1
|
Gassmann AJ, Brenizer BD, Kropf AL, McCulloch JB, Radosevich DL, Shrestha RB, Smith EM, St. Clair CR. Sequential evolution of resistance by western corn rootworm to multiple Bacillus thuringiensis traits in transgenic maize. Proc Natl Acad Sci U S A 2025; 122:e2422337122. [PMID: 40063805 PMCID: PMC11929453 DOI: 10.1073/pnas.2422337122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 12/21/2024] [Indexed: 03/25/2025] Open
Abstract
Transgenic crops that produce insecticidal toxins derived from the bacterium Bacillus thuringiensis (Bt) are grown worldwide to manage insect pests. Western corn rootworm is a serious pest of maize in the United States and is managed with Bt maize. In the United States, the commercial cultivation of a Bt crop requires an accompanying resistance-management strategy to delay the evolution of Bt resistance. One of the primary resistance-management strategies consists of non-Bt refuges along with a Bt crop that produces two Bt toxins (i.e., a pyramid) that kill the same pest species. This approach delays resistance because individuals with resistance to one toxin are killed by the second. However, if a pest species is resistant to one toxin in a pyramid, the effectiveness of a pyramid to delay resistance is compromised, potentially leading to the evolution of resistance to both toxins. Here, we apply a meta-analysis to demonstrate the sequential evolution of resistance by western corn rootworm to Bt maize producing Cry3Bb1 followed by resistance to Gpp34/Tpp35Ab1 maize, with resistance to each Bt toxin increasing in a linear manner over time. Additionally, we show that Bt-resistant western corn rootworm imposed substantial feeding injury, in the field, to maize containing a pyramid of Gpp34/Tpp35Ab1 and Cry3Bb1. To minimize the risk of sequential evolution of resistance to multiple transgenic traits, an emphasis should be placed on developing transgenic pyramids not compromised by prior resistance, and in cases where resistance is already present, larger non-Bt refuges and more diversified pest-management approaches should be applied.
Collapse
Affiliation(s)
- Aaron J. Gassmann
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA50011
| | - Ben D. Brenizer
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA50011
| | - Abigail L. Kropf
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA50011
| | - John B. McCulloch
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA50011
| | - Devin L. Radosevich
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA50011
| | - Ram B. Shrestha
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA50011
| | - Eliott M. Smith
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA50011
| | - Coy R. St. Clair
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA50011
| |
Collapse
|
2
|
Reisig D, Huseth A. Establishing best practices for insect resistance management: a new paradigm for genetically engineered toxins in cotton expressing Mpp51Aa2. JOURNAL OF ECONOMIC ENTOMOLOGY 2025; 118:1-8. [PMID: 39774870 DOI: 10.1093/jee/toae312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/02/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025]
Abstract
Debate over resistance management tactics for genetically engineered (GE) crops expressing insecticidal toxins is not new. For several decades, researchers, regulators, and agricultural industry scientists have developed strategies to limit the evolution of resistance in populations of lepidopteran and coleopteran pests. A key attribute of many of these events was insecticide resistance management (IRM) strategies designed around a presumed high-dose expression sufficient to kill 99.5% of exposed larvae for some of the main target pests in corn, Zea mays L. and cotton, Gossypium hirsutum L. In contrast, other target pests did not meet this high-dose criterion. Similarly, the recent release of ThryvOn cotton that expresses thysanopteran and hemipteran active Mpp51Aa2.834_16 toxin is not high dose, working on a combination of behavioral and sublethal effects to suppress populations. This unique mode of control has generated considerable uncertainty about what IRM strategies will be most effective to limit field-evolved resistance to this unique spectrum of pests. The goal of this manuscript is to present several knowledge gaps that exist in proposed Mpp51Aa2 IRM plans, focusing on its activity on thrips, Frankliniella spp. Addressing these gaps will be crucial to limit resistance and preserve the benefits that this technology may provide by alleviating reliance on conventional insecticides and seed treatments. Broadly, these considerations will be important for future GE events that are non-high dose but remain valuable components of a more holistic insect management programs that integrate multiple tactics to reduce conventional insecticide use for challenging pests.
Collapse
Affiliation(s)
- Dominic Reisig
- Department of Entomology and Plant Pathology, NC State University, Plymouth, NC, USA
| | - Anders Huseth
- Department of Entomology and Plant Pathology and the North Carolina Plant Sciences Institute, NC State University, Raleigh, NC, USA
| |
Collapse
|
3
|
Barton WY, Buntin GD, Toews MD. Bt Trait Efficacy Against Corn Earworm, Helicoverpa zea, (Lepidoptera: Noctuidae) for Preserving Grain Yield and Reducing Mycotoxin Contamination of Field Corn. INSECTS 2024; 15:914. [PMID: 39769516 PMCID: PMC11677160 DOI: 10.3390/insects15120914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025]
Abstract
The corn earworm, Helicoverpa zea (Boddie), causes persistent ear damage to corn grown in the southeastern United States region. Increased levels of ear damage have been associated with mycotoxin contamination in addition to yield loss. Corn hybrids expressing proteins from the Bacillus thuringiensis (Bt) may provide corn earworm control. A selection of hybrids expressing various Bt traits were evaluated in field experiments across Georgia over two years to assess their efficacy for corn earworm control, grain yield and quality protection, and grain mycotoxin mitigation. Ear damage was significantly reduced only by Bt hybrids expressing the Vip3Aa20 protein. The remaining Bt hybrids expressing Cry proteins provided only marginal control. Ear damage had a variable effect on grain yield and was not correlated with grain aflatoxin contamination. In contrast, grain fumonisin contamination was positively associated with earworm damage. These results indicate Bt hybrids that effectively reduce corn earworm damage may also assist in reducing fumonisin contamination and possibly yield loss.
Collapse
Affiliation(s)
| | - George David Buntin
- Department of Entomology, University of Georgia-Griffin Campus, Griffin, GA 30223, USA
| | - Micheal D. Toews
- Department of Entomology, University of Georgia-Tifton Campus, Tifton, GA 31793, USA;
| |
Collapse
|
4
|
Legan AW, Allan CW, Jensen ZN, Degain BA, Yang F, Kerns DL, Benowitz KM, Fabrick JA, Li X, Carrière Y, Matzkin LM, Tabashnik BE. Mismatch between lab-generated and field-evolved resistance to transgenic Bt crops in Helicoverpa zea. Proc Natl Acad Sci U S A 2024; 121:e2416091121. [PMID: 39503848 PMCID: PMC11588094 DOI: 10.1073/pnas.2416091121] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/03/2024] [Indexed: 11/27/2024] Open
Abstract
Transgenic crops producing crystalline (Cry) proteins from the bacterium Bacillus thuringiensis (Bt) have been used extensively to control some major crop pests. However, many populations of the noctuid moth Helicoverpa zea, one of the most important crop pests in the United States, have evolved practical resistance to several Cry proteins including Cry1Ac. Although mutations in single genes that confer resistance to Cry proteins have been identified in lab-selected and gene-edited strains of H. zea and other lepidopteran pests, the genetic basis of field-evolved resistance to Cry proteins in H. zea has remained elusive. We used a genomic approach to analyze the genetic basis of field-evolved resistance to Cry1Ac in 937 H. zea derived from 17 sites in seven states of the southern United States. We found evidence for extensive gene flow among all populations studied. Field-evolved resistance was not associated with mutations in 20 single candidate genes previously implicated in resistance or susceptibility to Cry proteins in H. zea or other lepidopterans. Instead, resistance in field samples was associated with increased copy number of a cluster of nine trypsin genes. However, trypsin gene amplification occurred in a susceptible sample and not in all resistant samples, implying that this amplification does not always confer resistance and mutations in other genes also contribute to field-evolved resistance to Cry1Ac in H. zea. The mismatch between lab-generated and field-evolved resistance in H. zea is unlike other cases of Bt resistance and reflects challenges for managing this pest.
Collapse
Affiliation(s)
- Andrew W. Legan
- Department of Entomology, University of Arizona, Tucson, AZ85721
| | - Carson W. Allan
- Department of Entomology, University of Arizona, Tucson, AZ85721
| | - Zoe N. Jensen
- Department of Entomology, University of Arizona, Tucson, AZ85721
| | | | - Fei Yang
- Department of Entomology, University of Minnesota, St. Paul, MN55108
| | - David L. Kerns
- Department of Entomology, Texas A&M University, College Station, TX77843
| | - Kyle M. Benowitz
- College of Integrative Sciences and Arts, Arizona State University, Mesa, AZ85212
| | - Jeffrey A. Fabrick
- US Department of Agriculture, Agricultural Research Service, US Arid Land Agricultural Research Center, Maricopa, AZ85138
| | - Xianchun Li
- Department of Entomology, University of Arizona, Tucson, AZ85721
| | - Yves Carrière
- Department of Entomology, University of Arizona, Tucson, AZ85721
| | | | | |
Collapse
|
5
|
Reay-Jones FPF, Buntin GD, Reisig DD, Bridges WC. Longitudinal trials illustrate interactive effects between declining Bt efficacy against Helicoverpa zea (Lepidoptera: Noctuidae) and planting dates of corn. JOURNAL OF ECONOMIC ENTOMOLOGY 2024; 117:1901-1912. [PMID: 39041329 DOI: 10.1093/jee/toae160] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/06/2024] [Accepted: 07/02/2024] [Indexed: 07/24/2024]
Abstract
Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae) has evolved resistance to insecticidal toxins from Bacillus thuringiensis (Bt) Berliner (Bacillales: Bacillaceae) expressed in genetically engineered corn, Zea mays L. This study provides an overview of field trials from Georgia, North Carolina, and South Carolina evaluating Bt and non-Bt corn hybrids from 2009 to 2022 to show changes in susceptibility in H. zea to Bt corn. The reduction in kernel injury relative to a non-Bt hybrid averaged across planting dates generally declined over time for Cry1A.105 + Cry2Ab2 corn. In addition, there was a significant interaction with planting date used as a covariate. The reduction in kernel injury remained above 80% and did not vary with planting date from 2009 to 2014, whereas a significant decline with planting date was found in this reduction from 2015 to 2022. For Cry1Ab + Cry1F corn, the reduction in kernel injury relative to a non-Bt hybrid averaged across planting dates did not vary among years. The reduction in kernel injury significantly declined with planting date from 2012 to 2022. Kernel injury as a proxy for H. zea pressure was greater in late-planted trials in non-Bt corn hybrids. Our study showed that Bt hybrids expressing Cry1A.105 + Cry2Ab2 are now less effective in later planted trials in reducing H. zea injury; however, this was not the case during the earlier years of adoption of corn expressing these 2 toxins when resistance alleles were likely less frequent in H. zea populations. The implications for management of H. zea and for insect resistance management are discussed.
