1
|
Fu S, Chen X, Wang K, Chen J, Zhou J, Yi W, Lyu M, Ye Z, Bu W. Shared phylogeographic patterns and environmental responses of co-distributed soybean pests: Insights from comparative phylogeographic studies of Riptortus pedestris and Riptortus linearis in the subtropics of East Asia. Mol Phylogenet Evol 2024; 195:108055. [PMID: 38485106 DOI: 10.1016/j.ympev.2024.108055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/31/2024] [Accepted: 03/07/2024] [Indexed: 03/19/2024]
Abstract
Comparative phylogeographic studies of closely related species sharing co-distribution areas can elucidate the role of shared historical factors and environmental changes in shaping their phylogeographic pattern. The bean bugs, Riptortus pedestris and Riptortus linearis, which both inhabit subtropical regions in East Asia, are recognized as highly destructive soybean pests. Many previous studies have investigated the biological characteristics, pheromones, chemicals and control mechanisms of these two pests, but few studies have explored their phylogeographic patterns and underlying factors. In this study, we generated a double-digest restriction site-associated DNA sequencing (ddRAD-seq) dataset to investigate phylogeographic patterns and construct ecological niche models (ENM) for both Riptortus species. Our findings revealed similar niche occupancies and population genetic structures between the two species, with each comprising two phylogeographic lineages (i.e., the mainland China and the Indochina Peninsula clades) that diverged approximately 0.1 and 0.3 million years ago, respectively. This divergence likely resulted from the combined effects of temperatures variation and geographical barriers in the mountainous regions of Southwest China. Further demographic history and ENM analyses suggested that both pests underwent rapid expansion prior to the Last Glacial Maximum (LGM). Furthermore, ENM predicts a northward shift of both pests into new soybean-producing regions due to global warming. Our study indicated that co-distribution soybean pests with overlapping ecological niches and similar life histories in subtropical regions of East Asia exhibit congruent phylogeographic and demographic patterns in response to shared historical biogeographic drivers.
Collapse
Affiliation(s)
- Siying Fu
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xin Chen
- College of Life Sciences, Cangzhou Normal University, Cangzhou, China(2)
| | - Kaibin Wang
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Juhong Chen
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jiayue Zhou
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Wenbo Yi
- Department of Biology, Xinzhou Normal University, Xinzhou, Shanxi, China(2)
| | - Minhua Lyu
- Nanchang University, Affiliated Hospital 1, Jiangxi, China(2)
| | - Zhen Ye
- College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Wenjun Bu
- College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
2
|
Xu H, Chen S, Wang Y, Pan J, Liu X, Wang C, Wang X, Cui X, Chen X, Li J, Rasmann S. A Faboideae-Specific Floral Scent Betrays Seeds to an Important Granivore Pest. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12668-12677. [PMID: 37590199 DOI: 10.1021/acs.jafc.3c03196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Seed predation by insect herbivores reduces crop production worldwide. Foraging on seeds at pre-dispersal generally means that females need to find the suitable host plant within a relatively short timeframe in order to synchronize larval development with seed production. The mechanistic understanding of host finding by seed pests can be harnessed for more sustainable pest management strategies. We here studied the chemical communication between the bean bug Riptortus pedestris, a major pest of legumes, and several crop species and cultivars in the Fabaceae. Via a comparative chemical analysis, we found that 1-octen-3-ol is the principal constituent of the floral scents of most species tested in the subfamily Faboideae, including soybean and faba bean. With field trapping and laboratory bioassays, including electroantennography, we further revealed that this compound can be perceived, and stimulate attraction responses, by R. pedestris nymphs and adults. The addition of 1-octen-3-ol to pheromone traps might therefore improve trapping efficacy for controlling populations of this important granivore pest on legumes.
Collapse
Affiliation(s)
- Hao Xu
- College of Plant Protection, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu 210095, China
| | - Shuwei Chen
- College of Plant Protection, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu 210095, China
| | - Yueying Wang
- Institute of Plant Protection, Suzhou Academy of Agricultural Sciences, Suzhou, Anhui 234000, China
| | - Jinzhi Pan
- Centre of Plant Protection, Fuyang Academy of Agricultural Sciences, Fuyang, Anhui 236000, China
| | - Xingzhou Liu
- Institute of Plant Protection, Suzhou Academy of Agricultural Sciences, Suzhou, Anhui 234000, China
| | - Chaowei Wang
- Institute of Plant Protection, Suzhou Academy of Agricultural Sciences, Suzhou, Anhui 234000, China
| | - Xinxia Wang
- College of Plant Protection, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu 210095, China
| | - Xiaoyan Cui
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, Jiangsu 210095, China
| | - Xin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, Jiangsu 210095, China
| | - Jinbu Li
- College of Plant Protection, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu 210095, China
- Institute of Plant Protection, Suzhou Academy of Agricultural Sciences, Suzhou, Anhui 234000, China
- Suzhou Vocational and Technical College, Suzhou, Anhui 234000, China
| | - Sergio Rasmann
- Institute of Biology, University of Neuchâtel, Rue-Emile-Argand 11, Neuchâtel 2000, Switzerland
| |
Collapse
|