1
|
Guo Q, Zu M, Liu D, Yan Y, Yang W, Xu K. Roles of Vitellogenin and Its Receptor Genes in Female Reproduction of the Cigarette Beetle, Lasioderma serricorne. INSECTS 2025; 16:175. [PMID: 40003805 PMCID: PMC11857020 DOI: 10.3390/insects16020175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/04/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025]
Abstract
Vitellogenin (Vg) and the vitellogenin receptor (VgR) play essential roles in insect reproductive development. However, the functions of Vg and VgR genes in Lasioderma serricorne, an important insect pest of stored products, are unknown. We identified and characterized these two genes, designated LsVg and LsVgR, in L. serricorne. The open reading frames of LsVg and LsVgR were 5232 and 5529 bp, encoding 1743 and 1842 amino acid residues, respectively. Both LsVg and LsVgR were predominantly expressed in female adults and exhibited the highest expression in ovaries. The RNAi-mediated silencing of LsVg or LsVgR significantly decreased the average length of ovarian tubes and oocytes and severely affected ovarian development. The Knockdown of LsVg or LsVgR significantly reduced the oviposition period, the number of eggs laid, and the egg hatching rate. Females injected with dsLsVg and dsLsVg + VgR were found to had decreased vitellogenin content. The co-silencing of LsVg and LsVgR had a more pronounced effect on reducing the oviposition period and female fecundity in L. serricorne. This study revealed the importance of LsVg and LsVgR in regulating female reproduction and shows their potential as targets for RNAi-based control of L. serricorne.
Collapse
Affiliation(s)
| | | | | | | | | | - Kangkang Xu
- Key Laboratory of Surveillance and Management of Invasive Alien Species in Guizhou Education Department, College of Biological and Environmental Engineering, Guiyang University, Guiyang 550005, China; (Q.G.); (M.Z.); (D.L.); (Y.Y.); (W.Y.)
| |
Collapse
|
2
|
Zhu Y, Han R, Zhang T, Yang J, Teng Z, Fan Y, Sun P, Lu Y, Ren Y, Wan F, Zhou H. The Food Source and Gut Bacteria Show Effects on the Invasion of Alien Pests-A Case of Bactrocera dorsalis (Hendel) (Diptera: Tephritidae). INSECTS 2024; 15:530. [PMID: 39057264 PMCID: PMC11277068 DOI: 10.3390/insects15070530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/11/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024]
Abstract
How alien pests invade new areas has always been a hot topic in invasion biology. The spread of the Bactrocera dorsalis from southern to northern China involved changes in food sources. In this paper, in controlled conditions, we take Bactrocera dorsalis as an example to study how plant host transformation affects gut bacteria by feeding it its favorite host oranges in the south, its favorite host peaches and apples in the north, and feeding it cucumbers as a non-favorite host plant, thereby further affecting their fitness during invasion. The result showed that, after three generations of feeding on cucumbers, Bactrocera dorsalis took longer to develop as a larva while its longevity and fecundity decreased and pre-adult mortality increased. Feeding it cucumbers significantly reduced the overall diversity of gut microbiota of Bactrocera dorsalis. The relative abundance of Enterobacter necessary for survival decreased, while the Empedobacter and Enterococcus increased, resulting in decreased carbohydrate transport and metabolism and increased lipid transport and metabolism. Feeding Bactrocera dorsalis Empedobacter brevis and Enterococcus faecalis resulted in a 26% increase in pre-adult mortality and a 2-3 d increase in adult preoviposition period (APOP). Additionally, Enterococcus faecalis decreased the longevity of female and male adults by 17 and 12 d, respectively, and decreased fecundity by 11%. We inferred that the shifted plant hosts played an important role in posing serious harm to Bactrocera dorsalis invading from the south to the north. Therefore, after an invasion of Bactrocera dorsalis into northern China, it is difficult to colonize cucumbers for a long time, but there is still a risk of short-term harm. The findings of this study have established that the interactions between an insect's food source and gut bacteria may have an important effect on insect invasions.
Collapse
Affiliation(s)
- Yanfei Zhu
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Centre for Bio-Invasions and Eco-Security, China-Australia Cooperative Research Center for Crop Health and Biological Invasions, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China; (Y.Z.); (R.H.); (T.Z.); (J.Y.); (Z.T.); (Y.F.); (F.W.)
| | - Rui Han
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Centre for Bio-Invasions and Eco-Security, China-Australia Cooperative Research Center for Crop Health and Biological Invasions, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China; (Y.Z.); (R.H.); (T.Z.); (J.Y.); (Z.T.); (Y.F.); (F.W.)
| | - Tong Zhang
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Centre for Bio-Invasions and Eco-Security, China-Australia Cooperative Research Center for Crop Health and Biological Invasions, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China; (Y.Z.); (R.H.); (T.Z.); (J.Y.); (Z.T.); (Y.F.); (F.W.)
| | - Jiawen Yang
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Centre for Bio-Invasions and Eco-Security, China-Australia Cooperative Research Center for Crop Health and Biological Invasions, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China; (Y.Z.); (R.H.); (T.Z.); (J.Y.); (Z.T.); (Y.F.); (F.W.)
| | - Ziwen Teng
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Centre for Bio-Invasions and Eco-Security, China-Australia Cooperative Research Center for Crop Health and Biological Invasions, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China; (Y.Z.); (R.H.); (T.Z.); (J.Y.); (Z.T.); (Y.F.); (F.W.)
| | - Yinjun Fan
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Centre for Bio-Invasions and Eco-Security, China-Australia Cooperative Research Center for Crop Health and Biological Invasions, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China; (Y.Z.); (R.H.); (T.Z.); (J.Y.); (Z.T.); (Y.F.); (F.W.)
| | - Pengdong Sun
- Special Food Research Institute, Qingdao Agricultural University, Qingdao 266109, China;
| | - Yongyue Lu
- Department of Entomology, South China Agricultural University, Guangzhou 510642, China;
| | - Yonglin Ren
- College of Environmental and Life Sciences, Murdoch University, Murdoch, WA 6150, Australia;
| | - Fanghao Wan
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Centre for Bio-Invasions and Eco-Security, China-Australia Cooperative Research Center for Crop Health and Biological Invasions, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China; (Y.Z.); (R.H.); (T.Z.); (J.Y.); (Z.T.); (Y.F.); (F.W.)