Collapse
Affiliation(s)
- Francis P F Reay-Jones
- Department of Plant and Environmental Sciences, Pee Dee Research and Education Center, Clemson University, Florence, SC 29506-9727, USA
| | - G David Buntin
- Department of Entomology, University of Georgia, Griffin, GA 30223, USA
| | - Dominic D Reisig
- Department of Entomology and Plant Pathology, North Carolina State University, The Vernon G. James Research and Extension Center, Plymouth, NC 27962, USA
| | - William C Bridges
- Department of Mathematical Sciences, Clemson University, Clemson, SC, 29634, USA
| |
Collapse
|
6
|
Martin CL, Hill JH, Aller SG. Host Tropism and Structural Biology of ABC Toxin Complexes. Toxins (Basel) 2024; 16:406. [PMID: 39330864 PMCID: PMC11435725 DOI: 10.3390/toxins16090406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024] Open
Abstract
ABC toxin complexes are a class of protein toxin translocases comprised of a multimeric assembly of protein subunits. Each subunit displays a unique composition, contributing to the formation of a syringe-like nano-machine with natural cargo carrying, targeting, and translocation capabilities. Many of these toxins are insecticidal, drawing increasing interest in agriculture for use as biological pesticides. The A subunit (TcA) is the largest subunit of the complex and contains domains associated with membrane permeation and targeting. The B and C subunits, TcB and TcC, respectively, package into a cocoon-like structure that contains a toxic peptide and are coupled to TcA to form a continuous channel upon final assembly. In this review, we outline the current understanding and gaps in the knowledge pertaining to ABC toxins, highlighting seven published structures of TcAs and how these structures have led to a better understanding of the mechanism of host tropism and toxin translocation. We also highlight similarities and differences between homologues that contribute to variations in host specificity and conformational change. Lastly, we review the biotechnological potential of ABC toxins as both pesticides and cargo-carrying shuttles that enable the transport of peptides into cells.
Collapse
Affiliation(s)
- Cole L. Martin
- Graduate Biomedical Sciences Pathobiology, Physiology and Pharmacology Theme, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - John H. Hill
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Stephen G. Aller
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| |
Collapse
|
7
|
Reisig D, Heiniger R. Yield analysis and corn earworm feeding in Bt and non-Bt corn hybrids across diverse locations. JOURNAL OF ECONOMIC ENTOMOLOGY 2024; 117:1503-1509. [PMID: 38832396 PMCID: PMC11817737 DOI: 10.1093/jee/toae120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/01/2024] [Accepted: 05/17/2024] [Indexed: 06/05/2024]
Abstract
Corn, Zea mays L. (Poales: Poaceae), growers in the US Cotton Belt are required to plant 20% of total corn acres to non-Bt hybrids for resistance management (non-Bt refuge). Most growers do not meet this requirement, in part, because they perceive non-Bt hybrids to yield less than Bt hybrids. We planted multiple non-Bt and Bt hybrids from a single company in small-plot replicated trials at a single location from 2019 to 2023, as well as in small-plot replicated trials at multiple locations during 2022 and 2023. In the single location, we measured kernel injury from corn earworm, Helicoverpa zea Boddie (Lepidoptera: Noctuidae), and we recorded yield at all locations. In the single location trial, yields only separated among hybrids in 3 out of 5 years. In the multiple location trial, yields were variable between both years. We found that Bt hybrids tended to yield higher than non-Bt hybrids overall, but this was influenced by the inclusion of non-Bt hybrids that had a lower overall genetic yield potential in the environments we tested them in. In both tests, when hybrids were analyzed during each year, both Bt and non-Bt hybrids were among the statistically highest yielders. Our study demonstrates the importance of comparing multiple Bt and non-Bt hybrids to draw yield comparisons. This highlights the need for corn seed company breeders to put effort into improving yield for non-Bt hybrids. Hopefully this effort will translate into increased planting of non-Bt refuge corn for growers in the US Cotton Belt.
Collapse
Affiliation(s)
- Dominic Reisig
- Department of Entomology and Plant Pathology, NC State
University, 207 Research Station Road, Plymouth, NC
27962, USA
| | - Ryan Heiniger
- Department of Crop and Soil Sciences, NC State University,
Nelson Hall, 3709 Hillsboro Street, Raleigh, NC 27607, USA
| |
Collapse
|
8
|
Yang F, Head GP, Kerns DD, Jurat-Fuentes JL, Santiago-González JC, Kerns DL. Diverse genetic basis of Vip3Aa resistance in five independent field-derived strains of Helicoverpa zea in the US. PEST MANAGEMENT SCIENCE 2024; 80:2796-2803. [PMID: 38327120 DOI: 10.1002/ps.7988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/09/2024]
Abstract
BACKGROUND Practical resistance of Helicoverpa zea to Cry proteins has become widespread in the US, making Vip3Aa the only effective Bacillus thuringiensis (Bt) protein for controlling this pest. Understanding the genetic basis of Vip3Aa resistance in H. zea is essential in sustaining the long-term efficacy of Vip3Aa. The objectives of this study were to characterize the inheritance of Vip3Aa resistance in four distinct field-derived H. zea strains (M1-RR, AC4-RR, R2-RR and R15-RR), and to test for shared genetic basis among these strains and a previously characterized Texas resistant strain (LT#70-RR). RESULTS Maternal effects and sex linkage were absent, and the effective dominance level (DML) was 0.0 across Vip3Aa39 concentrations ranging from 1.0 to 31.6 μg cm-2, in all H. zea resistant strains. Mendelian monogenic model tests indicated that Vip3Aa resistance in each of the four strains was controlled by a single gene. However, interstrain complementation tests indicated that three distinct genetic loci are involved in Vip3Aa resistance in the five resistant H. zea strains: one shared by M1-RR and LT#70-RR; another shared by R2-RR and R15-RR; and a distinct one for AC4-RR. CONCLUSION Results of this study indicate that Vip3Aa resistance in all H. zea strains was controlled by a single, recessive and autosomal gene. However, there were three distinct genetic loci associated with Vip3Aa resistance in the five resistant H. zea strains. The information generated from this study is valuable for exploring mechanisms of Vip3Aa resistance, monitoring the evolution of Vip3Aa resistance, and devising effective strategies for managing Vip3Aa resistance in H. zea. © 2024 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Fei Yang
- Department of Entomology, Texas A&M University, College Station, Texas, USA
- Department of Entomology, University of Minnesota, Saint Paul, Minnesota, USA
| | | | - Dawson D Kerns
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, Tennessee, USA
| | - Juan Luis Jurat-Fuentes
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, Tennessee, USA
| | | | - David L Kerns
- Department of Entomology, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
9
|
Pezzini D, Taylor KL, Reisig DD, Fritz ML. Cross-pollination in seed-blended refuge and selection for Vip3A resistance in a lepidopteran pest as detected by genomic monitoring. Proc Natl Acad Sci U S A 2024; 121:e2319838121. [PMID: 38513093 PMCID: PMC10990109 DOI: 10.1073/pnas.2319838121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 12/13/2023] [Indexed: 03/23/2024] Open
Abstract
The evolution of pest resistance to management tools reduces productivity and results in economic losses in agricultural systems. To slow its emergence and spread, monitoring and prevention practices are implemented in resistance management programs. Recent work suggests that genomic approaches can identify signs of emerging resistance to aid in resistance management. Here, we empirically examined the sensitivity of genomic monitoring for resistance management in transgenic Bt crops, a globally important agricultural innovation. Whole genome resequencing of wild North American Helicoverpa zea collected from non-expressing refuge and plants expressing Cry1Ab confirmed that resistance-associated signatures of selection were detectable after a single generation of exposure. Upon demonstrating its sensitivity, we applied genomic monitoring to wild H. zea that survived Vip3A exposure resulting from cross-pollination of refuge plants in seed-blended plots. Refuge seed interplanted with transgenic seed exposed H. zea to sublethal doses of Vip3A protein in corn ears and was associated with allele frequency divergence across the genome. Some of the greatest allele frequency divergence occurred in genomic regions adjacent to a previously described candidate gene for Vip3A resistance. Our work highlights the power of genomic monitoring to sensitively detect heritable changes associated with field exposure to Bt toxins and suggests that seed-blended refuge will likely hasten the evolution of resistance to Vip3A in lepidopteran pests.
