1
|
Robinson K, Duffield KR, Ramirez JL, Cohnstaedt LW, Ashworth A, Jesudhasan PR, Arsi K, Morales Ramos JA, Rojas MG, Crippen TL, Shanmugasundaram R, Vaughan M, Webster C, Sealey W, Purswell JL, Oppert B, Neven L, Cook K, Donoghue AM. MINIstock: Model for INsect Inclusion in sustainable agriculture: USDA-ARS's research approach to advancing insect meal development and inclusion in animal diets. JOURNAL OF ECONOMIC ENTOMOLOGY 2024; 117:1199-1209. [PMID: 38961669 DOI: 10.1093/jee/toae130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/23/2024] [Accepted: 06/05/2024] [Indexed: 07/05/2024]
Abstract
Animal agriculture is under pressure to increase efficiency, sustainability, and innovation to meet the demands of a rising global population while decreasing adverse environmental effects. Feed cost and availability are 2 of the biggest hurdles to sustainable production. Current diets depend on sources of grain and animal byproduct protein for essential amino acids which have limited sustainability. Insects have arisen as an attractive, sustainable alternative protein source for animal diets due to their favorable nutrient composition, low space and water requirements, and natural role in animal diets. Additionally, insects are capable of bioremediating waste streams including agricultural and food waste, manure, and plastics helping to increase their sustainability. The insect rearing industry has grown rapidly in recent years and shows great economic potential. However, state-of-the-art research is urgently needed to overcome barriers to adoption in commercial animal diets such as regulatory restrictions, production scale issues, and food safety concerns. To address this need, the USDA Agricultural Research Service "MINIstoc: Model for INsect Inclusion" project was created to bring together diverse scientists from across the world to synergistically advance insect meal production and inclusion in animal diets. Here, we provide a short review of insects as feed while describing the MINIstock project which serves as the inspiration for the Journal of Economic Entomology Special Collection "Insects as feed: sustainable solutions for food waste and animal production practices."
Collapse
Affiliation(s)
| | - Kristin R Duffield
- USDA-ARS, National Center for Agricultural Utilization Research, Crop Bioprotection Research, Peoria, IL, USA
| | - José L Ramirez
- USDA-ARS, National Center for Agricultural Utilization Research, Crop Bioprotection Research, Peoria, IL, USA
| | - Lee W Cohnstaedt
- USDA-ARS, National Bio and Agro-Defense Facility, Foreign Arthropod Borne Animal Disease Research, Manhattan, KS, USA
| | - Amanda Ashworth
- USDA-ARS, Poultry Production and Product Safety Research, Fayetteville, AR, USA
| | - Palmy R Jesudhasan
- USDA-ARS, Poultry Production and Product Safety Research, Fayetteville, AR, USA
| | - Komala Arsi
- USDA-ARS, Poultry Production and Product Safety Research, Fayetteville, AR, USA
| | - Juan A Morales Ramos
- USDA-ARS, National Biological Control Laboratory, Biological Control of Pests Research, Stoneville, MS, USA
| | - M Guadalupe Rojas
- USDA-ARS, National Biological Control Laboratory, Biological Control of Pests Research, Stoneville, MS, USA
| | - Tawni L Crippen
- USDA-ARS, Food and Feed Safety Research, College Station, TX, USA
| | | | - Martha Vaughan
- USDA-ARS, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research, Peoria, IL, USA
| | - Carl Webster
- USDA-ARS, Aquatic Animal Health Research, Auburn, AL, USA
| | - Wendy Sealey
- USDA-ARS, Bozeman Fish Technology Center, Bozeman, MT, USA
| | | | - Brenda Oppert
- USDA-ARS, Center for Grain and Animal Health Research, Stored Product Insect and Engineering Research, Manhattan, KS, USA
| | - Lisa Neven
- USDA-ARS, Temperate Tree Fruit and Vegetable Research, Wapato, WA, USA
| | - Kim Cook
- USDA-ARS, Beltsville, Beltsville, MD, USA
| | - Annie M Donoghue
- USDA-ARS, Poultry Production and Product Safety Research, Fayetteville, AR, USA
| |
Collapse
|
2
|
Cohnstaedt LW, Lado P, Ewing R, Cherico J, Brabec D, Shults P, Wagner R, Chaskopoulou A. Conceptualization, design, and construction of a novel insect mass trapping device: the USDA Biomass Harvest Trap (USDA-BHT). JOURNAL OF ECONOMIC ENTOMOLOGY 2024; 117:1269-1272. [PMID: 38963914 DOI: 10.1093/jee/toae129] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/07/2024] [Accepted: 06/03/2024] [Indexed: 07/06/2024]
Abstract
The use of insects as animal feed has the potential to be a green revolution for animal agriculture as insects are a rich source of high-quality protein. Insect farming must overcome challenges such as product affordability and scalability before it can be widely incorporated as animal feed. An alternative is to harvest insect pests from the environment using mass trapping devices and use them as animal feed. For example, intensive agricultural environments generate large quantities of pestiferous insects and with the right harvest technologies, these insects can be used as a protein supplement in traditional animal daily rations. Most insect trapping devices are limited by the biomass they can collect. In that context, and with the goal of using wild collected insects as animal feed, the United States Department of Agriculture-Biomass Harvest Trap (USDA-BHT) was designed and built. The USDA-BHT is a valuable mass trapping device developed to efficiently attract, harvest, and store flying insects from naturally abundant agricultural settings. The trap offers a modular design with adjustable capabilities, and it is an inexpensive device that can easily be built with commonly available parts and tools. The USDA-BHT is also user-friendly and has customizable attractants to target various pest species.
