Plant-Microbe Biology Section, Cornell University, Geneva, NY, USA
| |
Collapse
|
2
|
Hoyle VJ, McGinnity Schneider EJ, McLane HL, Wunsch AO, Fendell-Hummel HG, Cooper ML, Fuchs MF. Assessing the Potential of Tortistilus (Hemiptera: Membracidae) from Northern California Vineyards as Vector Candidates of Grapevine Red Blotch Virus. INSECTS 2024; 15:664. [PMID: 39336632 PMCID: PMC11432720 DOI: 10.3390/insects15090664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024]
Abstract
Ceresini treehoppers are present in northern California vineyard ecosystems, including the closely related Spissistilus and Tortistilus (Hemiptera: Membracidae). These membracids are not direct pests of wine grapes, but S. festinus is a vector of grapevine red blotch virus (GRBV). No information is available on the ability of Tortistilus spp. to transmit GRBV. In this study, Tortistilus were collected on yellow panel cards across 102 vineyard sites and surrounding areas in Napa Valley, California, USA in 2021-2023. Specimens were morphotyped, sexed and tested for GRBV ingestion and acquisition by multiplex PCR or qPCR. Phylogenetic analysis of the partial sequence of mt-COI and ITS gene fragments of a subset of 40 Tortistilus specimens revealed clustering in a monophyletic clade with T. wickhami with the former barcode sequence. Only 6% (48/758) of the T. wickhami tested positive for GRBV, but none of the heads with salivary glands (0%, 0/50) of the dissected specimens tested positive for GRBV, indicating no virus acquisition. In contrast, half of the dissected heads with salivary glands of S. festinus (52%, 12/23), from the same collection vineyard sites, tested positive for GRBV. Together, our findings confirmed the presence of T. wickhami in northern California vineyards and suggested a dubious role of this treehopper as a vector of GRBV.
Collapse
Affiliation(s)
- Victoria J Hoyle
- School of Integrative Plant Science, Plant Pathology and Plant-Microbe Biology, Cornell University, Geneva, NY 14456, USA
| | - Elliot J McGinnity Schneider
- School of Integrative Plant Science, Plant Pathology and Plant-Microbe Biology, Cornell University, Geneva, NY 14456, USA
| | - Heather L McLane
- School of Integrative Plant Science, Plant Pathology and Plant-Microbe Biology, Cornell University, Geneva, NY 14456, USA
| | - Anna O Wunsch
- School of Integrative Plant Science, Plant Pathology and Plant-Microbe Biology, Cornell University, Geneva, NY 14456, USA
| | | | - Monica L Cooper
- University of California Cooperative Extension, Napa, CA 94559, USA
| | - Marc F Fuchs
- School of Integrative Plant Science, Plant Pathology and Plant-Microbe Biology, Cornell University, Geneva, NY 14456, USA
| |
Collapse
|
3
|
Flasco MT, Fuchs MF. Two Distinct Genotypes of Spissistilus festinus (Say, 1830) Reproduce and Differentially Transmit Grapevine Red Blotch Virus. INSECTS 2023; 14:831. [PMID: 37887843 PMCID: PMC10607809 DOI: 10.3390/insects14100831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023]
Abstract
Two phenotypically similar but genetically distinct genotypes of Spissistilus festinus (Say, 1830) (Hemiptera: Membracidae), a pest of legume crops in Southern United States and a vector of grapevine red blotch virus (GRBV) in California vineyards, exist. No information is available on whether the two S. festinus genotypes, i.e., California (CA) and Southeastern (SE), are sexually compatible or whether the SE genotype can transmit GRBV. In this study, we established mixed mating S. festinus pairs for which the F1 offspring varied phenotypically compared with the offspring of same genotype pairs but acquired GRBV isolate NY175 at similar rates (p = 0.96) and with a similar viral genome copy number (p = 0.34). Likewise, rates of GRBV acquisition were alike for the two parental CA (58%, 61/105) and SE (61%, 65/106) genotypes (p = 0.74), though the GRBV copy number in the salivary glands was overall significantly higher for SE than CA individuals (p = 0.02). Furthermore, the GRBV transmission rate was significantly higher for the SE genotype (89%, 16/18) than the CA genotype (50%, 8/16) (p = 0.04). These results revealed the existence of two sexually compatible S. festinus genotypes with distinct GRBV transmission abilities, suggesting the need to study GRBV ecology in Southeastern United States and areas where the two genotypes might co-exist.