Collapse
Affiliation(s)
- Daniela Pezzini
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC27513
| | - Katherine L. Taylor
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC27513
- Department of Entomology, University of Maryland, College Park, MD20742
| | - Dominic D. Reisig
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC27513
| | - Megan L. Fritz
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC27513
- Department of Entomology, University of Maryland, College Park, MD20742
| |
Collapse
|
10
|
Jin M, Shan Y, Peng Y, Wang W, Zhang H, Liu K, Heckel DG, Wu K, Tabashnik BE, Xiao Y. Downregulation of a transcription factor associated with resistance to Bt toxin Vip3Aa in the invasive fall armyworm. Proc Natl Acad Sci U S A 2023; 120:e2306932120. [PMID: 37874855 PMCID: PMC10622909 DOI: 10.1073/pnas.2306932120] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/11/2023] [Indexed: 10/26/2023] Open
Abstract
Transgenic crops producing insecticidal proteins from Bacillus thuringiensis (Bt) have revolutionized control of some major pests. However, more than 25 cases of field-evolved practical resistance have reduced the efficacy of transgenic crops producing crystalline (Cry) Bt proteins, spurring adoption of alternatives including crops producing the Bt vegetative insecticidal protein Vip3Aa. Although practical resistance to Vip3Aa has not been reported yet, better understanding of the genetic basis of resistance to Vip3Aa is urgently needed to proactively monitor, delay, and counter pest resistance. This is especially important for fall armyworm (Spodoptera frugiperda), which has evolved practical resistance to Cry proteins and is one of the world's most damaging pests. Here, we report the identification of an association between downregulation of the transcription factor gene SfMyb and resistance to Vip3Aa in S. frugiperda. Results from a genome-wide association study, fine-scale mapping, and RNA-Seq identified this gene as a compelling candidate for contributing to the 206-fold resistance to Vip3Aa in a laboratory-selected strain. Experimental reduction of SfMyb expression in a susceptible strain using RNA interference (RNAi) or CRISPR/Cas9 gene editing decreased susceptibility to Vip3Aa, confirming that reduced expression of this gene can cause resistance to Vip3Aa. Relative to the wild-type promoter for SfMyb, the promoter in the resistant strain has deletions and lower activity. Data from yeast one-hybrid assays, genomics, RNA-Seq, RNAi, and proteomics identified genes that are strong candidates for mediating the effects of SfMyb on Vip3Aa resistance. The results reported here may facilitate progress in understanding and managing pest resistance to Vip3Aa.
Collapse
Affiliation(s)
- Minghui Jin
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen518116, China
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing100193, China
| | - Yinxue Shan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen518116, China
| | - Yan Peng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen518116, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan430070, China
| | - Wenhui Wang
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing100193, China
| | - Huihui Zhang
- Institute of Entomology, School of Life Sciences, Central China Normal University, Wuhan430079, China
| | - Kaiyu Liu
- Institute of Entomology, School of Life Sciences, Central China Normal University, Wuhan430079, China
| | - David G. Heckel
- Department of Entomology, Max Planck Institute for Chemical Ecology, JenaD-07745, Germany
| | - Kongming Wu
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing100193, China
| | | | - Yutao Xiao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen518116, China
| |
Collapse
|
11
|
Carrière Y, Degain B, Unnithan GC, Tabashnik BE. Inheritance and fitness cost of laboratory-selected resistance to Vip3Aa in Helicoverpa zea (Lepidoptera: Noctuidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2023; 116:1804-1811. [PMID: 37555261 DOI: 10.1093/jee/toad145] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/22/2023] [Accepted: 07/10/2023] [Indexed: 08/10/2023]
Abstract
The polyphagous pest Helicoverpa zea (Lepidoptera: Noctuidae) has evolved practical resistance to transgenic corn and cotton producing Cry1 and Cry2 crystal proteins from Bacillus thuringiensis (Bt) in several regions of the United States. However, the Bt vegetative insecticidal protein Vip3Aa produced by Bt corn and cotton remains effective against this pest. To advance knowledge of resistance to Vip3Aa, we selected a strain of H. zea for resistance to Vip3Aa in the laboratory. After 28 generations of continuous selection, the resistance ratio was 267 for the selected strain (GA-R3) relative to a strain not selected with Vip3Aa (GA). Resistance was autosomal and almost completely recessive at a concentration killing all individuals from GA. Declines in resistance in heterogeneous strains containing a mixture of susceptible and resistant individuals reared in the absence of Vip3Aa indicate a fitness cost was associated with resistance. Previously reported cases of laboratory-selected resistance to Vip3Aa in lepidopteran pests often show partially or completely recessive resistance at high concentrations and fitness costs. Abundant refuges of non-Bt host plants can maximize the benefits of such costs for sustaining the efficacy of Vip3Aa against target pests.
Collapse
Affiliation(s)
- Yves Carrière
- Department of Entomology, University of Arizona, Tucson, AZ, USA
| | - Ben Degain
- Department of Entomology, University of Arizona, Tucson, AZ, USA
| | | | | |
Collapse
|
12
|
Pezzini DT, Reisig DD, Buntin GD, Del Pozo-Valdivia AI, Gould F, Paula-Moraes SV, Reay-Jones FP. Impact of seed blend and structured maize refuge on Helicoverpa zea (Lepidoptera: Noctuidae) potential phenological resistance development parameters in pupae and adults. PEST MANAGEMENT SCIENCE 2023; 79:3493-3503. [PMID: 37139844 DOI: 10.1002/ps.7529] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/29/2023] [Accepted: 05/04/2023] [Indexed: 05/05/2023]
Abstract
BACKGROUND Helicoverpa zea, an economic pest in the south-eastern United States, has evolved practical resistance to Bacillus thuringiensis (Bt) Cry toxins in maize and cotton. Insect resistance management (IRM) programs have historically required planting of structured non-Bt maize, but because of its low adoption, the use of seed blends has been considered. To generate knowledge on target pest biology and ecology to help improve IRM strategies, nine field trials were conducted in 2019 and 2020 in Florida, Georgia, North Carolina, and South Carolina to evaluate the impact of Bt (Cry1Ab + Cry1F or Cry1Ab + Cry1F + Vip3A) and non-Bt maize plants in blended and structured refuge treatments on H. zea pupal survival, weight, soil pupation depth, adult flight parameters, and adult time to eclosion. RESULTS From a very large sample size and geography, we found a significant difference in pupal mortality and weight among treatments in seed blends with Vip3A, implying that cross-pollination occurred between Bt and non-Bt maize ears. There was no treatment effect for pupation depth, adult flight distance, and eclosion time. CONCLUSION Results of this study demonstrate the potential impact of different refuge strategies on phenological development and survival of an important pest species of regulatory concern. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Daniela T Pezzini
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Dominic D Reisig
- Department of Entomology and Plant Pathology, North Carolina State University, Vernon G. James Research and Extension Center, Plymouth, NC, USA
| | - G David Buntin
- Department of Entomology, University of Georgia - Griffin Campus, Griffin, GA, USA
| | - Alejandro I Del Pozo-Valdivia
- Department of Entomology, Hampton Roads Agricultural Research and Extension Center, Virginia Polytechnic Institute and State University, Virginia Beach, VA, USA
| | - Fred Gould
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Silvana V Paula-Moraes
- Entomology and Nematology Department, West Florida Research and Education Center, University of Florida, Jay, FL, USA
| | - Francis Pf Reay-Jones
- Department of Plant and Environmental Sciences, Clemson University, Florence, SC, USA
| |
Collapse
|
13
|
Huang F, Niu Y, Silva T, Brown S, Towles T, Kerns D, Jurat-Fuentes JL, Head GP, Carroll M, Walker W, Lin S. An Extended Investigation of Unexpected Helicoverpa zea (Boddie) Survival and Ear Injury on a Transgenic Maize Hybrid Expressing Cry1A/Cry2A/Vip3A Toxins. Toxins (Basel) 2023; 15:474. [PMID: 37505743 PMCID: PMC10467152 DOI: 10.3390/toxins15070474] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023] Open
Abstract
The wide occurrence of resistance to Cry1A and Cry2A insecticidal toxins from Bacillus thuringiensis (Bt) in the corn earworm/bollworm Helicoverpa zea (Boddie) leaves the Vip3A toxin produced during the vegetative stage of Bt as the only fully active toxin expressed in transgenic crops to control H. zea in the U.S.A. During 2021, the first unexpected survival of H. zea and injury (UXI) on a maize hybrid expressing Cry1A.105, Cry2Ab2, and Vip3Aa in Louisiana, U.S.A. were observed in two sentinel plots used for resistance monitoring. A follow-up intensive investigation was conducted with two H. zea populations established from larvae collected from the two UXI plots. The main goal of this study was to reveal if the unexpected damage was due to resistance development in the insect to the Bt toxins expressed in the maize hybrid. Diet-overlay bioassays showed that the two populations were highly resistant to Cry1A.105, moderately resistant to Cry2Ab2, but still highly susceptible to Vip3Aa when compared to a reference susceptible strain. In 10 d assays with detached ears, the larvae of the two UXI populations exhibited survival on ears expressing only Cry toxins but presented near 100% mortality on maize hybrids containing both cry and vip3A transgenes. Multiple field trials over three years demonstrated that natural H. zea populations in Louisiana were highly resistant to maize expressing only Cry toxins but remained susceptible to all tested hybrids containing cry and vip3A genes. Altogether, the results of this study suggest that the observed UXIs in Louisiana were associated with a resistance to Cry toxins but were not due to a resistance to Vip3A. The possible causes of the UXIs are discussed. The results generated and procedures adopted in this study help in determining thresholds for defining UXIs, assessing resistance risks, and documenting field resistance.