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 510642, China
| | - Hongxu Zhou
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Centre for Bio-Invasions and Eco-Security, China-Australia Cooperative Research Center for Crop Health and Biological Invasions, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China; (Y.Z.); (R.H.); (T.Z.); (J.Y.); (Z.T.); (Y.F.); (F.W.)
| |
Collapse
|
3
|
Nobre ICDS, Coelho RR, de Souza FMC, Reis MA, Torres JB, Antonino JD. Insights from different reproductive gene knockdowns via RNA interference in the lady beetle Eriopis connexa: Establishing a new model for molecular studies on natural enemies. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 116:e22125. [PMID: 38973236 DOI: 10.1002/arch.22125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/22/2024] [Accepted: 06/04/2024] [Indexed: 07/09/2024]
Abstract
Insect pest control can be achieved by the application of RNA interference (RNAi), a key molecular tool in functional genomics. Whereas most RNAi research has focused on insect pests, few studies have been performed on natural enemies. Validating the efficacy of RNAi in natural enemies is crucial for assessing its safety and enabling molecular research on these organisms. Here, we assessed the efficacy of RNAi in the ladybird beetle Eriopis connexa Germar (Coleoptera: Coccinellidae), focusing on genes related to reproduction, such as vitellogenin (Vg) and its receptor (VgR). In the transcriptome of E. connexa, we found one VgR (EcVgR) and two Vg genes (EcVg1 and EcVg2). These genes have been validated by in silico analyses of functional domains and evolutionary relationships. Five-day-old females were injected with 500 ng/µL of a specific double-stranded RNA (dsRNA) (dsEcVg1, dsEcVg2, or dsEcVgR) for RNAi tests, while nonspecific dsRNA (dsGFP or dsAgCE8.1) was used as a control. Interestingly, dsEcVg2 was able to knockdown both Vg genes, while dsEcVg1 could silence only EcVg1. Additionally, the viability of the eggs was significantly reduced when both Vg genes were knocked down at the same time (after treatment with dsEcVg2 or "dsEcVg1+dsEcVg2"). Ultimately, malformed, nonviable eggs were produced when EcVgR was silenced. Interestingly, no dsRNA treatment had an impact on the quantity of eggs laid. Therefore, the feasibility of RNAi in E. connexa has been confirmed, suggesting that this coccinellid is an excellent Neotropical model for molecular research on natural enemies and for studying RNAi nontarget effects.
Collapse
Affiliation(s)
| | - Roberta Ramos Coelho
- Departamento de Agronomia-Entomologia, Universidade Federal Rural Pernambuco, Recife, Brazil
| | | | - Manoely Abreu Reis
- Departamento de Agronomia-Entomologia, Universidade Federal Rural Pernambuco, Recife, Brazil
| | - Jorge Braz Torres
- Departamento de Agronomia-Entomologia, Universidade Federal Rural Pernambuco, Recife, Brazil
| | - José Dijair Antonino
- Departamento de Agronomia-Entomologia, Universidade Federal Rural Pernambuco, Recife, Brazil
| |
Collapse
|
4
|
Liu XP, Liu CY, Feng YJ, Guo XK, Zhang LS, Wang MQ, Li YY, Zeng FR, Nolan T, Mao JJ. Male vitellogenin regulates gametogenesis through a testis-enriched big protein in Chrysopa pallens. INSECT MOLECULAR BIOLOGY 2024; 33:17-28. [PMID: 37707297 DOI: 10.1111/imb.12873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/30/2023] [Indexed: 09/15/2023]
Abstract
In insects, vitellogenin (Vg) is generally viewed as a female-specific protein. Its primary function is to supply nutrition to developing embryos. Here, we reported Vg from the male adults of a natural predator, Chrysopa pallens. The male Vg was depleted by RNAi. Mating with Vg-deficient male downregulated female Vg expression, suppressed ovarian development and decreased reproductive output. Whole-organism transcriptome analysis after male Vg knockdown showed no differential expression of the known spermatogenesis-related regulators and seminal fluid protein genes, but a sharp downregulation of an unknown gene, which encodes a testis-enriched big protein (Vcsoo). Separate knockdown of male Vg and Vcsoo disturbed the assembly of spermatid cytoplasmic organelles in males and suppressed the expansion of ovary germarium in mated females. These results demonstrated that C. pallens male Vg signals through the downstream Vcsoo and regulates male and female reproduction.
Collapse
Affiliation(s)
- Xiao-Ping Liu
- Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Chang-Yan Liu
- Institute of Food Crops, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Food Crop Germplasm and Genetic, Wuhan, People's Republic of China
| | - Yan-Jiao Feng
- Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Xing-Kai Guo
- Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Li-Sheng Zhang
- Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Meng-Qing Wang
- Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Yu-Yan Li
- Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Fan-Rong Zeng
- Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Tony Nolan
- Liverpool School of Tropical Medicine, Liverpool, UK
| | - Jian-Jun Mao
- Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| |
Collapse
|
5
|
Duan TF, Li L, Wang HC, Pang BP. MicroRNA miR-2765-3p regulates reproductive diapause by targeting FoxO in Galeruca daurica. INSECT SCIENCE 2023; 30:279-292. [PMID: 35731017 DOI: 10.1111/1744-7917.13089] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/07/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
The forkhead box O (FoxO), as a conserved transcription factor, plays an indispensable role in regulating insect diapause. However, how FoxO is regulated to control diapause in insects remains unknown. In this study, we discovered functional binding sites for miR-2765-3p in the 3' untranslated region of FoxO in Galeruca daurica. The luciferase reporter assay showed that miR-2765-3p targeted FoxO and suppressed its expression. The expression profiles of miR-2765-3p and FoxO displayed opposite patterns during the female developmental process. Overexpression of miR-2765-3p by the injection of the miR-2765-3p agomir into adult females reduced FoxO expression, leading to the suppression of lipid accumulation, promotion of ovarian development, and inhibition of reproductive diapause. This is similar to the phenotype that results from the depletion of FoxO by injecting dsFoxO into adult females. In addition, the repression of miR-2765-3p by injecting the miR-2765-3p antagomir increased the FoxO transcript level, leading to the stimulation of lipid accumulation, depression of ovarian development, and induction of reproductive diapause. A hormone injection assay showed that the juvenile hormone (JH) agonist (methoprene) upregulated miR-2765-3p and downregulated FoxO. Notably, injecting methoprene rescued ovarian development defects associated with miR-2765-3p inhibition. These findings indicate that the JH/miR-2765-3p/FoxO axis plays a vital role in the regulation of reproductive diapause in G. daurica.
