1
|
Yu JJ, Lee SH, Lee CY, Wang C. Multiple mechanisms associated with deltamethrin and imidacloprid resistance in field-collected common bed bug, Cimex lectularius L. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 210:106357. [PMID: 40262879 DOI: 10.1016/j.pestbp.2025.106357] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/14/2025] [Accepted: 02/24/2025] [Indexed: 04/24/2025]
Abstract
Pyrethroids and neonicotinoids are commonly used to manage the common bed bug (Cimex lectularius L.) infestations. However, the effectiveness of these insecticides is often challenged due to insecticide resistance. We investigated the mechanisms of deltamethrin and imidacloprid resistance in eight C. lectularius strains collected from New Jersey, U.S. Piperonyl butoxide (PBO), S,S,S-tributyl phosphorotrithioate (DEF), and diethyl maleate (DEM) were topically applied on bed bugs before deltamethrin or imidacloprid treatments (deltamethrin: 115 ng per adult; imidacloprid: 67 ng per adult). The results showed that PBO and DEF had a greater synergistic effect with deltamethrin treatments than DEM based on the significantly increased 72 h mortality of Aberdeen, Bayonne 2015, Cotton, Irvington, and Irvington 624-5G strains. With imidacloprid alone, seven out of eight strains experienced 100 % mortality except for the Linden 2019 strain. The Linden 2019 strain had mean mortalities of 93, 97, and 47 % from imidacloprid after receiving PBO, DEF, and DEM, respectively. The activities of glutathione S-transferase and general esterase in all strains were enhanced compared to a susceptible strain. Molecular detection of voltage-gated sodium channel (VGSC) mutations revealed homozygous V419L and L925I resistance mutations in all strains at 20-100 % and 30-100 % frequency, respectively. The presence of both V419L and L925I was found in 20-100 % of the individuals from each resistant strain. The results indicate a combination of metabolic and target site insensitivity mechanisms confers resistance to deltamethrin and imidacloprid in C. lectularius.
Collapse
Affiliation(s)
- Jin-Jia Yu
- Department of Entomology, Rutgers University, 96 Lipman Drive, New Brunswick, NJ 08901, USA
| | - Shao-Hung Lee
- Department of Entomology, University of California, Riverside, 165 Citrus Drive, Riverside, CA 92521, USA
| | - Chow-Yang Lee
- Department of Entomology, University of California, Riverside, 165 Citrus Drive, Riverside, CA 92521, USA
| | - Changlu Wang
- Department of Entomology, Rutgers University, 96 Lipman Drive, New Brunswick, NJ 08901, USA.
| |
Collapse
|
2
|
Haberkorn C, Belgaïdi Z, Lasseur R, Vavre F, Varaldi J. Transcriptomic Response to Pyrethroid Treatment in Closely Related Bed Bug Strains Varying in Resistance. Genome Biol Evol 2024; 16:evae158. [PMID: 39031593 PMCID: PMC11376223 DOI: 10.1093/gbe/evae158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/13/2024] [Accepted: 07/12/2024] [Indexed: 07/22/2024] Open
Abstract
The common bed bug, Cimex lectularius, is one of the main human parasites. The world-wide resurgence of this pest is mainly due to globalization, and the spread of insecticide resistance. A few studies have compared the transcriptomes of susceptible and resistant strains; however, these studies usually relied on strains originating from distant locations, possibly explaining their extended candidate gene lists. Here, we compared the transcriptomes of 2 strains originating from the same location and showing low overall genetic differentiation (FST=0.018) but varying in their susceptibility to pyrethroids, before and after insecticide exposure. In sharp contrast with previous studies, only 24 genes showing constitutive differential expression between the strains were identified. Interestingly, most of the genes with increased expression in the resistant strain encoded cuticular proteins. However, those changes were not associated with significant difference in cuticular thickness, suggesting that they might be involved in qualitative changes in the cuticle. In contrast, insecticide exposure induced the expression of a multitude of genes, mostly involved in detoxification. Finally, our set of transcriptome candidate loci showed little overlap with a set of loci strongly genetically differentiated in a previous study using the same strains. Several hypothesis explaining this discrepancy are discussed.