Collapse
Affiliation(s)
- Fangneng Huang
- Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA; (Y.N.); (T.S.); (S.L.)
| | - Ying Niu
- Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA; (Y.N.); (T.S.); (S.L.)
| | - Tiago Silva
- Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA; (Y.N.); (T.S.); (S.L.)
| | - Sebe Brown
- Dean Lee Research & Extension Center, Louisiana State University Agricultural Center, Alexandria, LA 71302, USA; (S.B.); (W.W.)
| | - Tyler Towles
- Macon Ridge Research Station, Louisiana State University Agricultural Center, Winnsboro, LA 71295, USA;
| | - Dawson Kerns
- Department of Entomology & Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA; (D.K.); (J.L.J.-F.)
| | - Juan Luis Jurat-Fuentes
- Department of Entomology & Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA; (D.K.); (J.L.J.-F.)
| | - Graham P. Head
- Bayer Crop Science, St. Louis, MO 63167, USA; (G.P.H.); (M.C.)
| | - Matthew Carroll
- Bayer Crop Science, St. Louis, MO 63167, USA; (G.P.H.); (M.C.)
| | - Wade Walker
- Dean Lee Research & Extension Center, Louisiana State University Agricultural Center, Alexandria, LA 71302, USA; (S.B.); (W.W.)
| | - Shucong Lin
- Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA; (Y.N.); (T.S.); (S.L.)
| |
Collapse
|
14
|
Dively GP, Kuhar TP, Taylor SV, Doughty H, Holmstrom K, Gilrein DO, Nault BA, Ingerson-Mahar J, Huseth A, Reisig D, Fleischer S, Owens D, Tilmon K, Reay-Jones F, Porter P, Smith J, Saguez J, Wells J, Congdon C, Byker H, Jensen B, DiFonzo C, Hutchison WD, Burkness E, Wright R, Crossley M, Darby H, Bilbo T, Seiter N, Krupke C, Abel C, Coates BS, McManus B, Fuller B, Bradshaw J, Peterson JA, Buntin D, Paula-Moraes S, Kesheimer K, Crow W, Gore J, Huang F, Ludwick DC, Raudenbush A, Jimenez S, Carrière Y, Elkner T, Hamby K. Extended Sentinel Monitoring of Helicoverpa zea Resistance to Cry and Vip3Aa Toxins in Bt Sweet Corn: Assessing Changes in Phenotypic and Allele Frequencies of Resistance. INSECTS 2023; 14:577. [PMID: 37504584 PMCID: PMC10380249 DOI: 10.3390/insects14070577] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 07/29/2023]
Abstract
Transgenic corn and cotton that produce Cry and Vip3Aa toxins derived from Bacillus thuringiensis (Bt) are widely planted in the United States to control lepidopteran pests. The sustainability of these Bt crops is threatened because the corn earworm/bollworm, Helicoverpa zea (Boddie), is evolving a resistance to these toxins. Using Bt sweet corn as a sentinel plant to monitor the evolution of resistance, collaborators established 146 trials in twenty-five states and five Canadian provinces during 2020-2022. The study evaluated overall changes in the phenotypic frequency of resistance (the ratio of larval densities in Bt ears relative to densities in non-Bt ears) in H. zea populations and the range of resistance allele frequencies for Cry1Ab and Vip3Aa. The results revealed a widespread resistance to Cry1Ab, Cry2Ab2, and Cry1A.105 Cry toxins, with higher numbers of larvae surviving in Bt ears than in non-Bt ears at many trial locations. Depending on assumptions about the inheritance of resistance, allele frequencies for Cry1Ab ranged from 0.465 (dominant resistance) to 0.995 (recessive resistance). Although Vip3Aa provided high control efficacy against H. zea, the results show a notable increase in ear damage and a number of surviving older larvae, particularly at southern locations. Assuming recessive resistance, the estimated resistance allele frequencies for Vip3Aa ranged from 0.115 in the Gulf states to 0.032 at more northern locations. These findings indicate that better resistance management practices are urgently needed to sustain efficacy the of corn and cotton that produce Vip3Aa.
Collapse
Affiliation(s)
- Galen P Dively
- Department of Entomology, University of Maryland, College Park, MD 20742, USA
| | - Tom P Kuhar
- Department of Entomology, Virginia Tech, Blacksburg, VA 24060, USA
| | - Sally V Taylor
- Department of Entomology, Virginia Tech, Suffolk, VA 23434, USA
| | | | - Kristian Holmstrom
- Pest Management Office, Rutgers University, New Brunswick, NJ 08901, USA
| | | | - Brian A Nault
- Department of Entomology, Cornell AgriTech, Geneva, NY 14456, USA
| | - Joseph Ingerson-Mahar
- Rutgers Agricultural Research and Extension Center, Rutgers University, Bridgeton, NJ 08302, USA
| | - Anders Huseth
- Department of Entomology and Plant Pathology, NC State University, Raleigh, NC 27601, USA
| | - Dominic Reisig
- Department of Entomology and Plant Pathology, NC State University, Plymouth, NC 27962, USA
| | - Shelby Fleischer
- Department of Entomology, Penn State University, University Park, PA 16802, USA
| | - David Owens
- Cooperative Extension, Carvel REC, University of Delaware, Georgetown, DE 19947, USA
| | - Kelley Tilmon
- Ohio Agricultural Research and Development Center, Wooster, OH 44691, USA
| | - Francis Reay-Jones
- Department of Plant and Environmental Sciences, Clemson University, Florence, SC 29501, USA
| | - Pat Porter
- Department of Entomology, AgriLife Research and Extension Center, Texas A&M University, Lubbock, TX 79401, USA
| | - Jocelyn Smith
- Department of Plant Agriculture, University of Guelph, Ridgetown Campus, ON N1G 2W1, Canada
| | - Julien Saguez
- CEROM, 740 Chemin Trudeau, Saint-Mathieu-de-Beloeil, QC J3G 0E2, Canada
| | - Jason Wells
- New Brunswick Department of Agriculture, Sussex, NB E4E 5L8, Canada
| | - Caitlin Congdon
- Perennia Food and Agriculture, Kentville, NS B4N 1J5, Canada
| | - Holly Byker
- Department of Plant Agriculture, University of Guelph, Winchester, ON N1G 2W1, Canada
| | - Bryan Jensen
- Arlington Agricultural Research Station, University of Wisconsin, WI 53706, USA
| | - Chris DiFonzo
- Department of Entomology, Michigan State University, East Lansing, MI 48824, USA
| | | | - Eric Burkness
- Department of Entomology, University of Minnesota, St. Paul, MN 55455, USA
| | - Robert Wright
- Department of Entomology, University of Nebraska-Lincoln, NE 68588, USA
| | - Michael Crossley
- Department of Entomology and Wildlife Ecology, University of Delaware, Newark, DE 19711, USA
| | - Heather Darby
- Department of Plant and Soil Sciences, University of Vermont, Burlington, VT 05405, USA
| | - Tom Bilbo
- Department of Plant and Environmental Sciences, Clemson University, Charleston, SC 29414, USA
| | - Nicholas Seiter
- Illinois Extension, University of Illinois, Urbana, IL 61820, USA
| | - Christian Krupke
- Department of Entomology, Purdue University, West Lafayette, IN 47906, USA
| | - Craig Abel
- USDA-ARS Corn Insects and Crop Genetics Research, Iowa State University, Ames, IA 50011, USA
| | - Brad S Coates
- USDA-ARS Corn Insects and Crop Genetics Research, Iowa State University, Ames, IA 50011, USA
| | | | | | - Jeffrey Bradshaw
- Panhandle Research and Extension Center, Scottsbluff, NE 69361, USA
| | - Julie A Peterson
- West Central Research and Extension Center, University of Nebraska, North Platte, NE 69101, USA
| | - David Buntin
- Griffin Campus, University of Georgia, Griffin, GA 30223, USA
| | | | - Katelyn Kesheimer
- Department of Entomology & Plant Pathology, Auburn University, Auburn, AL 36849, USA
| | - Whitney Crow
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Delta Research and Extension Center, Mississippi State University, Stoneville, MS 39762, USA
| | - Jeffrey Gore
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Delta Research and Extension Center, Mississippi State University, Stoneville, MS 39762, USA
| | - Fangneng Huang
- Department of Entomology, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Dalton C Ludwick
- Department of Entomology, Texas A&M AgriLife Extension Service, Corpus Christi, TX 78404, USA
| | - Amy Raudenbush
- Ohio Agricultural Research and Development Center, Wooster, OH 44691, USA
| | - Sebastian Jimenez
- PEI Department of Agriculture and Land, Charlotte, PE C1A 7N8, Canada
| | - Yves Carrière
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA
| | - Timothy Elkner
- Southeast Research and Extension Center, Landisville, PA 17538, USA
| | - Kelly Hamby
- Department of Entomology, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
15
|
Tandy P, Lamour K, Placidi de Bortoli C, Nagoshi R, Emrich SJ, Jurat-Fuentes JL. Screening for resistance alleles to Cry1 proteins through targeted sequencing in the native and invasive range of Spodoptera frugiperda (Lepidoptera: Noctuidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2023; 116:935-944. [PMID: 37311017 DOI: 10.1093/jee/toad061] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/02/2023] [Accepted: 03/30/2023] [Indexed: 06/15/2023]
Abstract
The fall armyworm, Spodoptera frugiperda (J. E. Smith), is a highly polyphagous pest native to the tropical Americas that has recently spread to become a global super-pest threatening food and fiber production. Transgenic crops producing insecticidal Cry and Vip3Aa proteins from Bacillus thuringiensis (Bt) are used for control of this pest in its native range. The evolution of practical resistance represents the greatest threat to sustainability of this technology and its potential efficacy in the S. frugiperda invasive range. Monitoring for resistance is vital to management approaches delaying S. frugiperda resistance to Bt crops. DNA-based resistance screening provides higher sensitivity and cost-effectiveness than currently used bioassay-based monitoring. So far, practical S. frugiperda resistance to Bt corn-producing Cry1F has been genetically linked to mutations in the SfABCC2 gene, providing a model to develop and test monitoring tools. In this study, we performed targeted SfABCC2 sequencing followed by Sanger sequencing to confirm the detection of known and candidate resistance alleles to Cry1F corn in field-collected S. frugiperda from continental USA, Puerto Rico, Africa (Ghana, Togo, and South Africa), and Southeast Asia (Myanmar). Results confirm that the distribution of a previously characterized resistance allele (SfABCC2mut) is limited to Puerto Rico and identify 2 new candidate SfABCC2 alleles for resistance to Cry1F, one of them potentially spreading along the S. frugiperda migratory route in North America. No candidate resistance alleles were found in samples from the invasive S. frugiperda range. These results provide support for the potential use of targeted sequencing in Bt resistance monitoring programs.
