1
|
Dong X, Huang Y, Pei Y, Chen L, Tan T, Xiang F, Li C, Fu L. A larval expressed chemosensory protein involved in recognition of anthocyanins in Spodoptera litura (Lepidoptera: Noctuidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2024; 117:2413-2424. [PMID: 39484807 DOI: 10.1093/jee/toae239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/21/2024] [Accepted: 10/05/2024] [Indexed: 11/03/2024]
Abstract
Anthocyanins are secondary metabolites which act as diverse functions during plant growth. Insects can discriminate host plants by their sensitive gustatory systems. It is hypothetical that chemosensory proteins (CSPs) play a crucial role in regulating this behavioral process. However, the underlying molecular mechanisms remain obscure. In the present study, we characterized a CSP SlitCSP8 from the Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae). Quantitative real-time-polymerase chain reaction analysis demonstrated that SlitCSP8 was mainly expressed in the head of the 7th S. litura larvae, especially labrum. Further, recombinant SlitCSP8 was obtained using bacterial expression system. Fluorescence competitive binding assays demonstrated that the purified SlitCSP8 exhibited a strong binding affinity to anthocyanins, a natural compound derived from the host plant. Silencing SlitCSP8 through RNAi significantly reduced the sensitivity of S. litura larvae to anthocyanins-treated leaf disks, the development from larva to pupae was not affected. These data provide insight into the molecular basis that CSP8 can detect anthocyanins in host plants by chemosensory system of insects. It can be further used in designing novel optimal food attractant targeting to the CSPs for pest control.
Collapse
Affiliation(s)
- Xiaolin Dong
- Department of Entomology, MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, China
| | - Yaling Huang
- Department of Entomology, MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, China
- Department of Biotechnology, Key Laboratory of Ecological Environment and Information Atlas (Putian University) Fujian Provincial University, Putian, Fujian, China
| | - Yanfang Pei
- Department of Entomology, MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, China
| | - Ling Chen
- Department of Entomology, MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, China
| | - Tianliang Tan
- Department of Entomology, MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, China
| | - Fayun Xiang
- Department of Entomology, Industrial Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Chuanren Li
- Department of Entomology, MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, China
| | - Lijun Fu
- Department of Biotechnology, Key Laboratory of Ecological Environment and Information Atlas (Putian University) Fujian Provincial University, Putian, Fujian, China
| |
Collapse
|
2
|
Yin N, Shen D, Liang Y, Wang P, Li Y, Liu N. A Female-Biased Chemosensory Protein PxutCSP19 in the Antennae of Papilio xuthus Tuned to Host Volatiles and Insecticides. INSECTS 2024; 15:501. [PMID: 39057234 PMCID: PMC11276849 DOI: 10.3390/insects15070501] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024]
Abstract
Chemosensory protein (CSP) genes significantly enriched in the female antennae are potential molecular candidates for mediating female oviposition behaviors. In this study, we presented the interaction mechanisms of a female-antenna-biased PxutCSP19 in Papilio xuthus to 47 host volatiles, four biopesticides and 24 synthetic insecticides. Using a bioinformatics-based homology search, 22 genes orthologous to PxutCSP19 were identified from 22 other Papilio butterflies with high sequence identities to each other (73.20~98.72%). Multiple alignment analyses revealed a particularly extended N-terminus of Papilio CSP19s (an average of 154 residues) compared to insects' typical CSPs (approximately 120 residues). The expression profiles indicated that PxutCSP19 was significantly enriched in the female antennae, with a 31.81-fold difference relative to the male antennae. In ligand-binding assays, PxutCSP19 could strongly bind six host odorants with high affinities, ranging from dissociation constant (Ki) values of 20.44 ± 0.64 μM to 22.71 ± 0.73 μM. Notably, this protein was tuned to a monoterpenoid alcohol, linalool, which generally existed in the Rutaceae plants and elicited electrophysiological and behavioral activities of the swallowtail butterfly. On the other hand, PxutCSP19 was also capable of binding eight insecticides with stronger binding abilities (Ki < 12 μM) compared to host odorants. When an extended N-terminal region of PxutCSP19 was truncated into two different proteins, they did not significantly affect the binding of PxutCSP19 to ligands with high affinities, suggesting that this extended N-terminal sequences were not involved in the specificity of ligand recognition. Altogether, our study sheds light on the putative roles of PxutCSP19 enriched in the female antennae of P. xuthus in the perception of host volatiles and the sequestering of insecticides, and it complements the knowledge of butterfly CSPs in olfaction and insecticide resistance.