Collapse
Affiliation(s)
- Madison T. Flasco
- Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Geneva, NY 14456, USA;
| | | |
Collapse
|
4
|
Flasco MT, Hoyle V, Cieniewicz EJ, Loeb G, McLane H, Perry K, Fuchs MF. The Three-Cornered Alfalfa Hopper, Spissistilus festinus, Is a Vector of Grapevine Red Blotch Virus in Vineyards. Viruses 2023; 15:v15040927. [PMID: 37112907 PMCID: PMC10142188 DOI: 10.3390/v15040927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 03/29/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Spissistilus festinus (Hemiptera: Membracidae) transmit grapevine red blotch virus (GRBV, Grablovirus, Geminiviridae) in greenhouse settings; however, their role as a vector of GRBV in vineyards is unknown. Following controlled exposures of aviruliferous S. festinus for two weeks on infected, asymptomatic vines in a California vineyard in June and a 48 h gut clearing on alfalfa, a nonhost of GRBV, approximately half of the released insects tested positive for GRBV (45%, 46 of 102), including in the salivary glands of dissected individuals (11%, 3 of 27), indicating acquisition. Following controlled exposures of viruliferous S. festinus for two to six weeks on GRBV-negative vines in vineyards in California and New York in June, transmission of GRBV was detected when two S. festinus were restricted to a single leaf (3%, 2 of 62 in California; 10%, 5 of 50 in New York) but not with cohorts of 10-20 specimens on entire or half shoots. This work was consistent with greenhouse assays in which transmission was most successful with S. festinus exposed to a single leaf (42%, 5 of 12), but rarely occurred on half shoots (8%, 1 of 13), and never on entire shoots (0%, 0 of 18), documenting that the transmission of GRBV is facilitated through the feeding of fewer S. festinus on a restricted area of grapevine tissue. This work demonstrates S. festinus is a GRBV vector of epidemiological importance in vineyards.
Collapse
Affiliation(s)
- Madison T Flasco
- School of Integrative Plant Science, Plant Pathology and Plant-Microbe Biology, Cornell University, Geneva, NY 14456, USA
| | - Victoria Hoyle
- School of Integrative Plant Science, Plant Pathology and Plant-Microbe Biology, Cornell University, Geneva, NY 14456, USA
| | | | - Greg Loeb
- Department of Entomology, Cornell University, Geneva, NY 14456, USA
| | - Heather McLane
- School of Integrative Plant Science, Plant Pathology and Plant-Microbe Biology, Cornell University, Geneva, NY 14456, USA
| | - Keith Perry
- School of Integrative Plant Science, Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, USA
| | - Marc F Fuchs
- School of Integrative Plant Science, Plant Pathology and Plant-Microbe Biology, Cornell University, Geneva, NY 14456, USA
| |
Collapse
|
5
|
Sisterson MS, Dwyer DP, Uchima SY. Evaluation of Alfalfa Fields and Pastures as Sources of Spissistilus festinus (Hemiptera: Membracidae): Quantification of Reproductive and Nutritional Parameters. ENVIRONMENTAL ENTOMOLOGY 2023; 52:119-128. [PMID: 36477288 DOI: 10.1093/ee/nvac104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Indexed: 06/17/2023]
Abstract
The threecornered alfalfa hopper (Spissistilus festinus) is a pest of grapevine, with damage caused by transmission of grapevine red blotch virus. Because grapevine is not a preferred host of the threecornered alfalfa hopper, abundance in vineyards depends on proximity to source habitats and presence of preferred hosts in vineyard understories. The potential for alfalfa fields and pastures in the Central Valley of California to serve as sources of threecornered alfalfa hopper was evaluated by quantifying parameters associated with threecornered alfalfa hopper reproductive and nutritional status. Laboratory studies determined