Collapse
Affiliation(s)
- Tian-Feng Duan
- Research Center for Grassland Entomology, Inner Mongolia Agricultural University, Hohhot, China
| | - Ling Li
- Research Center for Grassland Entomology, Inner Mongolia Agricultural University, Hohhot, China
| | - Hai-Chao Wang
- Research Center for Grassland Entomology, Inner Mongolia Agricultural University, Hohhot, China
| | - Bao-Ping Pang
- Research Center for Grassland Entomology, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
6
|
Hua D, Li X, Yuan J, Tao M, Zhang K, Zheng X, Wan Y, Gui L, Zhang Y, Wu Q. Fitness cost of spinosad resistance related to vitellogenin in Frankliniella occidentalis (Pergande). PEST MANAGEMENT SCIENCE 2023; 79:771-780. [PMID: 36264641 DOI: 10.1002/ps.7253] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/20/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND The western flower thrips Frankliniella occidentalis, a worldwide agricultural pest, has developed resistance to an array of insecticides. Spinosad resistance confers an apparent fitness cost in F. occidentalis. In the present study, we compared the reproductive capacities, ovary development, and the expression of the vitellogenin (Vg) gene in spinosad-susceptible (Ivf03) and -resistant (NIL-R) near isogenetic lines of F. occidentalis in order to clarify the reason for the fitness cost in spinosad resistance. RESULTS The NIL-R strain exhibited a 17.9% decrease in fecundity (eggs laid per female) as compared to the Ivf03 strain, and the ovariole was significantly shortened by 2.8% in the NIL-R strain relative to the Ivf03 strain. Compared to the Ivf03 strain, the expression levels of Vg mRNA and protein were downregulated by 33.7% and 32.9% in the NIL-R strain, respectively. Moreover, interference with the Vg gene significantly reduced the expression levels of Vg mRNA and protein, and decreased ovariole length, survival rates and the fecundity of both strains. CONCLUSION The results indicate that the downregulated expression of Vg may contribute to the reduction of ovariole length and consequently to a fitness cost in spinosad-resistant F. occidentalis. The results not only increase our understanding of the evolution of insecticide resistance, but also could contribute to the formulation of control strategy of F. occidentalis. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Dengke Hua
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Institute of Agricultural Quality Standards and Testing Technology Research, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Nutritional Quality and Safety of Agro Products, Wuhan, China
| | - Xiaoyu Li
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Hubei Biopesticide Engineering Research Centre, Wuhan, China
| | - Jiangjiang Yuan
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Min Tao
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaobin Zheng
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanran Wan
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lianyou Gui
- Department of Entomology, College of Agriculture, Yangtze University, Jingzhou, China
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Entomology, College of Agriculture, Yangtze University, Jingzhou, China
| | - Qingjun Wu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
7
|
Molecular Characterization of Vitellogenin and Its Receptor in Spodoptera frugiperda (J. E. Smith, 1797), and Their Function in Reproduction of Female. Int J Mol Sci 2022; 23:ijms231911972. [PMID: 36233286 PMCID: PMC9569576 DOI: 10.3390/ijms231911972] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 12/05/2022] Open
Abstract
The fall armyworm Spodoptera frugiperda is a highly polyphagous invasive pest. The strong reproductive capacity is an important factor in the rapid colonization and expansion of S. frugiperda. Vitellogenin (Vg) and vitellogenin receptor (VgR) play important roles in insect reproduction. As the precursor of vitellin (Vn), Vg provides essential nutrition for embryonic development, and VgR mediates the uptake of Vg by oocytes. In this context, we cloned and characterized these two genes of S. frugiperda (SfVg and SfVgR) and evaluated their expression profiles in different developmental stages and tissues. The RNA interference experiment was used to investigate their function in vitellogenesis. The ORF values of SfVg and SfVgR were 5250 and 5445 bp, encoding 1749 and 1815 amino acid residues, respectively. The qRT-PCR results revealed that both SfVg and SfVgR were highly expressed in female adults; SfVg was specifically expressed in the fat body, whereas SfVgR was highly expressed in the ovary. In addition, the depletion of either SfVg or SfVgR hindered oocyte maturation and ovarian development, leading to a significant decrease in fecundity. The present study reveals the importance of SfVg and SfVgR in the vitellogenesis of S. frugiperda, laying a theoretical foundation for the development of pollution-free pest control strategies with SfVg and SfVgR as new targets.
Collapse
|
8
|
Bibliometric Analyses of Web of Science Illuminate Research Advances of Neuropterida. INSECTS 2022; 13:insects13050464. [PMID: 35621799 PMCID: PMC9147768 DOI: 10.3390/insects13050464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/01/2022] [Accepted: 05/12/2022] [Indexed: 02/04/2023]
Abstract
Neuropterida is a relatively primitive group of Holometabola. There are about 6500 extant species. Many species of this group are natural enemies and can prey on a variety of agricultural pests. In order to understand the leading research institutions, researchers and research contents, and to predict the future research directions of Neuropterida, the Web of Science core database, from January 1995 to September 2021, was searched with the theme of “Neuropterida or Neuroptera or Megaloptera or Raphidioptera or Lacewing”. The results showed that the United States and China published relatively more publications than other countries. In addition, researchers from these two countries had more cooperation with other countries. China Agricultural University ranked the highest in the number of publications and centrality in this field. In addition, it was found that the early research focused on the biological control of Neuropterida by analyzing the keyword burst, whereas the more recent research focused on the phylogeny of Neuropterida. As the first representative chromosome-level genome of Neuropterida has been published, the future research of Neuropterida will focus on the genomic studies and molecular mechanisms of their morphological characters, behavior, historical evolution and so on.