Collapse
Affiliation(s)
- Chloé Haberkorn
- CNRS, VetAgro Sup, UMR 5558, Laboratoire de Biométrie et Biologie Évolutive, Universite Lyon 1, Villeurbanne, France
- IZInovation, 13 Rue des Émeraudes, Lyon 69006, France
| | - Zaïnab Belgaïdi
- CNRS, VetAgro Sup, UMR 5558, Laboratoire de Biométrie et Biologie Évolutive, Universite Lyon 1, Villeurbanne, France
| | | | - Fabrice Vavre
- CNRS, VetAgro Sup, UMR 5558, Laboratoire de Biométrie et Biologie Évolutive, Universite Lyon 1, Villeurbanne, France
| | - Julien Varaldi
- CNRS, VetAgro Sup, UMR 5558, Laboratoire de Biométrie et Biologie Évolutive, Universite Lyon 1, Villeurbanne, France
| |
Collapse
|
3
|
Hayes CC, Schal C. Repellency of N,N-diethyl-3-methylbenzamide (DEET) during host-seeking behavior of bed bugs (Hemiptera: Cimicidae) in binary choice olfactometer assays. JOURNAL OF MEDICAL ENTOMOLOGY 2024; 61:1016-1025. [PMID: 38839102 PMCID: PMC11239792 DOI: 10.1093/jme/tjae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/08/2024] [Accepted: 05/17/2024] [Indexed: 06/07/2024]
Abstract
The bed bug (Cimex lectularius L.) is one of the most prolific and burdensome indoor pests, and suppression of bed bug populations is a global priority. Understanding bed bug behavior is important to the development of new tactics for their control. Major gaps exist in our understanding of how host cues, insecticide resistance, and exposure modality impact the repellency of formulated products to bed bugs. Here, we validate the use of a binary choice olfactometer for assessing bed bug repellency behaviors using N,N-diethyl-3-methylbenzamide (DEET) in a dose-dependent manner, while considering the role of host-associated stimuli (with vs. without CO2), exposure modality (olfactory vs. olfactory and contact), and resistance status (susceptible vs. resistant) on repellency. We observed that host-seeking insecticide-susceptible bed bugs were repelled only when olfactorily exposed to high concentrations of DEET. However, exposure to DEET by contact repelled insecticide-susceptible bed bugs at 100-fold lower dose of DEET. Further, we demonstrate for the first time that insecticide-resistant bed bugs were significantly more responsive to DEET than susceptible bed bugs. We conclude that the 2-choice olfactometer is an effective tool for assessing the behavioral responses of bed bugs to spatial and contact repellents.
Collapse
Affiliation(s)
- Christopher C Hayes
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Coby Schal
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
4
|
Leung AKC, Lam JM, Barankin B, Leong KF, Hon KL. Bed Bug Infestation: An Updated Review. Curr Pediatr Rev 2024; 20:137-149. [PMID: 37038684 DOI: 10.2174/1573396320666230406084801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 01/12/2023] [Accepted: 01/20/2023] [Indexed: 04/12/2023]
Abstract
In the past decade, there has been a global resurgence of bed bug infestations, especially in developed countries. Proper awareness and identification of bed bug infestations are essential to guide treatment and eradication. The purpose of this article is to familiarize physicians with bed bug bites so that they can effectively diagnose, treat, and address questions about bed bug bites and infestations. Bed bug bites are often painless. Typical reactions include pruritic, erythematous maculopapules occurring in clusters or in a linear or curvilinear distribution in exposed areas of the body. A small red punctum may be visualized at the center of the bite mark. Lesions that appear three in a row and papules on the upper eyelid associated with erythema and edema are highly suggestive of bites from bed bugs. Exaggerated local reactions such as vesicles, urticarial wheals, urticarial perilesional plaques, diffuse urticaria, bullae, and nodules may occur in previously sensitized individuals. Reactions to bed bug bites are self-limited. As such, treatment is mainly