that the threecornered alfalfa hopper is synovigenic, emerging as an adult prior to initiation of oogenesis and that females have multiple rounds of egg production. Alfalfa fields, irrigated pastures, and vineyards were sampled monthly. Adults were observed year-round in alfalfa fields and pastures, with populations peaking in fall. Gravid females were observed from February through November. While rare, adult threecornered alfalfa hoppers were collected from 2 of 4 sampled vineyards. In spring, adults were observed in samples collected from vineyard ground cover. In fall, adults were observed in samples collected from vineyard ground cover and foliage samples. Samples collected from pastures and vineyards were male biased, whereas equal numbers of males and females were observed in alfalfa fields. Adults collected from alfalfa fields were larger, heavier, and had greater estimated energetic reserves than adults collected from pastures. Adults collected from vineyards were of above average size and had relatively high estimated energetic reserves. Results suggest that alfalfa fields are more likely to serve as sources of threecornered alfalfa hoppers than irrigated pastures and that differences in male and female behavior may affect rates of pathogen transmission.
Collapse
Affiliation(s)
- Mark S Sisterson
- USDA, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Avenue, Parlier, CA 93648-9757, USA
| | - Donal P Dwyer
- USDA, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Avenue, Parlier, CA 93648-9757, USA
| | - Sean Y Uchima
- USDA, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Avenue, Parlier, CA 93648-9757, USA
| |
Collapse
|
6
|
Flasco M, Hoyle V, Cieniewicz EJ, Roy BG, McLane HL, Perry KL, Loeb G, Nault B, Heck M, Fuchs M. Grapevine Red Blotch Virus Is Transmitted by the Three-Cornered Alfalfa Hopper in a Circulative, Nonpropagative Mode with Unique Attributes. PHYTOPATHOLOGY 2021; 111:1851-1861. [PMID: 33736453 DOI: 10.1094/phyto-02-21-0061-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The transmission mode of grapevine red blotch virus (GRBV, genus Grablovirus, family Geminiviridae) by Spissistilus festinus, the three-cornered alfalfa hopper, is unknown. By analogy with other members in the family Geminiviridae, we hypothesized circulative, nonpropagative transmission. Time-course experiments revealed GRBV in dissected guts, hemolymph, and heads with salivary glands after a 5-, 8-, and 10-day exposure to infected grapevines, respectively. After a 15-day acquisition on infected grapevines and subsequent transfer on alfalfa, a nonhost of GRBV, the virus titer decreased over time in adult insects, as shown by quantitative PCR. Snap bean proved to be a feeding host of S. festinus and a pseudosystemic host of GRBV after Agrobacterium tumefaciens-mediated delivery of an infectious clone. The virus was efficiently transmitted by S. festinus from infected snap bean plants to excised snap bean trifoliates (90%) or grapevine leaves (100%) but less efficiently from infected grapevine plants to excised grapevine leaves (10%) or snap bean trifoliates (67%). Transmission of GRBV also occurred trans-stadially but not via seeds. The virus titer was significantly higher in (i) guts and hemolymph relative to heads with salivary glands, and (ii) adults emanating from third compared with first instars that emerged on infected grapevine plants and developed on snap bean trifoliates. This study demonstrated circulative, nonpropagative transmission of GRBV by S. festinus with an extended acquisition access period compared with other viruses in the family Geminiviridae and marked differences in transmission efficiency between grapevine, the natural host, and snap bean, an alternative herbaceous host.