Collapse
|
9
|
Lam EK, Abegaz M, Gunderson AR, Tsukimura B, Stillman JH. Interactions Between Temperature Variability and Reproductive Physiology Across Traits in an Intertidal Crab. Front Physiol 2022; 13:796125. [PMID: 35350692 PMCID: PMC8957995 DOI: 10.3389/fphys.2022.796125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
Thermal extremes alter population processes, which can result in part from temperature-induced movement at different spatial and temporal scales. Thermal thresholds for animal movement likely change based on underlying thermal physiology and life-history stage, a topic that requires greater study. The intertidal porcelain crab Petrolisthes cinctipes currently experiences temperatures that can reach near-lethal levels in the high-intertidal zone at low tide. However, the thermal thresholds that trigger migration to cooler microhabitats, and the extent to which crabs move in response to temperature, remain unknown. Moreover, the influence of reproductive status on these thresholds is rarely investigated. We integrated demographic, molecular, behavioral, and physiological measurements to determine if behavioral thermal limits varied due to reproductive state. Demographic data showed a trend for gravid, egg bearing, crabs to appear more often under rocks in the cooler intertidal zone where crab density is highest. In situ expression of 31 genes related to stress, metabolism, and growth in the field differed significantly based on intertidal elevation, with mid-intertidal crabs expressing the gene for the reproductive yolk protein vitellogenin (vg) earlier in the season. Furthermore, VG protein levels were shown to increase with density for female hemolymph. Testing for temperatures that elicit movement revealed that gravid females engage in heat avoidance behavior at lower temperatures (i.e., have a lower voluntary thermal maximum, VTmax) than non-gravid females. VTmax was positively correlated with the temperature of peak firing rate for distal afferent nerve fibers in the walking leg, a physiological relationship that could correspond to the mechanistic underpinning for temperature dependent movement. The vulnerability of marine organisms to global change is predicated by their ability to utilize and integrate physiological and behavioral strategies in response to temperature to maximize survival and reproduction. Interactions between fine-scale temperature variation and reproductive biology can have important consequences for the ecology of species, and is likely to influence how populations respond to ongoing climate change.
Collapse
Affiliation(s)
- Emily K. Lam
- Estuary and Ocean Science Center, San Francisco State University, Tiburon, CA, United States
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, United States
- Department of Biology, San Francisco State University, San Francisco, CA, United States
- *Correspondence: Emily K. Lam,
| | - Metadel Abegaz
- Estuary and Ocean Science Center, San Francisco State University, Tiburon, CA, United States
- Department of Biology, San Francisco State University, San Francisco, CA, United States
| | - Alex R. Gunderson
- Estuary and Ocean Science Center, San Francisco State University, Tiburon, CA, United States
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, United States
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA, United States
| | - Brian Tsukimura
- Department of Biology, California State University, Fresno, CA, United States
| | - Jonathon H. Stillman
- Estuary and Ocean Science Center, San Francisco State University, Tiburon, CA, United States
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, United States
- Department of Biology, San Francisco State University, San Francisco, CA, United States
| |
Collapse
|
10
|
Yi J, Li F, Xu C, Liu Y, Hou M. Expression Analyses of Vitellogenin and Target of Rapamycin of Sogatella furcifera (Hemiptera: Delphacidae), and Their Effects on Reproduction. JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:2562-2570. [PMID: 34718630 DOI: 10.1093/jee/toab195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Indexed: 06/13/2023]
Abstract
Vitellogenin (Vg) and the target of rapamycin (TOR) are important genes involved in insect reproduction regulation. In this work, the full lengths of the Vg (SfVg) and TOR (SfTOR) genes of the white-backed planthopper Sogatella furcifera were cloned. The expression pattern in females showed that SfVg was highly expressed in fat bodies, and SfTOR was highly expressed in Malpighian tubules. After silencing SfVg or SfTOR, female adults did not deposit eggs. Their ovarian development was delayed, and yolk protein deposition in the oocytes was reduced. However, wild-type females mated with SfTOR-silenced males could lay eggs and produce offsprings normally. The dissections of testes and accessory glands of males with SfTOR knockdown showed that their development was not affected. Therefore, the silencing of the SfVg or SfTOR genes can effectively inhibit female reproduction, but SfTOR knockdown has no significant effect on male reproductive capacity. Furthermore, silencing SfTOR can cause SfVg expression to decrease significantly. All of the above results revealed that SfVg and SfTOR are essential for white-backed planthopper reproduction and may provide a potential target for pest control.
Collapse
Affiliation(s)
- Jinyu Yi
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fei Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Changyu Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yudi Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Maolin Hou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
11
|
Wang Y, Zhang R, Wang M, Zhang L, Shi CM, Li J, Fan F, Geng S, Liu X, Yang D. The first chromosome-level genome assembly of a green lacewing Chrysopa pallens and its implication for biological control. Mol Ecol Resour 2021; 22:755-767. [PMID: 34549894 PMCID: PMC9292380 DOI: 10.1111/1755-0998.13503] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/04/2021] [Accepted: 09/09/2021] [Indexed: 12/13/2022]
Abstract
Many lacewing species (Insecta: Neuroptera) are important predators of pests with great potential in biological control. So far, there is no chromosome‐level published genome available for Neuroptera. Here we report a high‐quality chromosome‐level reference genome for a green lacewing species Chrysopa pallens (Neuroptera: Chrysopidae), which is one of the most important insect natural enemies used in pest biocontrol. The genome was sequenced using a combination of PacBio and Hi‐C technologies and assembled into seven chromosomes with a total size of 517.21 Mb, occupying 96.07% of the genome sequence. A total of 12,840 protein‐coding genes were identified and approximately 206.21 Mb of repeated sequences were annotated. Phylogenetic analyses indicated that C. pallens diverged from its common ancestor with Tribolium castaneum (Coleoptera) approximately 300 million years ago. The gene families involved in digestion, detoxification, chemoreception, carbohydrate metabolism, immunity, nerves and development were significantly expanded, revealing the potential genomic basis for the polyphagia of C. pallens and its role as an excellent biocontrol agent. This high‐quality genome of C. pallens will provide an important genomic resource for future population genetics, evolutionary and phylogenetic investigations of Chrysopidae as well as comparative genomic studies of Neuropterida and other insects.
Collapse
Affiliation(s)
- Yuyu Wang
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Ruyue Zhang
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Mengqing Wang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lisheng Zhang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Cheng-Min Shi
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Jing Li
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Fan Fan
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Shuo Geng
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Xingyue Liu
- Department of Entomology, China Agricultural University, Beijing, China
| | - Ding Yang
- Department of Entomology, China Agricultural University, Beijing, China
| |
Collapse
|
12
|
Li H, Zhao C, Yang Y, Zhou Z, Qi J, Li C. The Influence of Gut Microbiota on the Fecundity of Henosepilachna vigintioctopunctata (Coleoptera: Coccinellidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2021; 21:15. [PMID: 34415303 PMCID: PMC8378403 DOI: 10.1093/jisesa/ieab061] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Indexed: 06/13/2023]
Abstract
The gut microbiota of insects usually plays an important role in the development and reproduction of their hosts. The fecundity of Henosepilachna vigintioctopunctata (Fabricius) varies greatly when they develop on different host plants. Whether and how the gut microbiota regulates the fecundity of H. vigintioctopunctata was unknown. To address this question, we used 16S rRNA sequencing to analyze the gut microbiomes of H. vigintioctopunctata adults fed on two host plant species (Solanum nigrum and Solanum melongena) and one artificial diet. The development of the ovaries and testes was also examined. Our results revealed that the diversity and abundance of gut microorganisms varied significantly in insects reared on different diets. The gut microbiota of H. vigintioctopunctata raised on the two host plants was similar, with Proteobacteria being the dominant phylum in both groups, whereas Firmicutes was the dominant phylum in the group reared on the artificial diet. The predominant microbiota in the S. nigrum group were Acinetobacter soli and Acinetobacter ursingii (Acinetobacter, Moraxellaceae); Moraxella osloensis (Enhydrobacter, Moraxellaceae); and Empedobacter brevis (Empedobacter, Weeksellaceae). The microbiota in this group are associated with high lipid metabolism. In addition, the beetles' ovaries and testes were more highly developed in the S. nigrum group than in the other two groups. These findings provide valuable information for elucidating the complex roles the gut microbiota play in the fecundity of H. vigintioctopunctata, and may also contribute to developing future novel control strategies involving this economically important pest.