Collapse
Affiliation(s)
- Peter Tandy
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA
| | - Kurt Lamour
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA
| | | | - Rodney Nagoshi
- Center for Medical, Agricultural and Veterinary Entomology (CMAVE), United States Department of Agriculture-Agricultural Research Service, Gainesville, FL 32608, USA
| | - Scott J Emrich
- Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN 37996, USA
| | - Juan Luis Jurat-Fuentes
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
16
|
Yates-Stewart AD, Yorke BT, Willse A, Fridley J, Head GP. Using Sentinel Plots to Monitor for Changes in Thrips Susceptibility to MON 88702 Cotton Containing the Cry51Aa2.834_16 Bt Protein. INSECTS 2023; 14:497. [PMID: 37367313 DOI: 10.3390/insects14060497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023]
Abstract
Transgenic Bt crops are important tools for growers to manage insect pests, but their durability is threatened by the evolution of insect resistance. Implementing a resistance monitoring program is essential to detect and mitigate resistance. For non-high-dose Bt crops, resistance monitoring is challenging, because insect control is not complete, so targeted insects and insect damage will be present even without resistance. Given these challenges, sentinel plots have been used to monitor for insect resistance to non-high-dose crops by assessing changes in the efficacy of a Bt crop over time relative to a non-Bt control. We optimized a sentinel plot resistance monitoring approach for MON 88702 ThryvOn™ cotton, a new non-high-dose Bt product targeting two sucking pest taxa-Lygus (L. lineolaris and L. hesperus) and thrips (Frankliniella fusca and F. occidentalis)-and report here on the thrips monitoring methods and results. Quantifying thrips immatures was the best metric to characterize the impact of the trait, with at least a 40-60% average reduction of thrips immatures on ThryvOn relative to the control cotton at all sites with higher thrips densities. These data can be used within a ThryvOn resistance monitoring program and represent a case study for establishing a resistance monitoring approach for a non-high-dose trait product.
Collapse
Affiliation(s)
| | | | - Alan Willse
- Bayer Crop Science, Chesterfield, MO 63017, USA
| | | | | |
Collapse
|
17
|
Guan F, Dai X, Hou B, Wu S, Yang Y, Lu Y, Wu K, Tabashnik BE, Wu Y. Refuges of conventional host plants counter dominant resistance of cotton bollworm to transgenic Bt cotton. iScience 2023; 26:106768. [PMID: 37216101 PMCID: PMC10196555 DOI: 10.1016/j.isci.2023.106768] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/08/2023] [Accepted: 04/24/2023] [Indexed: 05/24/2023] Open
Abstract
Transgenic crops have revolutionized insect pest control, but evolution of resistance by pests threatens their continued success. The primary strategy for combating pest resistance to crops producing insecticidal proteins from Bacillus thuringiensis (Bt) uses refuges of non-Bt host plants to allow survival of susceptible insects. The prevailing paradigm is that refuges delay resistance that is rare and recessively inherited. However, we discovered refuges countered resistance to Bt cotton that was neither rare nor recessive. In a 15-year field study of the cotton bollworm, the frequency of a mutation conferring dominant resistance to Bt cotton surged 100-fold from 2006 to 2016 yet did not rise from 2016 to 2020. Computer simulations indicate the increased refuge percentage from 2016 to 2020 is sufficient to explain the observed halt in the evolution of resistance. The results also demonstrate the efficacy of a Bt crop can be sustained by non-Bt refuges of other crops.
Collapse
Affiliation(s)
- Fang Guan
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Xiaoguang Dai
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Bofeng Hou
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Shuwen Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yihua Yang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yanhui Lu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kongming Wu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | | | - Yidong Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
18
|
Wen Z, Conville J, Matthews P, Hootman T, Himes J, Wong S, Huang F, Ni X, Chen JS, Bramlett M. More than 10 years after commercialization, Vip3A-expressing MIR162 remains highly efficacious in controlling major Lepidopteran maize pests: laboratory resistance selection versus field reality. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 192:105385. [PMID: 37105627 DOI: 10.1016/j.pestbp.2023.105385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/24/2023] [Accepted: 03/06/2023] [Indexed: 06/19/2023]
Abstract
MIR162, a maize event that expresses Vip3Aa20 (Vip3A) approved for commercial cultivation around 2010, has been excellent for control of major Lepidopteran pests. However, development of fall armyworm (FAW) resistance to Vip3A is a serious concern. Resistant colonies selected in the laboratory can serve as valuable tools not only for better understanding of Vip3A's mode of action (MOA) and mechanism of resistance (MOR) but also for screening novel leads of new MOA that will help control FAW in case resistance to Vip3A in the field becomes a reality. We selected a Vip3A-resistant FAW strain, FAWVip3AR, by subjecting a FAW founder population containing field genetics to Vip3A exposure. FAWVip3AR had >9800-fold resistance to Vip3A by diet surface overlay bioassays and resistance was stable. Feeding bioassays using detached leaf tissues or whole plants indicated that FAWVip3AR larvae readily fed and completed the full life cycle on Vip3A-expressing MIR162 maize plants and leaf tissues that killed 100% of susceptible larvae. Yet, FAWVip3AR faced at least two challenges. First, FAWVip3AR suffered an apparent disadvantage (incomplete resistance) when feeding on MIR162 in comparison to FAWVip3AR feeding on Vip3A-free isoline AX5707 maize; and second, FAWVip3AR showed a fitness costs in comparison to a Vip3A-susceptible strain when both fed on AX5707. We also demonstrated that, >10 years after commercialization, MIR162 and Vip3A remain highly efficacious against field populations of three major Lepidopteran pests from different geographic locations and FAW strains resistant to other Bacillus thuringiensis (Bt) toxins that are currently on the market.
Collapse
Affiliation(s)
- Zhimou Wen
- Syngenta Crop Protection, LLC, 9 Davis Drive, Research Triangle Park, NC 27709, USA.
| | - Jared Conville
- Syngenta Crop Protection, LLC, 9 Davis Drive, Research Triangle Park, NC 27709, USA
| | - Phillip Matthews
- Syngenta Crop Protection, LLC, 9 Davis Drive, Research Triangle Park, NC 27709, USA
| | - Travis Hootman
- Syngenta Crop Protection, LLC, 9 Davis Drive, Research Triangle Park, NC 27709, USA
| | - Jo Himes
- Syngenta Crop Protection, LLC, 9 Davis Drive, Research Triangle Park, NC 27709, USA
| | - Sarah Wong
- Syngenta Crop Protection, LLC, 9 Davis Drive, Research Triangle Park, NC 27709, USA
| | - Fangneng Huang
- Department of Entomology, Louisianan State University AgCenter, Baton Rouge, LA 70803, USA
| | - Xinzhi Ni
- Crop Genetics and Breeding Research Unit, USDA-ARS, Tifton, GA 31793, USA
| | - Jeng Shong Chen
- Syngenta Crop Protection, LLC, 9 Davis Drive, Research Triangle Park, NC 27709, USA
| | - Matthew Bramlett
- Syngenta Crop Protection, LLC, 9 Davis Drive, Research Triangle Park, NC 27709, USA
| |
Collapse
|
19
|
Santiago-González JC, Kerns DL, Yang F. Resistance Allele Frequency of Helicoverpa zea to Vip3Aa Bacillus thuringiensis Protein in the Southeastern U.S. INSECTS 2023; 14:161. [PMID: 36835730 PMCID: PMC9958976 DOI: 10.3390/insects14020161] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/23/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Helicoverpa zea is a major target pest of Bt crops expressing Cry and/or Vip3Aa proteins in the U.S.A. Widespread practical resistance of H. zea to the Cry1 and Cry2 proteins makes Vip3Aa the only effective Bt protein against this pest. Understanding the frequency of resistance alleles against Vip3Aa in field populations of H. zea is crucial for resistance management and the sustainability of Vip3Aa technology. Using a modified F2 screen method by crossing susceptible laboratory female moth with feral male moth of H. zea, we successfully screened a total of 24,576 neonates from 192 F2 families of H. zea collected from Arkansas, Louisiana, Mississippi, and Tennessee during 2019-2020. We found five F2 families containing ≥3rd instar survivors on the diagnostic concentration of 3.0 µg/cm2 Vip3Aa39. Dose-response bioassays confirmed the high levels of Vip3Aa resistance in these F2 families, with an estimated resistance ratio of >909.1-fold relative to the susceptible strain. The estimated resistance allele frequency against Vip3Aa in H. zea for these four southern states is 0.0155 with a 95% CI of 0.0057-0.0297. These data should provide critical information for understanding the risks of Vip3Aa resistance in H. zea and help design appropriate resistance management strategies for the sustainability of the Vip3Aa technology.