Collapse
Affiliation(s)
- Madison Flasco
- School of Integrative Plant Science, Plant Pathology and Plant-Microbe Biology, Cornell University, Geneva, NY 14456
| | - Victoria Hoyle
- School of Integrative Plant Science, Plant Pathology and Plant-Microbe Biology, Cornell University, Geneva, NY 14456
| | | | - Brandon G Roy
- School of Integrative Plant Science, Plant Pathology and Plant-Microbe Biology, Cornell University, Geneva, NY 14456
| | - Heather L McLane
- School of Integrative Plant Science, Plant Pathology and Plant-Microbe Biology Section, Cornell University, Ithaca, NY 14853
| | - Keith L Perry
- School of Integrative Plant Science, Plant Pathology and Plant-Microbe Biology Section, Cornell University, Ithaca, NY 14853
| | - Gregory Loeb
- Department of Entomology, Cornell University, Geneva, NY 14456
| | - Brian Nault
- Department of Entomology, Cornell University, Geneva, NY 14456
| | - Michelle Heck
- School of Integrative Plant Science, Plant Pathology and Plant-Microbe Biology Section, Cornell University, Ithaca, NY 14853
- Robert W. Holley Center for Agriculture and Health, Emerging Pests and Pathogens Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Ithaca, NY 14853
| | - Marc Fuchs
- School of Integrative Plant Science, Plant Pathology and Plant-Microbe Biology, Cornell University, Geneva, NY 14456
| |
Collapse
|
7
|
Billings AC, Flores K, McCalla KA, Daane KM, Wilson H. Use of Ground Covers to Control Three-Cornered Alfalfa Hopper, Spissistilus festinus (Hemiptera: Membracidae), and Other Suspected Vectors of Grapevine Red Blotch Virus. JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:1462-1469. [PMID: 34132345 DOI: 10.1093/jee/toab115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Indexed: 06/12/2023]
Abstract
Grapevine red blotch virus (GRBV) is the causal agent of grapevine red blotch disease, which affects wine grapes and leads to reduced crop yield and quality. The pathogen-plant-vector relationship of GRBV is not well understood; however, some possible vectors have been identified: Caladonus coquilletti (Van Duzee; Hemiptera: Cicadellidae), Colladonus reductus (Van Duzee; Hemiptera: Cicadellidae), Erythroneura spp., Melanoliarus sp. (Hemiptera: Cixiidae), Osbornellus borealis DeLong. & Mohr (Hemiptera: Cicadellidae), Scaphytopius granticus (Ball; Hemiptera: Cicadellidae), Spissistilus festinus (Say). Of these species, S. festinus has been shown to transmit the virus to uninfected grapevines, making it of particular interest. Since the pathogen-plant-vector relationship of GRBV is not yet completely understood, pesticide use is not necessarily the best way to manage these possible vectors. Here we test if ground cover removal, by discing in spring, could reduce the activity of potential GRBV vectors. We show that S. festinus presence in the canopy was reduced in disc rows compared to just mowing the ground vegetation, whereas there were no differences in presence in the canopy between disc and mow rows of the other possible insect vectors. Erythroneura elegantula (Osborn; Hemiptera: Cicadellidae), a common pest of grapevines but not a candidate GRBV vector, was found to have higher densities in the canopy in disc rows compared to mow rows, an effect possibly mediated by changes in vine vigor associated with ground covers. We conclude that if S. festinus is a primary vector of GRBV, discing ground covers in early spring may be a viable way to reduce their presence in the vine canopy.
Collapse
Affiliation(s)
- Alexis C Billings
- Department of Environmental Science, Policy and Management, University of California - Berkeley, 130 Mulford Hall #3114, Berkeley, CA 94720, USA
| | - Kristen Flores
- Department of Environmental Science, Policy and Management, University of California - Berkeley, 130 Mulford Hall #3114, Berkeley, CA 94720, USA
| | - Kelsey A McCalla
- Department of Environmental Science, Policy and Management, University of California - Berkeley, 130 Mulford Hall #3114, Berkeley, CA 94720, USA
| | - Kent M Daane
- Department of Environmental Science, Policy and Management, University of California - Berkeley, 130 Mulford Hall #3114, Berkeley, CA 94720, USA
| | - Houston Wilson
- Dept. Entomology, University of California - Riverside, 900 University Ave., Riverside, CA 92521, USA
| |
Collapse
|