Collapse
Affiliation(s)
- Ningna Yin
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China; (N.Y.); (D.S.); (Y.L.); (P.W.)
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming 650224, China
| | - Dan Shen
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China; (N.Y.); (D.S.); (Y.L.); (P.W.)
| | - Yinlan Liang
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China; (N.Y.); (D.S.); (Y.L.); (P.W.)
| | - Pengfei Wang
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China; (N.Y.); (D.S.); (Y.L.); (P.W.)
| | - Yonghe Li
- College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Naiyong Liu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China; (N.Y.); (D.S.); (Y.L.); (P.W.)
| |
Collapse
|
3
|
Xi BX, Cui XN, Shang SQ, Li GW, Dewer Y, Li CN, Hu GX, Wang Y. Antennal Transcriptome Evaluation and Analysis for Odorant-Binding Proteins, Chemosensory Proteins, and Suitable Reference Genes in the Leaf Beetle Pest Diorhabda rybakowi Weise (Coleoptera: Chrysomelidae). INSECTS 2024; 15:251. [PMID: 38667381 PMCID: PMC11050234 DOI: 10.3390/insects15040251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/14/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024]
Abstract
Diorhabda rybakowi Weise is one of the dominant pests feeding on Nitraria spp., a pioneer plant used for windbreaking and sand fixation purposes, and poses a threat to local livestock and ecosystems. To clarify the key olfactory genes of D. rybakowi and provide a theoretical basis for attractant and repellent development, the optimal reference genes under two different conditions (tissue and sex) were identified, and the bioinformatics and characterization of the tissue expression profiles of two categories of soluble olfactory proteins (OBPs and CSPs) were investigated. The results showed that the best reference genes were RPL13a and RPS18 for comparison among tissues, and RPL19 and RPS18 for comparison between sexes. Strong expressions of DrybOBP3, DrybOBP6, DrybOBP7, DrybOBP10, DrybOBP11, DrybCSP2, and DrybCSP5 were found in antennae, the most important olfactory organ for D. rybakowi. These findings not only provide a basis for further in-depth research on the olfactory molecular mechanisms of host-specialized pests but also provide a theoretical basis for the future development of new chemical attractants or repellents using volatiles to control D. rybakowi.
Collapse
Affiliation(s)
- Bo-Xin Xi
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China; (B.-X.X.); (Y.W.)
| | - Xiao-Ning Cui
- Key Laboratory for Grassland Ecosystem of Education Ministry, College of Pratacultural, Gansu Agricultural University, Lanzhou 730070, China; (C.-N.L.); (G.-X.H.)
| | - Su-Qin Shang
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China; (B.-X.X.); (Y.W.)
| | - Guang-Wei Li
- College of Life Science, Yan’an University, Yan’an 716000, China;
| | - Youssef Dewer
- Phytotoxicity Research Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, 7 Nadi El-Seid Street, Giza 12618, Egypt;
| | - Chang-Ning Li
- Key Laboratory for Grassland Ecosystem of Education Ministry, College of Pratacultural, Gansu Agricultural University, Lanzhou 730070, China; (C.-N.L.); (G.-X.H.)
| | - Gui-Xin Hu
- Key Laboratory for Grassland Ecosystem of Education Ministry, College of Pratacultural, Gansu Agricultural University, Lanzhou 730070, China; (C.-N.L.); (G.-X.H.)
| | - Yan Wang
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China; (B.-X.X.); (Y.W.)