Collapse
Affiliation(s)
- Hanwen Li
- Institute of Entomology, College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
- Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou 434025, Hubei, China
| | - Changwei Zhao
- Institute of Entomology, College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
- Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou 434025, Hubei, China
| | - Yang Yang
- Institute of Entomology, College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
- Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou 434025, Hubei, China
| | - Zhixiong Zhou
- Institute of Entomology, College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
- Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou 434025, Hubei, China
| | - Jingwei Qi
- Institute of Entomology, College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
- Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou 434025, Hubei, China
| | - Chuanren Li
- Institute of Entomology, College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
- Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou 434025, Hubei, China
| |
Collapse
|
13
|
Sontowski R, Gerth M, Richter S, Gruppe A, Schlegel M, van Dam NM, Bleidorn C. Infection Patterns and Fitness Effects of Rickettsia and Sodalis Symbionts in the Green Lacewing Chrysoperla carnea. INSECTS 2020; 11:insects11120867. [PMID: 33297293 PMCID: PMC7762206 DOI: 10.3390/insects11120867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/27/2020] [Accepted: 12/04/2020] [Indexed: 11/16/2022]
Abstract
Simple Summary Bacteria have occupied a wide range of habitats including insect hosts. There they can strongly affect host physiology and ecology in a positive or negative way. Bacteria living exclusively inside other organisms are called endosymbionts. They often establish a long-term and stable association with their host. Although more and more studies focus on endosymbiont–insect interactions, the group of Neuroptera is largely neglected in such studies. We were interested in the common green lacewing (Chrysoperla carnea), a representative of Neuroptera, which is mainly known for its use in biological pest control. We asked ourselves which endosymbionts are present in these lacewings. By screening natural and laboratory populations, we found that the endosymbiont Rickettsia is present in all populations but the symbiont Sodalis only occurred in laboratory populations. We were curious whether both endosymbionts affect reproduction success. Through establishing and studying green lacewing lines carrying different endosymbionts, we found that Rickettsia had no effect on the insect reproduction, while Sodalis reduced the number of eggs laid by lacewings, alone and in co-infections with Rickettsia. The economic and ecological importance of green lacewings in biological pest control warrants a more profound understanding of its biology, which might be strongly influenced by symbionts. Abstract Endosymbionts are widely distributed in insects and can strongly affect their host ecology. The common green lacewing (Chrysoperla carnea) is a neuropteran insect which is widely used in biological pest control. However, their endosymbionts and their interactions with their hosts have not been very well studied. Therefore, we screened for endosymbionts in natural and laboratory populations of Ch. carnea using diagnostic PCR amplicons. We found the endosymbiont Rickettsia to be very common in all screened natural and laboratory populations, while a hitherto uncharacterized Sodalis strain was found only in laboratory populations. By establishing lacewing lines with no, single or co-infections of Sodalis and Rickettsia, we found a high vertical transmission rate for both endosymbionts (>89%). However, we were only able to estimate these numbers for co-infected lacewings. Sodalis negatively affected the reproductive success in single and co-infected Ch. carnea, while Rickettsia showed no effect. We hypothesize that the fitness costs accrued by Sodalis infections might be more tolerable in the laboratory than in natural populations, as the latter are also prone to fluctuating environmental conditions and natural enemies. The economic and ecological importance of lacewings in biological pest control warrants a more profound understanding of its biology, which might be influenced by symbionts.
Collapse
Affiliation(s)
- Rebekka Sontowski
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany; (R.S.); (M.S.); (N.M.v.D.)
- Institute of Biodiversity, Friedrich-Schiller-University, 07743 Jena, Germany
| | - Michael Gerth
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK;
| | - Sandy Richter
- Department of Basic and Clinical Neuroscience, King’s College London, 5 Cutcombe Road, London SE5 9RT, UK;
- Institute of Biology, Molecular Evolution and Systematics of Animals, University of Leipzig, 04109 Leipzig, Germany
| | - Axel Gruppe
- Chair of Zoology—Entomology Group, Technical University of Munich, 85354 Freising, Germany;
| | - Martin Schlegel
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany; (R.S.); (M.S.); (N.M.v.D.)
- Institute of Biology, Molecular Evolution and Systematics of Animals, University of Leipzig, 04109 Leipzig, Germany
| | - Nicole M. van Dam
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany; (R.S.); (M.S.); (N.M.v.D.)
- Institute of Biodiversity, Friedrich-Schiller-University, 07743 Jena, Germany
| | - Christoph Bleidorn
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany; (R.S.); (M.S.); (N.M.v.D.)
- Animal Evolution and Biodiversity, Georg-Augustus-University, 37073 Göttingen, Germany
- Correspondence: ; Tel.: +49-5513925459
| |
Collapse
|
14
|
Wang X, Kong X, Liu S, Huang H, Chen Z, Xu Y. Selection of Reference Genes for Quantitative Real-Time PCR in Chrysoperla nipponensis (Neuroptera: Chrysopidae) Under Tissues in Reproduction and Diapause. JOURNAL OF INSECT SCIENCE (ONLINE) 2020; 20:5893937. [PMID: 32809020 PMCID: PMC7433768 DOI: 10.1093/jisesa/ieaa079] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Indexed: 04/30/2023]
Abstract
Chrysoperla nipponensis (Okamoto), which has the unique diapause phenotype distinguishable from nondiapause adult, is an ideal model organism for studying the mechanism of reproductive diapause. However, there is no reliable and effective reference genes used for the reproductive diapause study of C. nipponensis. Therefore, in this study, we evaluated the expression stability of 10 candidate reference genes (Tub1, Arpc5, EF1a, 128up, RpS5, RpS26e, GAPDH, Arp3, Actin, α-Tub) in adults under diapause and nondiapause induction conditions using four statistical algorithms including GeNorm, NormFinder, Bestkeeper, and ∆CT method. Results showed that Arp3 and Tub1 were the most stable reference genes in all samples and in the adult tissues group. Arp3 and RpS5 were the most stable reference genes in the development degree group. α-Tub and EF1a were unstable reference genes under the conditions of this study. Meanwhile, to verify the reliability of the reference genes, we evaluated the relative expression levels of Vg and VgR in different treatments. Significant upregulation and downregulation in expression level of two genes in response to diapause termination and diapause fat body tissue was, respectively, observed when using Arp3 as the reference gene but not when using an unstable reference gene. The reference genes identified in this work provided not only the basis for future functional genomics research in diapause of C. nipponensis and will also identify reliable normalization factors for real-time quantitative real-time polymerase chain reaction data for other related insects.