symptomatic. Topical pramoxine and oral antihistamines can be used to alleviate pruritus. Topical corticosteroids can be used for significant eruptions to control inflammation and pruritus, and to hasten resolution of the lesions. Integrated pest management, an approach for the eradication of bed bugs, includes monitoring devices (active monitors include the use of heat or carbon dioxide attractants and passive monitors include the use of sticky pads for trapping), and judicious use of nonchemical and chemical treatments known to be effective. Nonchemical interventions include keeping affected areas clean and free of clutter, vacuuming, washing linens with hot water, caulking wall holes and cracks where bugs can hide, proper disposal of highly infested items, and placement of bed bug traps/interceptors at the base of beds and furniture. Chemical interventions involve the use of insecticides such as synthetic pyrethroids, silicates, insect growth disruptors, carbamates, organophosphates, neonicotinoids, diethyl-meta-toluamide, chlorfenapyr, fipronil and plant essential oils. Insecticides should be used with caution to prevent over-exposure and toxicity (in particular, cardiovascular and neurologic toxicity), especially if there are young children around. It is important to note that multiple mechanisms of insecticide resistance exist and as such, chemical treatment should only be undertaken by trained professionals who understand the current literature on resistance. Both nonchemical and chemical technologies should be combined for optimal results. Bed bug infestations may cause diverse dermal reactions, stigmatization, poor self-esteem, emotional stress, anxiety, significant adverse effect on quality of life, and substantial socioeconomic burden to society. As such, their rapid detection and eradication are of paramount importance. Consultation with a professional exterminator is recommended to fully eradicate an infestation.
Collapse
Affiliation(s)
- Alexander K C Leung
- Department of Pediatrics, The University of Calgary, Alberta Children's Hospital, Calgary, Alberta, Canada
| | - Joseph M Lam
- Department of Pediatrics and Department of Dermatology and Skin Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Kin Fon Leong
- Pediatric Institute, Kuala Lumpur General Hospital, Kuala Lumpur, Malaysia
| | - Kam Lun Hon
- Department of Paediatrics, The Chinese University of Hong Kong
- Department of Paediatrics and Adolescent Medicine, Hong Kong Children's Hospital, Hong Kong, China
| |
Collapse
|
5
|
Haberkorn C, David J, Henri H, Delpuech J, Lasseur R, Vavre F, Varaldi J. A major 6 Mb superlocus is involved in pyrethroid resistance in the common bed bug Cimex lectularius. Evol Appl 2023; 16:1012-1028. [PMID: 37216030 PMCID: PMC10197226 DOI: 10.1111/eva.13550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/23/2023] [Accepted: 04/04/2023] [Indexed: 05/24/2023] Open
Abstract
In the last few years, the bed bug Cimex lectularius has been an increasing problem worldwide, mainly due to the development of insecticide resistance to pyrethroids. The characterization of resistance alleles is a prerequisite to improve surveillance and resistance management. To identify genomic variants associated with pyrethroid resistance in Cimex lectularius, we compared the genetic composition of two recent and resistant populations with that of two ancient-susceptible strains using a genome-wide pool-seq design. We identified a large 6 Mb "superlocus" showing particularly high genetic differentiation and association with the resistance phenotype. This superlocus contained several clustered resistance genes and was also characterized by a high density of structural variants (inversions, duplications). The possibility that this superlocus constitutes a resistance "supergene" that evolved after the clustering of alleles adapted to insecticide and after reduction in recombination is discussed.