| |
Collapse
|
4
|
Yin MZ, Li JQ, Liu Q, Ma S, Hu ZZ, Liu XZ, Wang CW, Yao WC, Zhu XY, Wang YY, Li JB, Zhang YN. Binding properties of chemosensory protein 12 in Riptortus pedestris to aggregation pheromone (E)-2-hexenyl (Z)-3-hexenoate. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 194:105513. [PMID: 37532328 DOI: 10.1016/j.pestbp.2023.105513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/08/2023] [Accepted: 06/29/2023] [Indexed: 08/04/2023]
Abstract
Riptortus pedestris (bean bug), a common soybean pest, has a highly developed olfactory system to find hosts for feeding and oviposition. Chemosensory proteins (CSPs) have been identified in many insect species; however, their functions in R. pedestris remain unknown. In this study, quantitative real time-polymerase chain reaction (qRT-PCR) revealed that the expression of RpedCSP12 in the adult antennae of R. pedestris increased with age. Moreover, a significant difference in the expression levels of RpedCSP12 was observed between male and female antennae at one and three days of age. We also investigated the binding ability of RpedCSP12 to different ligands using a prokaryotic expression system and fluorescence competitive binding assays. We found that RpedCSP12 only bound to one aggregation pheromone, (E)-2-hexenyl (Z)-3-hexenoate, and its binding decreased with increasing pH. Furthermore, homology modelling, molecular docking, and site-directed mutagenesis revealed that the Y27A, L74A, and L85A mutants lost their binding ability to (E)-2-hexenyl (Z)-3-hexenoate. Our findings highlight the olfactory roles of RpedCSP12, providing insights into the mechanism by which RpedCSPs bind to aggregation pheromones. Therefore, our study can be used as a theoretical basis for the population control of R. pedestris in the future.
Collapse
Affiliation(s)
- Mao-Zhu Yin
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China; Suzhou Academy of Agricultural Sciences, Suzhou 234000, China
| | - Jian-Qiao Li
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Qiang Liu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Sai Ma
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | | | - Xing-Zhou Liu
- Suzhou Academy of Agricultural Sciences, Suzhou 234000, China
| | - Chao-Wei Wang
- Suzhou Academy of Agricultural Sciences, Suzhou 234000, China
| | - Wei-Chen Yao
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Xiu-Yun Zhu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Yue-Ying Wang
- Suzhou Academy of Agricultural Sciences, Suzhou 234000, China.
| | - Jin-Bu Li
- Suzhou Academy of Agricultural Sciences, Suzhou 234000, China; Suzhou Vocational and Technical College, Suzhou 234000, China.
| | - Ya-Nan Zhang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China.
| |
Collapse
|
5
|
Guo P, Hao E, Li H, Yang X, Lu P, Qiao H. Expression Pattern and Ligand Binding Characteristics Analysis of Chemosensory Protein SnitCSP2 from Sirex nitobei. INSECTS 2023; 14:583. [PMID: 37504589 PMCID: PMC10380366 DOI: 10.3390/insects14070583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/29/2023]
Abstract
Sirex nitobei is an important wood-boring wasp to conifers native to Asia, causing considerable economic and ecological damage. However, the current control means cannot achieve better efficiency, and it is expected to clarify the molecular mechanism of protein-ligand binding for effective pest control. This study analyzed the expression pattern of CSP2 in S. nitobei (SnitCSP2) and its features of binding to the screened ligands using molecular docking and dynamic simulations. The results showed that SnitCSP2 was significantly expressed in female antennae. Molecular docking and dynamic simulations revealed that SnitCSP2 bound better to the host plant volatile (+)-α-pinene and symbiotic fungal volatiles terpene and (-)-globulol than other target ligands. By the molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) method, the free binding energies of the three complexes were calculated as -44.813 ± 0.189 kJ/mol, -50.446 ± 0.396 kJ/mol, and -56.418 ± 0.368 kJ/mol, and the van der Waals energy was found to contribute significantly to the stability of the complexes. Some key amino acid residues were also identified: VAL13, GLY14, LYS61, MET65, and LYS68 were important for the stable binding of (+)-α-pinene by SnitCSP2, while for terpenes, ILE16, ALA25, TYR26, CYS29, GLU39, THR37, and GLY40 were vital for a stable binding system. We identified three potential ligands and analyzed the interaction patterns of the proteins with them to provide a favorable molecular basis for regulating insect behavioral interactions and developing new pest control strategies.
Collapse
Affiliation(s)
- Pingping Guo
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, School of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Enhua Hao
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, School of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Han Li
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, School of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Xi Yang
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, School of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Pengfei Lu
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, School of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Haili Qiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| |
Collapse
|