Collapse
Affiliation(s)
- Xiao Wang
- Department of Entomology, Shandong Agricultural University, Taian, Shandong, P. R. China
| | - Xue Kong
- Department of Entomology, Shandong Agricultural University, Taian, Shandong, P. R. China
| | - Shaoye Liu
- Department of Entomology, Shandong Agricultural University, Taian, Shandong, P. R. China
| | - Haiyi Huang
- Department of Entomology, Shandong Agricultural University, Taian, Shandong, P. R. China
| | - Zhenzhen Chen
- Department of Entomology, Shandong Agricultural University, Taian, Shandong, P. R. China
| | - Yongyu Xu
- Department of Entomology, Shandong Agricultural University, Taian, Shandong, P. R. China
- Corresponding author, e-mail:
| |
Collapse
|
15
|
Han B, Zhang T, Feng Y, Liu X, Zhang L, Chen H, Zeng F, Wang M, Liu C, Li Y, Cui J, Li Z, Mao J. Two insulin receptors coordinate oogenesis and oviposition via two pathways in the green lacewing, Chrysopa pallens. JOURNAL OF INSECT PHYSIOLOGY 2020; 123:104049. [PMID: 32199917 DOI: 10.1016/j.jinsphys.2020.104049] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/13/2020] [Accepted: 03/16/2020] [Indexed: 06/10/2023]
Abstract
Insulin signalling in insects, as in mammals, regulates various physiological functions, such as reproduction. However, the molecular mechanism by which insulin signals orchestrate ovarian stem cell proliferation, vitellogenesis, and oviposition remains elusive. Here, we investigate the functions of the phosphoinositide 3-kinase (PI3K)-serine/threonine kinase (Akt) pathway, GTPase Ras/mitogen-activated protein kinase (MAPK) pathway, and their downstream messengers in a natural predator, Chrysopa pallens, by the RNAi method. When C. pallens vitellogenin gene 1 (CpVg1) expression was knocked down, the follicle maturation was arrested and total fecundity was reduced. Silencing C. pallens insulin receptor 1 (CpInR1) suppressed Vg transcription and reduced egg mass and hatching rate. Depletion of C. pallens insulin receptor 2 (CpInR2) transcripts lowered Vg transcript level, hampered ovarian development and decreased reproductive output. Knockdown of C. pallens Akt (CpAkt) and C. pallens extracellular-signal-regulated kinase (Cperk) caused phenotypes similar to those caused by knockdown of CpInR2. Disruption of C. pallens transcription factor forkhead box O (CpFoxO) expression caused no significant effects on ovarian development, but sharply impaired total fecundity. Interference with the expression of C. pallens target of rapamycin (CpTor) gene and C. pallens cAMP-response element binding protein (CpCreb) gene led to a down-regulation of Vg transcription, blocking of ovariole growth, and decrease in egg quality. These results suggested the two CpInRs orchestrate oogenesis and oviposition via two signalling pathways to guarantee natural reproduction in the green lacewing, C. pallens.
Collapse
Affiliation(s)
- Benfeng Han
- Key Laboratory for Biology of Plant Diseases and Insect Pests, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Tingting Zhang
- School of Forestry, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Yanjiao Feng
- Key Laboratory for Biology of Plant Diseases and Insect Pests, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaopin Liu
- Key Laboratory for Biology of Plant Diseases and Insect Pests, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lisheng Zhang
- Key Laboratory for Biology of Plant Diseases and Insect Pests, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hongyin Chen
- Key Laboratory for Biology of Plant Diseases and Insect Pests, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fanrong Zeng
- Key Laboratory for Biology of Plant Diseases and Insect Pests, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Mengqing Wang
- Key Laboratory for Biology of Plant Diseases and Insect Pests, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chenxi Liu
- Key Laboratory for Biology of Plant Diseases and Insect Pests, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuyan Li
- Key Laboratory for Biology of Plant Diseases and Insect Pests, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jinjie Cui
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Zhaoqun Li
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, Zhejiang, China
| | - Jianjun Mao
- Key Laboratory for Biology of Plant Diseases and Insect Pests, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
16
|
Jiang J, Zhang Y, Ma L, Niu T, Dong T, Sheng R, Li L, Xu Y, Xi L, Li G. Molecular Characterization of Neoseiulus barkeri Vitellogenin Genes and Vitellogenin Receptor during Reproductive Diapause. INSECTS 2020; 11:insects11040203. [PMID: 32225063 PMCID: PMC7240613 DOI: 10.3390/insects11040203] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/20/2020] [Accepted: 03/24/2020] [Indexed: 11/16/2022]
Abstract
The relationship between reproductive diapause and the genes related to vitellogenin (Vg) and its receptor (VgR) in insectoid ovarian development is still unclear. Accordingly, in the present study, we used hematoxylin and eosin staining to study the ovarian structure in the predatory mite Neoseiulus barkeri, a species that shows promise as a biological pest control agent. Staining revealed the presence of oocytes on ovary surfaces, and the oocytes were deposited as yolk granules through the intake of Vg and other nutrients with the development of the ovary. Development of the ovary stopped at the oocyte stage in diapausing adult mites, and this stage presented the same characteristics as the first day of adulthood in non-diapause female adults, where oocytes with nutrient cells, but no yolk granules are observed. In order to further explore the effects of the Vg gene and its receptor on reproduction, the sequences of the N. barkeri vitellogenin genes NbVg1, NbVg2, NbVg3, and NbVgR were analyzed using bioinformatics, and the expression levels of the NbVgs and the VgR at different developmental stages were determined by quantitative polymerase chain reaction (qPCR). The results showed that the NbVgs and NbVgR have complete domains and that the positions of many conservative regions and conservative motif are consistent. The expression levels of the NbVgs and NbVgR were highest in the ovipositional period, followed by those in the preovipositional period. The expression levels of the NbVgs and the VgR in non-diapause female adult mites were significantly higher than those in reproductive diapause female adult mites.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Guiting Li