Collapse
|
20
|
Gassmann AJ, Reisig DD. Management of Insect Pests with Bt Crops in the United States. ANNUAL REVIEW OF ENTOMOLOGY 2023; 68:31-49. [PMID: 36170641 DOI: 10.1146/annurev-ento-120220-105502] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Genetically engineered corn and cotton that produce insecticidal toxins derived from the bacterium Bacillus thuringiensis (Bt) have been used to manage insect pests in the United States and elsewhere. In some cases, this has led to regional suppression of pest populations and pest eradication within the United States, and these outcomes were associated with reductions in conventional insecticides and increased profits for farmers. In other instances, pests evolved resistance to multiple Bt traits, compromising the capacity of Bt crops to manage pests and leading to increased feeding injury to crops in the field. Several aspects of pest biology and pest-crop interactions were associated with cases where pests remained susceptible versus instances where pests evolved resistance. The viability of future transgenic traits can be improved by learning from these past outcomes. In particular, efforts should be made to delay resistance by increasing the prevalence of refuges and using integrated pest management.
Collapse
Affiliation(s)
- Aaron J Gassmann
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, Iowa, USA;
| | - Dominic D Reisig
- Department of Entomology and Plant Pathology, North Carolina State University, Plymouth, North Carolina, USA
| |
Collapse
|
21
|
Yang F, Kerns DL, Little N, Brown SA, Stewart SD, Catchot AL, Cook DR, Gore J, Crow WD, Lorenz GM, Towles T, Tabashnik BE. Practical resistance to Cry toxins and efficacy of Vip3Aa in Bt cotton against Helicoverpa zea. PEST MANAGEMENT SCIENCE 2022; 78:5234-5242. [PMID: 36053801 DOI: 10.1002/ps.7142] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/14/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Crops genetically engineered to make insect-killing proteins from Bacillus thuringiensis (Bt) have revolutionized management of some pests. However, the benefits of such transgenic crops are reduced when pests evolve resistance to Bt toxins. We evaluated resistance to Bt toxins and Bt cotton plants using laboratory bioassays and complementary field trials focusing on Helicoverpa zea, one of the most economically important pests of cotton and other crops in the United States. RESULTS The data from 235 laboratory bioassays demonstrate resistance to Cry1Ac, Cry1Fa, and Cry2Ab occurred in most of the 95 strains of H. zea derived from Arkansas, Louisiana, Mississippi, Tennessee, and Texas during 2016 to 2021. Complementary field data show efficacy decreased for Bt cotton producing Cry1Ac + Cry1Fa or Cry1Ac + Cry2Ab, but not Cry1Ac + Cry1Fa + Vip3Aa. Moreover, analysis of data paired by field site and year shows higher survival in bioassays was generally associated with lower efficacy of Bt cotton. CONCLUSIONS The results confirm and extend previous evidence showing widespread practical resistance of H. zea in the United States to the Cry toxins produced by Bt cotton and corn, but not to Vip3Aa. Despite deployment in combination with Cry toxins in Bt crops, Vip3Aa effectively acts as a single toxin against H. zea larvae that are highly resistant to Cry toxins. Furthermore, Vip3Aa adoption is increasing and previous work provided an early warning of field-evolved resistance. Thus, rigorous resistance management measures are needed to preserve the efficacy of Vip3Aa against this highly adaptable pest. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Fei Yang
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - David L Kerns
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - Nathan Little
- Southern Insect Management Research Unit, USDA-ARS, Stoneville, MS, USA
| | - Sebe A Brown
- Department of Entomology and Plant Pathology, University of Tennessee, Jackson, TN, USA
| | - Scott D Stewart
- Department of Entomology and Plant Pathology, University of Tennessee, Jackson, TN, USA
| | - Angus L Catchot
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Mississippi State, MS, USA
| | - Donald R Cook
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Mississippi State, MS, USA
| | - Jeffrey Gore
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Mississippi State, MS, USA
| | - Whitney D Crow
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Mississippi State, MS, USA
| | - Gustav M Lorenz
- Department of Entomology and Plant Pathology, University of Arkansas, Lonoke, AR, USA
| | - Tyler Towles
- Department of Entomology, Louisiana State University, Winnsboro, LA, USA
| | | |
Collapse
|
22
|
Fritz ML. Utility and challenges of using whole-genome resequencing to detect emerging insect and mite resistance in agroecosystems. Evol Appl 2022; 15:1505-1520. [PMID: 36330307 PMCID: PMC9624086 DOI: 10.1111/eva.13484] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 09/04/2022] [Accepted: 09/05/2022] [Indexed: 11/29/2022] Open
Abstract
Arthropods that invade agricultural ecosystems systematically evolve resistance to the control measures used against them, and this remains a significant and ongoing challenge for sustainable food production systems. Early detection of resistance evolution could prompt remedial action to slow the spread of resistance alleles in the landscape. Historical approaches used to detect emerging resistance included phenotypic monitoring of agricultural pest populations, as well as monitoring of allele frequency changes at one or a few candidate pesticide resistance genes. In this article, I discuss the successes and limitations of these traditional monitoring approaches and then consider whether whole-genome scanning could be applied to samples collected from agroecosystems over time for resistance monitoring. I examine the qualities of agroecosystems that could impact application of this approach to pesticide resistance monitoring and describe a recent retrospective analysis where genome scanning successfully detected an oligogenic response to selection by pesticides years prior to pest management failure. I conclude by considering areas of further study that will shed light on the feasibility of applying whole-genome scanning for resistance risk monitoring in agricultural pest species.
Collapse
Affiliation(s)
- Megan L. Fritz
- Department of EntomologyUniversity of MarylandCollege ParkMarylandUSA
| |
Collapse
|
23
|
Yu W, Head GP, Huang F. Inheritance of Resistance to Cry1A.105 in Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae). INSECTS 2022; 13:875. [PMID: 36292823 PMCID: PMC9604160 DOI: 10.3390/insects13100875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Cry1A.105 is a bioengineered Bacillus thuringiensis (Bt) insecticidal protein consisting of three domains derived from Cry1Ac, Cry1Ab, and Cry1F. It is one of the two pyramided Bt toxins expressed in the MON 89034 event, a commonly planted Bt maize trait in the Americas. Recent studies have documented that field resistance of the corn earworm, Helicoverpa zea (Boddie), to the Cry1A.105 toxin in maize plants has become widespread in the United States. To investigate the inheritance of resistance to Cry1A.105 in H. zea, two independent tests, each with various genetic crosses among susceptible and Cry1A.105-resistant populations, were performed. The responses of these susceptible, resistant, F1, F2, and backcrossed insect populations to Cry1A.105 were assayed using a diet overlay method. The bioassays showed that the resistance to Cry1A.105 in H. zea was inherited as a single, autosomal, nonrecessive gene. The nonrecessive nature of the resistance could be an important factor contributing to the widespread resistance of maize hybrids containing Cry1A.105 in the United States. The results indicate that resistance management strategies for Bt crops need to be refined to ensure that they are effective in delaying resistance evolution for nonrecessive resistance (nonhigh dose).
Collapse
Affiliation(s)
- Wenbo Yu
- Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
| | | | - Fangneng Huang
- Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
| |
Collapse
|
24
|
Abstract
Overwintering success is an important determinant of arthropod populations that must be considered as climate change continues to influence the spatiotemporal population dynamics of agricultural pests. Using a long-term monitoring database and biologically relevant overwintering zones, we modeled the annual and seasonal population dynamics of a common pest, Helicoverpa zea (Boddie), based on three overwintering suitability zones throughout North America using four decades of soil temperatures: the southern range (able to persist through winter), transitional zone (uncertain overwintering survivorship), and northern limits (unable to survive winter). Our model indicates H. zea population dynamics are hierarchically structured with continental-level effects that are partitioned into three geographic zones. Seasonal populations were initially detected in the southern range, where they experienced multiple large population peaks. All three zones experienced a final peak between late July (southern range) and mid-August to mid-September (transitional zone and northern limits). The southern range expanded by 3% since 1981 and is projected to increase by twofold by 2099 but the areas of other zones are expected to decrease in the future. These changes suggest larger populations may persist at higher latitudes in the future due to reduced low-temperature lethal events during winter. Because H. zea is a highly migratory pest, predicting when populations accumulate in one region can inform synchronous or lagged population development in other regions. We show the value of combining long-term datasets, remotely sensed data, and laboratory findings to inform forecasting of insect pests.