Collapse
Affiliation(s)
- Chloé Haberkorn
- CNRS, VetAgro Sup, UMR 5558, Laboratoire de Biométrie et Biologie ÉvolutiveUniversité de Lyon, Université Lyon 1VilleurbanneFrance
- IZInovationLyonFrance
| | - Jean‐Philippe David
- Laboratoire d'Écologie AlpineUMR UGA‐USMB‐CNRS 5553 Université Grenoble Alpes CS 40700Grenoble cedex 9France
| | - Hélène Henri
- CNRS, VetAgro Sup, UMR 5558, Laboratoire de Biométrie et Biologie ÉvolutiveUniversité de Lyon, Université Lyon 1VilleurbanneFrance
| | - Jean‐Marie Delpuech
- CNRS, VetAgro Sup, UMR 5558, Laboratoire de Biométrie et Biologie ÉvolutiveUniversité de Lyon, Université Lyon 1VilleurbanneFrance
| | | | - Fabrice Vavre
- CNRS, VetAgro Sup, UMR 5558, Laboratoire de Biométrie et Biologie ÉvolutiveUniversité de Lyon, Université Lyon 1VilleurbanneFrance
| | - Julien Varaldi
- CNRS, VetAgro Sup, UMR 5558, Laboratoire de Biométrie et Biologie ÉvolutiveUniversité de Lyon, Université Lyon 1VilleurbanneFrance
| |
Collapse
|
6
|
Boff JS, Reis AC, de Oliveira JL, Gross RB, Fraceto LF, Melo AA, Bernardi O. Development and biological evaluation of nanoencapsulated-based pyrethroids with synergists for resistance management of two soybean pests: insights for new insecticide formulations. PEST MANAGEMENT SCIENCE 2023; 79:1204-1212. [PMID: 36412537 DOI: 10.1002/ps.7295] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/11/2022] [Accepted: 11/22/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Chemical control is commonly used against Euschistus heros (F.) and Chrysodeixis includens (Walker) in soybean fields in South America. However, previous studies reported that these pests have reduced susceptibility to pyrethroids in Brazil. On this basis, we developed and evaluated nanoencapsulated-based bifenthrin (BFT) and λ-cyhalothrin (LAM) with the synergists piperonyl butoxide (PBO) and diethyl maleate (DEM) for insect resistance management (IRM). RESULTS Nanoformulations of BFT and LAM with PBO and DEM presented good physical-chemical characteristics and were stable. The spherical morphology of all systems and the encapsulation efficiency in nanostructured lipid carriers did not change when synergists were added. Nanoencapsulated BFT with DEM applied topically increased the susceptibility of E. heros to BFT by 3.50-fold. Similarly, nanoencapsulated BFT and LAM with PBO in diet-overlay bioassays increased the susceptibility of C. includens to both chemicals by up to 2.16-fold. Nanoencapsulated BFT and LAM with synergists also improve control efficacy of both species, causing higher mortality than commercial products containing these chemistries. CONCLUSIONS It is possible to develop nanoencapsulated-based formulations of BFT and LAM with PBO or DEM, and these nanoformulations have the potential to improve control of E. heros and C. includens with recognized low susceptibility to pyrethroids. This study provides updates for designing new insecticide formulations for IRM. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jéssica S Boff
- Department of Plant Protection, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Alexandre C Reis
- Department of Plant Protection, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Jhones L de Oliveira
- Faculty of Agronomy and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, SP, Brazil
| | - Renata B Gross
- Department of Plant Protection, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Leonardo F Fraceto
- Institute of Science and Technology, São Paulo State University (UNESP), Sorocaba, SP, Brazil
| | - Adriano A Melo
- Department of Plant Protection, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Oderlei Bernardi
- Department of Plant Protection, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| |
Collapse
|
7
|
Cáceres M, Drago A, Orihuela PS, Vassena C. Metabolic resistance to deltamethrin is mediated by P450 and esterases in common bed bugs Cimex lectularius L. (Heteroptera: Cimicidae). JOURNAL OF THE EUROPEAN MOSQUITO CONTROL ASSOCIATION 2023. [DOI: 10.52004/jemca2022.0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
The infestations of Cimex lectularius L. (Heteroptera: Cimicidae) registered in the last decades have been influenced by several human activities, including international tourism and commerce. Moreover, the development of insecticide resistance and careless pest control strategies contributed to the dispersal of bed bugs. Given the complexity of the topic, distinguishing physiological and molecular mechanisms involved in resistance can help design proper control tools and limit the resistance spread. Here we determined the susceptibility to deltamethrin and imidacloprid in bed bugs collected in Italy. Also, we assessed the role of esterases and P450 monooxygenases by direct enzymatic activity measurement and inhibition by synergism bioassays. Our results showed that the field-collected colony exhibited high resistance ratios to imidacloprid and deltamethrin (757 and >60,000 times, respectively) compared to the susceptible colony. Moreover, resistant bed bugs showed increased activity of esterases and P450 monooxygenases. The synergistic effect of piperonyl butoxide (PBO) suggests the significant contribution of both enzymatic groups as detoxification pathways implicated in pyrethroid-resistant bed bugs. Further investigations are needed to unravel the biochemical and molecular basis involved in the resistant phenotype for developing novel strategies for pest control.