- Correspondence: ; Tel.: +86-1395-606-2545
| |
Collapse
|
17
|
Zhang T, He Y, Zeng J, Zhang L, Zeng F, Mao J, Zhang G. Search for Nutritional Fitness Traits in a Biological Pest Control Agent Harmonia axyridis Using Comparative Transcriptomics. Front Physiol 2019; 10:1148. [PMID: 31620008 PMCID: PMC6760036 DOI: 10.3389/fphys.2019.01148] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 08/26/2019] [Indexed: 01/14/2023] Open
Abstract
Harmonia axyridis is an important natural predator used in the biological control of insect pests. Vitellogenin (Vg) supplementation to artificial diet can improve fecundity of H. axyridis, however, the effects of Vg on physiology of H. axyridis at the molecular level is unclear. This study investigated the effects of Vg on the physiology (digestive enzyme activities) and transcriptome patterns by feeding H. axyridis adults with treatment (artificial diet with Vg supplement) and control (artificial diet supplemented with bovine serum albumin (BSA). The transcriptome sequencing yielded 43.94 Gb of clean data, and 3,946 differentially expressed genes (DEGs) - including 93 upregulated and 3,853 downregulated genes between the treatment and control. Six DEGs related to development and digestive enzyme were chosen for quantitative real-time PCR (qRT-PCR) to validate the accuracy of the RNA-seq results and confirmed that the transcriptome analysis yielded reliable results. The Vg supplement has increased activities of digestive enzymes and related genes expression in H. axyridis. The transcript level of digestive enzyme genes (apolipoprotein D and phosphoenolpyruvate carboxykinase) were much higher in adults fed on diet supplemented with Vg compared with that of the control.
Collapse
Affiliation(s)
- Tingting Zhang
- School of Forestry, Northeast Forestry University, Harbin, China
| | - Yulong He
- Business School, Huaqiao University, Quanzhou, China
| | - Jianyong Zeng
- School of Forestry, Northeast Forestry University, Harbin, China
| | - Lisheng Zhang
- Key Laboratory for Biology of Plant Diseases and Insect Pests, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fanrong Zeng
- Key Laboratory for Biology of Plant Diseases and Insect Pests, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianjun Mao
- Key Laboratory for Biology of Plant Diseases and Insect Pests, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guocai Zhang
- School of Forestry, Northeast Forestry University, Harbin, China
| |
Collapse
|
18
|
Effects of cold storage on quality of Chrysopa pallens and recovery of fecundity by insulin. Sci Rep 2019; 9:5311. [PMID: 30926916 PMCID: PMC6440995 DOI: 10.1038/s41598-019-41618-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 03/08/2019] [Indexed: 11/30/2022] Open
Abstract
The green lacewing, Chrysopa pallens Wesmael, is one of the most beneficial and prolific insects found in many horticultural and agricultural cropping system. Here, the effects of low temperature storage on quality of C. pallens were investigated by storing cocoons at 10 °C for different days. Results revealed, after removal from cold storage, emergence rate declined gradually as storage duration increased. After storage of 20 days, the emergence rate in cold-stored group is about 62.8% of that in unstored group. After eclosion, lifetime fecundity, preemergence period, oviposition period and longevity of adults in cold-stored group showed curves similar to emergence rate. However, preoviposition period and egg hatchability were not significantly affected by cold. After being stored for 20 days, the total fecundity of females emerging from cold-stored cocoons was about 64.5% of that of females emerging from unstored cocoons. Six days post emergence, females in cold-stored group showed apparent arrest of ovarian development and significant reductions of protease, lipase and trehalase activities when compared to unstored controls. When bovine insulin was exogenously used, the females emerging from cold-stored cocoons dramatically restored ovarian development and reproductive capacity. These results suggested that C. pallens pupae are suitable for cold storage and insulin hormone can be used as reproduction stimuli in this predatory species after cold storage.
Collapse
|
19
|
Ding L, Chen F, Luo R, Pan Q, Wang C, Yu S, Cong L, Liu H, Li H, Ran C. Gene cloning and difference analysis of vitellogenin in Neoseiulus barkeri (Hughes). BULLETIN OF ENTOMOLOGICAL RESEARCH 2018; 108:141-149. [PMID: 28693644 DOI: 10.1017/s0007485317000591] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Neoseiulus barkeri (HUGHES) is the natural enemy of spider mites, whiteflies and thrips. Screening for chemically-resistant predatory mites is a practical way to balance the contradiction between the pesticide using and biological control. In this study, the number of eggs laid by fenpropathrin-susceptible and resistant strains of N. barkeri was compared. Additionally, we cloned three N. barkeri vitellogenin (Vg) genes and used quantitative real-time polymerase chain reaction to quantify Vg expression in susceptible and resistant strains. The total number of eggs significantly increased in the fenpropathrin-resistant strain. The full-length cDNA cloning of three N. barkeri Vg genes (NbVg1, NbVg2 and NbVg3) revealed that the open reading frames of NbVg1, NbVg2 and NbVg3 were 5571, 5532 and 4728 bp, encoding 1856, 1843 and 1575 amino acids, respectively. The three N. barkeri Vg possessed the Vitellogenin-N domain (or lipoprotein N-terminal domain (LPD_N)), von Willebrand factor type D domain (VWD) and the domain with unknown function 1943 (DUF1943). The NbVg1 and NbVg2 expression levels were significantly higher in the resistant strain than in the susceptible strain, while the NbVg3 expression level was lower in the resistant strain. Thus, we speculate that the increased number of eggs laid by the fenpropathrin-resistant strain of N. barkeri may be a consequence of changes in Vg gene expression.