Collapse
|
25
|
Resistance Allele Frequency to Cry1Ab and Vip3Aa20 in Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae) in Louisiana and Three Other Southeastern U.S. States. Toxins (Basel) 2022; 14:toxins14040270. [PMID: 35448879 PMCID: PMC9028807 DOI: 10.3390/toxins14040270] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/31/2022] [Accepted: 04/02/2022] [Indexed: 01/27/2023] Open
Abstract
The corn earworm/bollworm, Helicoverpa zea (Boddie), is a pest species that is targeted by both Bacillus thuringiensis (Bt) maize and cotton in the United States. Cry1Ab and Vip3Aa20 are two common Bt toxins that are expressed in transgenic maize. The objective of this study was to determine the resistance allele frequency (RAF) to Cry1Ab and Vip3Aa20 in H. zea populations that were collected during 2018 and 2019 from four southeastern U.S. states: Louisiana, Mississippi, Georgia, and South Carolina. By using a group-mating approach, 104 F2 iso-lines of H. zea were established from field collections with most iso-lines (85) from Louisiana. These F2 iso-lines were screened for resistance alleles to Cry1Ab and Vip3Aa20, respectively. There was no correlation in larval survivorship between Cry1Ab and Vip3Aa20 when the iso-lines were exposed to these two toxins. RAF to Cry1Ab maize was high (0.256) and the RAFs were similar between Louisiana and the other three states and between the two sampling years. In contrast, no functional major resistance allele (RA) that allowed resistant insects to survive on Vip3Aa20 maize was detected and the expected RAF of major RAs with 95% probability was estimated to 0 to 0.0073. However, functional minor RAs to Vip3Aa20 maize were not uncommon; the estimated RAF for minor alleles was 0.028. The results provide further evidence that field resistance to Cry1Ab maize in H. zea has widely occurred, while major RAs to Vip3Aa20 maize are uncommon in the southeastern U.S. region. Information that was generated from this study should be useful in resistance monitoring and refinement of resistance management strategies to preserve Vip3A susceptibility in H. zea.
Collapse
|
26
|
Reisig DD, DiFonzo C, Dively G, Farhan Y, Gore J, Smith J. Best Management Practices to Delay the Evolution of Bt Resistance in Lepidopteran Pests Without High Susceptibility to Bt Toxins in North America. JOURNAL OF ECONOMIC ENTOMOLOGY 2022; 115:26-36. [PMID: 34922393 DOI: 10.1093/jee/toab247] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Indexed: 06/14/2023]
Abstract
Canadian and United States (US) insect resistance management (IRM) programs for lepidopteran pests in Bacillus thuriengiensis (Bt)-expressing crops are optimally designed for Ostrinia nubilalis Hübner in corn (Zea mays L.) and Chloridea virescens Fabricius in cotton (Gossypium hirsutum L.). Both Bt corn and cotton express a high dose for these pests; however, there are many other target pests for which Bt crops do not express high doses (commonly referred to as nonhigh dose pests). Two important lepidopteran nonhigh dose (low susceptibility) pests are Helicoverpa zea Boddie (Lepidoptera: Noctuidae) and Striacosta albicosta Smith (Lepidoptera: Noctuidae). We highlight both pests as cautionary examples of exposure to nonhigh dose levels of Bt toxins when the IRM plan was not followed. Moreover, IRM practices to delay Bt resistance that are designed for these two ecologically challenging and important pests should apply to species that are more susceptible to Bt toxins. The purpose of this article is to propose five best management practices to delay the evolution of Bt resistance in lepidopteran pests with low susceptibility to Bt toxins in Canada and the US: 1) better understand resistance potential before commercialization, 2) strengthen IRM based on regional pest pressure by restricting Bt usage where it is of little benefit, 3) require and incentivize planting of structured corn refuge everywhere for single toxin cultivars and in the southern US for pyramids, 4) integrate field and laboratory resistance monitoring programs, and 5) effectively use unexpected injury thresholds.
Collapse
Affiliation(s)
- Dominic D Reisig
- Department of Entomology and Plant Pathology, North Carolina State University, Vernon G. James Research and Extension Center, 207 Research Station Road, Plymouth, NC, 27962, USA
| | - Chris DiFonzo
- Department of Entomology, Michigan State University, 288 Farm Lane, East Lansing, MI, 48824, USA
| | - Galen Dively
- Department of Entomology, University of Maryland, College Park, MD, 20742, USA
| | - Yasmine Farhan
- Department of Plant Agriculture, University of Guelph Ridgetown Campus, 120 Main Street East, Ridgetown, ON, N0P 2C0, Canada
| | - Jeff Gore
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, P.O. Box 197, Stoneville, MS, 38776, USA
| | - Jocelyn Smith
- Department of Plant Agriculture, University of Guelph Ridgetown Campus, 120 Main Street East, Ridgetown, ON, N0P 2C0, Canada
| |
Collapse
|
27
|
Genome evolution in an agricultural pest following adoption of transgenic crops. Proc Natl Acad Sci U S A 2021; 118:2020853118. [PMID: 34930832 PMCID: PMC8719884 DOI: 10.1073/pnas.2020853118] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2021] [Indexed: 12/14/2022] Open
Abstract
Evolution of resistance to management approaches in agricultural landscapes is common and results in economic losses. Early detection of pest resistance prior to significant crop damage would benefit the agricultural community. It has been hypothesized that new genomic approaches could track molecular signals of emerging resistance and trigger efforts to preempt widespread damage. We tested this hypothesis by quantifying genomic changes in the pest Helicoverpa zea over a 15-y period concurrent with commercialization of transgenic Bacillus thuringiensis–expressing crops and their subsequent loss of efficacy. Our results demonstrate the complex nature of evolution in agricultural ecosystems and provide insight into the potential and pitfalls of using genomic approaches for resistance monitoring. Replacing synthetic insecticides with transgenic crops for pest management has been economically and environmentally beneficial, but these benefits erode as pests evolve resistance. It has been proposed that novel genomic approaches could track molecular signals of emerging resistance to aid in resistance management. To test this, we quantified patterns of genomic change in Helicoverpa zea, a major lepidopteran pest and target of transgenic Bacillus thuringiensis (Bt) crops, between 2002 and 2017 as both Bt crop adoption and resistance increased in North America. Genomic scans of wild H. zea were paired with quantitative trait locus (QTL) analyses and showed the genomic architecture of field-evolved Cry1Ab resistance was polygenic, likely arising from standing genetic variation. Resistance to pyramided Cry1A.105 and Cry2Ab2 toxins was controlled by fewer loci. Of the 11 previously described Bt resistance genes, 9 showed no significant change over time or major effects on resistance. We were unable to rule out a contribution of aminopeptidases (apns), as a cluster of apn genes were found within a Cry-associated QTL. Molecular signals of emerging Bt resistance were detectable as early as 2012 in our samples, and we discuss the potential and pitfalls of whole-genome analysis for resistance monitoring based on our findings. This first study of Bt resistance evolution using whole-genome analysis of field-collected specimens demonstrates the need for a more holistic approach to examining rapid adaptation to novel selection pressures in agricultural ecosystems.
Collapse
|
28
|
Calvin W, Yang F, Brown SA, Catchot AL, Crow WD, Cook DR, Gore J, Kurtz R, Lorenz GM, Seiter NJ, Stewart SD, Towles T, Kerns DL. Development of Economic Thresholds Toward Bollworm (Lepidoptera: Noctuidae), Management in Bt Cotton, and Assessment of the Benefits From Treating Bt Cotton With Insecticide. JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:2493-2504. [PMID: 34625803 DOI: 10.1093/jee/toab173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Indexed: 06/13/2023]
Abstract
Widespread field-evolved resistance of bollworm [Helicoverpa zea (Boddie)] to Cry1 and Cry2 Bt proteins has threatened the utility of Bt cotton for managing bollworm. Consequently, foliar insecticide applications have been widely adopted to provide necessary additional control. Field experiments were conducted across the Mid-South and in Texas to devise economic thresholds for foliar insecticide applications targeting bollworm in cotton. Bt cotton technologies including TwinLink (TL; Cry1Ab+Cry2Ae), TwinLink Plus (TLP; Cry1Ab+Cry2Ae+Vip3Aa), Bollgard II (BG2; Cry1Ac+Cry2Ab), Bollgard 3 (BG3; Cry1Ac+Cry2Ab+Vip3Aa), WideStrike (WS; Cry1Ac+Cry1F), WideStrike 3 (WS3; Cry1Ac+Cry1F+Vip3Aa), and a non-Bt (NBT) variety were evaluated. Gain threshold, economic injury level, and economic thresholds were determined. A 6% fruiting form injury threshold was selected and compared with preventive treatments utilizing chlorantraniliprole. Additionally, the differences in yield from spraying bollworms was compared among Bt cotton technologies. The 6% fruiting form injury threshold resulted in a 25 and 75% reduction in insecticide applications relative to preventive sprays for WS and BG2, respectively. All Bt technologies tested in the current study exhibited a positive increase in yield from insecticide application. The frequency of yield increase from spraying WS was comparable to that of NBT. Significant yield increases due to insecticide application occurred less frequently in triple-gene Bt cotton. However, their frequencies were close to the dual-gene Bt cotton, except for WS. The results of our study suggest that 6% fruiting form injury is a viable threshold, and incorporating a vetted economic threshold into an Integrated Pest Management program targeting bollworm should improve the sustainability of cotton production.