Collapse
Affiliation(s)
- M. Cáceres
- Centro de Investigaciones de Plagas e Insecticidas – UNIDEF – CONICET, San Juan Bautista de La Salle 4397, 1603 Villa Martelli, Buenos Aires, Argentina
| | - A. Drago
- Entostudio S.R.L. Viale del Lavoro 66, 35020 Ponte San Nicolò, Italy
| | - P.L. Santo Orihuela
- Centro de Investigaciones de Plagas e Insecticidas – UNIDEF – CONICET, San Juan Bautista de La Salle 4397, 1603 Villa Martelli, Buenos Aires, Argentina
- Cátedra de Química Analítica Instrumental-Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 954, 1113 Ciudad Autónoma de Buenos Aires, Argentina
| | - C.V. Vassena
- Centro de Investigaciones de Plagas e Insecticidas – UNIDEF – CONICET, San Juan Bautista de La Salle 4397, 1603 Villa Martelli, Buenos Aires, Argentina
- Instituto de Ingeniería e Investigaciones Ambientales, Universidad Nacional de San Martín, Campus Miguelete, 25 de Mayo y Francia, 1650 San Martín, Buenos Aires, Argentina
| |
Collapse
|
8
|
Dang K, Doggett SL, Lee CY. Performance of Pyrethroid-Neonicotinoid Mixture Formulations Against Field-Collected Strains of the Tropical Bed Bug (Hemiptera: Cimicidae) on Different Substrates. JOURNAL OF ECONOMIC ENTOMOLOGY 2023; 116:29-39. [PMID: 35639556 DOI: 10.1093/jee/toac068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Indexed: 06/15/2023]
Abstract
The residual performance of two pyrethroid-neonicotinoid mixture formulations: Temprid SC (10.5% beta-cyfluthrin and 21% imidacloprid) and Tandem (3.5% lambda-cyhalothrin and 11.6% thiamethoxam) on two substrates (glass and filter paper) against eight pyrethroid-resistant strains (BM-MY, BP-MY, CH-MY, GL-MY, KL-MY, SAJ-MY, TT-MY, and QLD-AU) of the tropical bed bug, Cimex hemipterus (F.) (Hemiptera: Cimicidae) collected from Malaysia, and Australia were evaluated. The aging effect of treatment residues on glass was also investigated. A susceptible C. lectularius L. strain (Monheim) was used for comparison. Temprid SC showed varying levels of performance against all C. hemipterus strains: TT-MY (PR50 = 6.5-fold, high performance), BM-MY, GL-MY, SAJ-MY, and QLD-AU (12.8-21.6-fold, moderate performance), BP-MY, and KL-MY (48.2-49-fold, poor performance), CH-MY (128.2-fold, very poor performance). On the other hand, Tandem displayed high performance against all C. hemipterus strains (1.8-8.3-fold). Tandem caused faster mortality than Temprid SC for all strains. Temprid SC and Tandem residues killed C. hemipterus significantly faster on glass than filter paper. Compared with fresh residues, the efficacy of Temprid SC residues significantly declined after one week of aging, while the effectiveness of Tandem residues declined after two weeks of aging. Further investigations using the topical assay method with a diagnostic dose of imidacloprid found two strains (CH-MY and GL-MY) resistant to imidacloprid. The six other strains (BM-MY, BP-MY, KL-MY, SAJ-MY, TT-MY, and QLD-AU) were susceptible.