Collapse
Affiliation(s)
- L Ding
- Citrus Research Institute,Southwest University/Chinese Academy of Agricultural Sciences,Chongqing 400712,China
| | - F Chen
- Sinofert Holdings Limited,Henan Branch,Zhengzhou 450000,China
| | - R Luo
- Citrus Research Institute,Southwest University/Chinese Academy of Agricultural Sciences,Chongqing 400712,China
| | - Q Pan
- Citrus Research Institute,Southwest University/Chinese Academy of Agricultural Sciences,Chongqing 400712,China
| | - C Wang
- Citrus Research Institute,Southwest University/Chinese Academy of Agricultural Sciences,Chongqing 400712,China
| | - S Yu
- Citrus Research Institute,Southwest University/Chinese Academy of Agricultural Sciences,Chongqing 400712,China
| | - L Cong
- Citrus Research Institute,Southwest University/Chinese Academy of Agricultural Sciences,Chongqing 400712,China
| | - H Liu
- Citrus Research Institute,Southwest University/Chinese Academy of Agricultural Sciences,Chongqing 400712,China
| | - H Li
- Citrus Research Institute,Southwest University/Chinese Academy of Agricultural Sciences,Chongqing 400712,China
| | - C Ran
- Citrus Research Institute,Southwest University/Chinese Academy of Agricultural Sciences,Chongqing 400712,China
| |
Collapse
|
20
|
Han B, Zhang S, Zeng F, Mao J. Nutritional and reproductive signaling revealed by comparative gene expression analysis in Chrysopa pallens (Rambur) at different nutritional statuses. PLoS One 2017; 12:e0180373. [PMID: 28683101 PMCID: PMC5500325 DOI: 10.1371/journal.pone.0180373] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 06/14/2017] [Indexed: 11/18/2022] Open
Abstract
Background The green lacewing, Chrysopa pallens Rambur, is one of the most important natural predators because of its extensive spectrum of prey and wide distribution. However, what we know about the nutritional and reproductive physiology of this species is very scarce. Results By cDNA amplification and Illumina short-read sequencing, we analyzed transcriptomes of C. pallens female adult under starved and fed conditions. In total, 71236 unigenes were obtained with an average length of 833 bp. Four vitellogenins, three insulin-like peptides and two insulin receptors were annotated. Comparison of gene expression profiles suggested that totally 1501 genes were differentially expressed between the two nutritional statuses. KEGG orthology classification showed that these differentially expression genes (DEGs) were mapped to 241 pathways. In turn, the top 4 are ribosome, protein processing in endoplasmic reticulum, biosynthesis of amino acids and carbon metabolism, indicating a distinct difference in nutritional and reproductive signaling between the two feeding conditions. Conclusions Our study yielded large-scale molecular information relevant to C. pallens nutritional and reproductive signaling, which will contribute to mass rearing and commercial use of this predaceous insect species.
Collapse
Affiliation(s)
- Benfeng Han
- Key Laboratory for Biology of Plant Diseases and Insect Pests, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shen Zhang
- Key Laboratory for Biology of Plant Diseases and Insect Pests, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fanrong Zeng
- Key Laboratory for Biology of Plant Diseases and Insect Pests, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianjun Mao
- Key Laboratory for Biology of Plant Diseases and Insect Pests, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
21
|
Identification of Development-Related Genes in the Ovaries of Adult Harmonia axyridis (Pallas) Lady Beetles Using a Time- Series Analysis by RNA-seq. Sci Rep 2016; 6:39109. [PMID: 27966611 PMCID: PMC5155419 DOI: 10.1038/srep39109] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 11/17/2016] [Indexed: 01/10/2023] Open
Abstract
Adults of the lady beetle species Harmonia axyridis (Pallas) are bred artificially en masse for classic biological control, which requires egg-laying by the H. axyridis ovary. Development-related genes may impact the growth of the H. axyridis adult ovary but have not been reported. Here, we used integrative time-series RNA-seq analysis of the ovary in H. axyridis adults to detect development-related genes. A total of 28,558 unigenes were functionally annotated using seven types of databases to obtain an annotated unigene database for ovaries in H. axyridis adults. We also analysed differentially expressed genes (DEGs) between samples. Based on a combination of the results of this bioinformatics analysis with literature reports and gene expression level changes in four different stages, we focused on the development of oocyte reproductive stem cell and yolk formation process and identified 26 genes with high similarity to development-related genes. 20 DEGs were randomly chosen for quantitative real-time PCR (qRT-PCR) to validate the accuracy of the RNA-seq results. This study establishes a robust pipeline for the discovery of key genes using high-throughput sequencing and the identification of a class of development-related genes for characterization.
Collapse
|
22
|
Coelho RR, de Souza Júnior JDA, Firmino AAP, de Macedo LLP, Fonseca FCA, Terra WR, Engler G, de Almeida Engler J, da Silva MCM, Grossi-de-Sa MF. Vitellogenin knockdown strongly affects cotton boll weevil egg viability but not the number of eggs laid by females. Meta Gene 2016; 9:173-80. [PMID: 27419079 PMCID: PMC4936639 DOI: 10.1016/j.mgene.2016.06.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 06/23/2016] [Indexed: 12/18/2022] Open
Abstract
Vitellogenin (Vg), a yolk protein precursor, is the primary egg nutrient source involved in insect reproduction and embryo development. The Cotton Boll weevil (CBW) Anthonomus grandis Boheman, the most important cotton pest in Americas, accumulates large amounts of Vg during reproduction. However, the precise role of this protein during embryo development in this insect remains unknown. Herein, we investigated the effects of vitellogenin (AgraVg) knockdown on the egg-laying and egg viability in A. grandis females, and also characterized morphologically the unviable eggs. AgraVg transcripts were found during all developmental stages of A. grandis, with highest abundance in females. Silencing of AgraVg culminated in a significant reduction in transcript amount, around 90%. Despite this transcriptional reduction, egg-laying was not affected in dsRNA-treated females but almost 100% of the eggs lost their viability. Eggs from dsRNA-treated females showed aberrant embryos phenotype suggesting interference at different stages of embryonic development. Unlike for other insects, the AgraVg knockdown did not affect the egg-laying ability of A. grandis, but hampered A. grandis reproduction by perturbing embryo development. We concluded that the Vg protein is essential for A. grandis reproduction and a good candidate to bio-engineer the resistance against this devastating cotton pest.
Collapse
Affiliation(s)
- Roberta R Coelho
- University of Brasília, Brasília, DF, Brazil; Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil
| | | | - Alexandre A P Firmino
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil; Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Leonardo L P de Macedo
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil; Catholic University of Brasília, Brasília, DF, Brazil
| | - Fernando C A Fonseca
- University of Brasília, Brasília, DF, Brazil; Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil
| | | | - Gilbert Engler
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil; Institut National de la Recherche Agronomique, Sophia-Antipolis, France
| | - Janice de Almeida Engler
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil; Institut National de la Recherche Agronomique, Sophia-Antipolis, France
| | | | - Maria Fatima Grossi-de-Sa
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil; Catholic University of Brasília, Brasília, DF, Brazil
| |
Collapse
|