Collapse
Affiliation(s)
- Lee W Cohnstaedt
- National Bio and Agro-Defense Facility, USDA Agricultural Research Service (ARS), Manhattan, KS, USA
| | - Paula Lado
- National Bio and Agro-Defense Facility, USDA Agricultural Research Service (ARS), Manhattan, KS, USA
| | - Robert Ewing
- National Bio and Agro-Defense Facility, USDA Agricultural Research Service (ARS), Manhattan, KS, USA
| | - Jason Cherico
- Center for Grain and Animal Health Research, USDA Agricultural Research Service (ARS), Manhattan, KS, USA
| | - Daniel Brabec
- Center for Grain and Animal Health Research, USDA Agricultural Research Service (ARS), Manhattan, KS, USA
| | - Phillip Shults
- Center for Grain and Animal Health Research, USDA Agricultural Research Service (ARS), Manhattan, KS, USA
| | - Roy Wagner
- Center for Grain and Animal Health Research, USDA Agricultural Research Service (ARS), Manhattan, KS, USA
| | | |
Collapse
|
3
|
Lado P, Rogers DC, Cernicchiaro N, Swistek S, Van Nest K, Shults P, Ewing RD, Okeson D, Brabec D, Cohnstaedt LW. Assessment of the USDA Biomass Harvest Trap (USDA-BHT) device as an insect harvest and mosquito surveillance tool. JOURNAL OF ECONOMIC ENTOMOLOGY 2024; 117:1235-1241. [PMID: 38970358 DOI: 10.1093/jee/toae095] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/21/2024] [Accepted: 04/22/2024] [Indexed: 07/08/2024]
Abstract
Insects are a promising source of high-quality protein, and the insect farming industry will lead to higher sustainability when it overcomes scaling up, cost effectiveness, and automation. In contrast to insect farming (raising and breeding insects as livestock), wild insect harvesting (collecting agricultural insect pests), may constitute a simple sustainable animal protein supplementation strategy. For wild harvest to be successful sufficient insect biomass needs to be collected while simultaneously avoiding the collection of nontarget insects. We assessed the performance of the USDA Biomass Harvest Trap (USDA-BHT) device to collect flying insect biomass and as a mosquito surveillance tool. The USDA-BHT device was compared to other suction traps commonly used for mosquito surveillance (Centers for Disease Control and Prevention (CDC) light traps, Encephalitis virus surveillance traps, and Biogents Sentinel traps). The insect biomass harvested in the USDA-BHT was statistically higher than the one harvested in the other traps, however the mosquito collections between traps were not statistically significantly different. The USDA-BHT collected some beneficial insects, although it was observed that their collection was minimized at night. These findings coupled with the fact that sorting time to separate the mosquitoes from the other collected insects was significantly longer for the USDA-BHT, indicate that the use of this device for insect biomass collection conflicts with its use as an efficient mosquito surveillance tool. Nevertheless, the device efficiently collected insect biomass, and thus can be used to generate an alternative protein source for animal feed.
Collapse
Affiliation(s)
- Paula Lado
- National Bio and Agro-Defense Facility, USDA Agricultural Research Service (ARS), P.O. Box 1807, Manhattan, KS 66505, USA
| | - D Christopher Rogers
- Kansas Biological Survey, and The Biodiversity Institute, University of Kansas, Lawrence, KS 66047, USA
| | - Natalia Cernicchiaro
- College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Sabrina Swistek
- College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA
| | - Kortnee Van Nest
- National Bio and Agro-Defense Facility, USDA Agricultural Research Service (ARS), P.O. Box 1807, Manhattan, KS 66505, USA
- College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Phillip Shults
- Center for Grain and Animal Health Research, USDA Agricultural Research Service (ARS), 1515 College Ave., Manhattan, KS 66502, USA
| | - Robert D Ewing
- National Bio and Agro-Defense Facility, USDA Agricultural Research Service (ARS), P.O. Box 1807, Manhattan, KS 66505, USA
| | - Danelle Okeson
- Rolling Hills Zoo, 625 N Hedville Road, Salina, KS 67401, USA
| | - Daniel Brabec
- Center for Grain and Animal Health Research, USDA Agricultural Research Service (ARS), 1515 College Ave., Manhattan, KS 66502, USA
| | - Lee W Cohnstaedt
- National Bio and Agro-Defense Facility, USDA Agricultural Research Service (ARS), P.O. Box 1807, Manhattan, KS 66505, USA
| |
Collapse
|