Collapse
Affiliation(s)
- Kai Dang
- Department of Medical Entomology, NSW Health Pathology-ICPMR, Westmead Hospital, Westmead, NSW, Australia
- Urban Entomology Laboratory, Vector Control Research Unit, School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Stephen L Doggett
- Department of Medical Entomology, NSW Health Pathology-ICPMR, Westmead Hospital, Westmead, NSW, Australia
| | - Chow-Yang Lee
- Urban Entomology Laboratory, Vector Control Research Unit, School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia
- Department of Entomology, University of California, Riverside, CA, USA
| |
Collapse
|
9
|
Yu JJ, Ranabhat S, Wang C. Insecticide Resistance of Cimex lectularius L. Populations and the Performance of Selected Neonicotinoid-Pyrethroid Mixture Sprays and an Inorganic Dust. INSECTS 2023; 14:133. [PMID: 36835701 PMCID: PMC9966739 DOI: 10.3390/insects14020133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/16/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Insecticide resistance is one of the factors contributing to the resurgence of the common bed bug, Cimex lectularius L. This study aimed to profile the resistance levels of field-collected C. lectularius populations to two neonicotinoids and one pyrethroid insecticide and the performance of selected insecticide sprays and an inorganic dust. The susceptibility of 13 field-collected C. lectularius populations from the United States to acetamiprid, imidacloprid, and deltamethrin was assessed by topical application using a discriminating dose (10 × LD90 of the respective chemical against a laboratory strain). The RR50 based on KT50 values for acetamiprid and imidacloprid ranged from 1.0-4.7 except for the Linden 2019 population which had RR50 of ≥ 76.9. Seven populations had RR50 values of > 160 for deltamethrin. The performance of three insecticide mixture sprays and an inorganic dust were evaluated against three C. lectularius field populations. The performance ratio of Transport GHP (acetamiprid + bifenthrin), Temprid SC (imidacloprid + β-cyfluthrin), and Tandem (thiamethoxam + λ-cyhalothrin) based on LC90 were 900-2017, 55-129, and 100-196, respectively. Five minute exposure to CimeXa (92.1% amorphous silica) caused > 95% mortality to all populations at 72 h post-treatment.
Collapse
|
10
|
Boff JS, Reis AC, Patricia DSG, Pretto VE, Garlet CG, Melo AA, Bernardi O. The Effect of Synergistic Compounds on the Susceptibility of Euschistus heros (Hemiptera: Pentatomidae) and Chrysodeixis includens (Lepidoptera: Noctuidae) to Pyrethroids. ENVIRONMENTAL ENTOMOLOGY 2022; 51:421-429. [PMID: 35137018 DOI: 10.1093/ee/nvac005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Indexed: 06/14/2023]
Abstract
The Neotropical brown stink bug, Euschistus heros (F.), and the soybean looper, Chrysodeixis includens (Walker), are key pests of soybean in South America. Low susceptibility to pyrethroids has been reported for both species in Brazil. Here, we evaluate the addition of synergistic compounds piperonyl butoxide (PBO) and diethyl maleate (DEM) to manage E. heros and C. includens with resistance to λ-cyhalothrin and bifenthrin. The LD50 of technical grade and commercial products containing λ-cyhalothrin and bifenthrin decreased against field-collected E. heros exposed to PBO and DEM relative to unexposed insects; synergistic ratios up to 4.75-fold. The mortality also increased when E. heros were exposed to commercial formulations containing λ-cyhalothrin (from 4 to 44%) and bifenthrin (from 44 to 88%) in the presence of synergists. There was also a higher susceptibility of field-collected C. includens to technical grade λ-cyhalothrin when PBO was used; synergistic ratio of 5.50-fold. High lethally of technical grade λ-cyhalothrin was also verified in the presence of PBO, with mortality increasing from 6 to 57%. Our findings indicate the potential utility of synergists in reversing the resistance to λ-cyhalothrin and bifenthrin in E. heros and C. includens and suggest a significant role of metabolic mechanisms underlying the detoxification of both pyrethroids.