Collapse
Affiliation(s)
- Wilfrid Calvin
- Department of Entomology, Texas A&M University, 2475 TAMU, College Station, TX 77843, USA
| | - Fei Yang
- Department of Entomology, Texas A&M University, 2475 TAMU, College Station, TX 77843, USA
| | - Sebe A Brown
- Dean Lee Research Station, Louisisana State University, 8105 Tom Bowman Drive, Alexandria, LA 71302, USA
| | - Angus L Catchot
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, P.O. Box 9775, Mississippi State, MS 39762, USA
| | - Whitney D Crow
- Delta REC, Mississippi State University, P.O. Box 197, Stoneville, MS 38776, USA
| | - Donald R Cook
- Delta REC, Mississippi State University, P.O. Box 197, Stoneville, MS 38776, USA
| | - Jeffrey Gore
- Delta REC, Mississippi State University, P.O. Box 197, Stoneville, MS 38776, USA
| | - Ryan Kurtz
- Cotton Incorporated, 6399 Weston Pkwy, Cary, NC 27513, USA
| | - Gustav M Lorenz
- Department of Entomology and Plant Pathology, University of Arkansas, 2001 Highway 70 E., Lonoke, AR 72086, USA
| | - Nicholas J Seiter
- Crop Sciences, 380 National Soybean Research Center, University of Illinois, 1101 W. Peabody Drive, Urbana, IL 61801, USA
| | - Scott D Stewart
- West Tennessee REC, University of Tennessee, 605 Airways Boulevard, Jackson, TN 38301, USA
| | - Tyler Towles
- Macon Ridge Research Station, Louisisana State University, 212A Macon Ridge Road, Winnsboro, LA 71295, USA
| | - David L Kerns
- Department of Entomology, Texas A&M University, 2475 TAMU, College Station, TX 77843, USA
| |
Collapse
|
29
|
Dorman SJ, Hopperstad KA, Reich BJ, Majumder S, Kennedy G, Reisig DD, Greene JK, Reay-Jones FP, Collins G, Bacheler JS, Huseth AS. Landscape-level variation in Bt crops predict Helicoverpa zea (Lepidoptera: Noctuidae) resistance in cotton agroecosystems. PEST MANAGEMENT SCIENCE 2021; 77:5454-5462. [PMID: 34333843 DOI: 10.1002/ps.6585] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 07/25/2021] [Accepted: 08/01/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Helicoverpa zea (Boddie) damage to Bt cotton and maize has increased as a result of widespread Bt resistance across the USA Cotton Belt. Our objective was to link Bt crop production patterns to cotton damage through a series of spatial and temporal surveys of commercial fields to understand how Bt crop production relates to greater than expected H. zea damage to Bt cotton. To do this, we assembled longitudinal cotton damage data that spanned the Bt adoption period, collected cotton damage data since Bt resistance has been detected, and estimated local population susceptibility using replicated on-farm studies that included all Bt pyramids marketed in cotton. RESULTS Significant year effects of H. zea damage frequency in commercial cotton were observed throughout the Bt adoption period, with a recent damage increase after 2012. Landscape-level Bt crop production intensity over time was positively associated with the risk of H. zea damage in two- and three-toxin pyramided Bt cotton. Helicoverpa zea damage also varied across Bt toxin types in spatially replicated on-farm studies. CONCLUSIONS Landscape-level predictors of H. zea damage in Bt cotton can be used to identify heightened Bt resistance risk areas and serves as a model to understand factors that drive pest resistance evolution to Bt toxins in the southeastern United States. These results provide a framework for more effective insect resistance management strategies to be used in combination with conventional pest management practices that improve Bt trait durability while minimizing the environmental footprint of row crop agriculture. © 2021 Society of Chemical Industry. This article has been contributed to by US Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Seth J Dorman
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
- USDA-ARS Forage Seed and Cereal Research Unit, Corvallis, OR, USA
| | - Kristen A Hopperstad
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Brian J Reich
- Department of Statistics, North Carolina State University, Raleigh, NC, USA
| | - Suman Majumder
- Department of Statistics, North Carolina State University, Raleigh, NC, USA
| | - George Kennedy
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Dominic D Reisig
- Department of Entomology and Plant Pathology, North Carolina State University, Vernon James Research and Extension Center, Plymouth, NC, USA
| | - Jeremy K Greene
- Department of Plant and Environmental Sciences, Clemson University, Edisto Research and Education Center, Blackville, SC, USA
| | - Francis Pf Reay-Jones
- Department of Plant and Environmental Sciences, Clemson University, Pee Dee Research and Education Center, Florence, SC, USA
| | - Guy Collins
- Department of Crop and Soil Science, North Carolina State University, Raleigh, NC, USA
| | - Jack S Bacheler
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Anders S Huseth
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
30
|
Dorman SJ, Kudenov MW, Lytle AJ, Griffith EH, Huseth AS. Computer vision for detecting field-evolved lepidopteran resistance to Bt maize. PEST MANAGEMENT SCIENCE 2021; 77:5236-5245. [PMID: 34310008 DOI: 10.1002/ps.6566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/15/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Resistance evolution of lepidopteran pests to Bacillus thuringiensis (Bt) toxins produced in maize and cotton is a significant issue worldwide. Effective toxin stewardship requires reliable detection of field-evolved resistance to enable the implementation of mitigation strategies. Currently, visual estimates of maize injury are used to document changing susceptibility. In this study, we evaluated an existing maize injury monitoring protocol used to estimate Bt resistance levels in Helicoverpa zea (Lepidoptera: Noctuidae). RESULTS We detected high interobserver variability across multiple injury metrics, suggesting that the precision and accuracy of maize injury detection could be improved. To do this, we developed a computer vision-based algorithm to measure H. zea injury. Algorithm estimates were more accurate and precise than a sample of human observers. Moreover, observer estimates tended to overpredict H. zea injury, which may increase the false-positive rate, leading to prophylactic insecticide application and unnecessary regulatory action. CONCLUSIONS Automated detection and tracking of lepidopteran resistance evolution to Bt toxins are critical for genetically engineered crop stewardship to prevent the use of additional insecticides to combat resistant pests. Advantages of this computerized screening are: (i) standardized Bt injury metrics in space and time, (ii) preservation of digital data for cross-referencing when thresholds are reached, and (iii) the ability to increase sample sizes significantly. This technological solution represents a significant step toward improving confidence in resistance monitoring efforts among researchers, regulators and the agricultural biotechnology industry.
Collapse
Affiliation(s)
- Seth J Dorman
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Michael W Kudenov
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, USA
| | - Amanda J Lytle
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Emily H Griffith
- Department of Statistics, North Carolina State University, Raleigh, NC, USA
| | - Anders S Huseth
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
31
|
Yang F, Kerns DL, Little NS, Santiago González JC, Tabashnik BE. Early Warning of Resistance to Bt Toxin Vip3Aa in Helicoverpa zea. Toxins (Basel) 2021; 13:618. [PMID: 34564622 PMCID: PMC8473270 DOI: 10.3390/toxins13090618] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 11/17/2022] Open
Abstract
Evolution of resistance by pests can reduce the benefits of crops genetically engineered to produce insecticidal proteins from Bacillus thuringiensis (Bt). Because of the widespread resistance of Helicoverpa zea to crystalline (Cry) Bt toxins in the United States, the vegetative insecticidal protein Vip3Aa is the only Bt toxin produced by Bt corn and cotton that remains effective against some populations of this polyphagous lepidopteran pest. Here we evaluated H. zea resistance to Vip3Aa using diet bioassays to test 42,218 larvae from three lab strains and 71 strains derived from the field during 2016 to 2020 in Arkansas, Louisiana, Mississippi, Tennessee, and Texas. Relative to the least susceptible of the three lab strains tested (BZ), susceptibility to Vip3Aa of the field-derived strains decreased significantly from 2016 to 2020. Relative to another lab strain (TM), 7 of 16 strains derived from the field in 2019 were significantly resistant to Vip3Aa, with up to 13-fold resistance. Susceptibility to Vip3Aa was significantly lower for strains derived from Vip3Aa plants than non-Vip3Aa plants, providing direct evidence of resistance evolving in response to selection by Vip3Aa plants in the field. Together with previously reported data, the results here convey an early warning of field-evolved resistance to Vip3Aa in H. zea that supports calls for urgent action to preserve the efficacy of this toxin.
Collapse
Affiliation(s)
- Fei Yang
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA; (D.L.K.); (J.C.S.G.)
| | - David L. Kerns
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA; (D.L.K.); (J.C.S.G.)
| | | | - José C. Santiago González
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA; (D.L.K.); (J.C.S.G.)
| | | |
Collapse
|
32
|
Rosenheim JA. Control Failures Following Insecticide Applications in Commercial Agriculture: How Often Do They Occur? A Case Study of Lygus hesperus (Hemiptera: Miridae) Control in Cotton. JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:1415-1419. [PMID: 33860308 DOI: 10.1093/jee/toab067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Indexed: 06/12/2023]
Abstract
Although surveys of pest populations documenting evolved insecticide resistance often suggest abundant potential for insecticide control failures, studies documenting the actual occurrence of such failures in commercial agriculture are rare. If farmers currently practice adaptive management, abandoning the use of insecticides once resistance emerges, actual control failures could be rare. Here I use data gathered by independent pest management consultants to describe a case study of the realized efficacy of commercial field applications of insecticides, examining the control of Lygus hesperus Knight on cotton. On average, insecticides reduced target pest populations to 19% of their preapplication densities. Short-term efficacy of insecticides was variable, but only one severe control failure was observed (1 of 50, 2%). The rarity of severe control failures observed in this study is in agreement with the few other studies conducted in commercial settings, but additional research is needed to assess the generality of this result. Although pesticides can cause longer-term problems, including target pest resurgences and secondary pest outbreaks, risk-averse attitudes among farmers coupled with relatively consistent short-term insecticide efficacy may be potent forces propelling farmers toward the use of insecticides.
Collapse
Affiliation(s)
- Jay A Rosenheim
- Department of Entomology and Nematology, University of California-Davis, Davis, CA, USA
| |
Collapse
|