Collapse
Affiliation(s)
- Jéssica S Boff
- Department of Plant Protection, Federal University of Santa Maria (UFSM), Roraima avenue 1000, Santa Maria, Rio Grande do Sul 97105-900, Brazil
| | - Alexandre C Reis
- Department of Plant Protection, Federal University of Santa Maria (UFSM), Roraima avenue 1000, Santa Maria, Rio Grande do Sul 97105-900, Brazil
| | - da S Gubiani Patricia
- Department of Plant Protection, Federal University of Santa Maria (UFSM), Roraima avenue 1000, Santa Maria, Rio Grande do Sul 97105-900, Brazil
| | - Venicius E Pretto
- Department of Plant Protection, Federal University of Santa Maria (UFSM), Roraima avenue 1000, Santa Maria, Rio Grande do Sul 97105-900, Brazil
| | - Cínthia G Garlet
- Department of Plant Protection, Federal University of Santa Maria (UFSM), Roraima avenue 1000, Santa Maria, Rio Grande do Sul 97105-900, Brazil
| | - Adriano A Melo
- Department of Plant Protection, Federal University of Santa Maria (UFSM), Roraima avenue 1000, Santa Maria, Rio Grande do Sul 97105-900, Brazil
| | - Oderlei Bernardi
- Department of Plant Protection, Federal University of Santa Maria (UFSM), Roraima avenue 1000, Santa Maria, Rio Grande do Sul 97105-900, Brazil
| |
Collapse
|
11
|
Gong Y, Li M, Li T, Liu N. Molecular and functional characterization of three novel carboxylesterases in the detoxification of permethrin in the mosquito, Culex quinquefasciatus. INSECT SCIENCE 2022; 29:199-214. [PMID: 34048147 DOI: 10.1111/1744-7917.12927] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 03/20/2021] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
Carboxylesterases (CarEs) belong to a super family of multifunctional enzymes associated with the degradation of endogenous and exogenous compounds. Many insect CarEs are known to play important roles in catalyzing the hydrolysis of organophosphates (OPs), carbamates, and synthetic pyrethroids (SPs). The elevation of esterase activity through gene amplification and overexpression of estα2 and estβ2 genes contributes to the development of resistance to OP insecticides in the mosquito Culex quinquefasciatus. Three additional CarE genes are upregulated in permethrin-resistant Cx. quinquefasciatus according to an RNA-seq analysis, but their function remains unknown. In this study, we, for the first time, characterized the function of these three novel genes using in vitro protein expression, an insecticide metabolism study and molecular docking analysis. All three CarE genes were significantly overexpressed in resistant mosquito larvae, but not adults, compared to susceptible strain. No gene copy differences in these three genes were found in the mosquitoes tested. In vitro high-performance liquid chromatography (HPLC) revealed that CPIJ018231, CPIJ018232, and CPIJ018233 metabolized 30.4% ± 2.9%, 34.7% ± 6.8%, and 23.2% ± 2.2% of the permethrin, respectively. No mutations in resistant strains might significantly affect their CarE hydrolysis ability. A docking analysis further confirmed that these three CarEs from resistant strain all potentially metabolize permethrin. Taken together, these three carboxylesterase genes could play important roles in the development of permethrin resistance in Cx. quinquefasciatus larvae through transcriptional overexpression, metabolism, and detoxification.
Collapse
Affiliation(s)
- Youhui Gong
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ming Li
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA
- Department of Biology Sciences, University of California, San Diego, California, USA
| | - Ting Li
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA
| | - Nannan Liu
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
12
|
Dang K, Doggett SL, Leong XY, Veera Singham G, Lee CY. Multiple Mechanisms Conferring Broad-Spectrum Insecticide Resistance in the Tropical Bed Bug (Hemiptera: Cimicidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:2473-2484. [PMID: 34693975 DOI: 10.1093/jee/toab205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Indexed: 06/13/2023]
Abstract
The modern resurgence of the common (Cimex lectularius L.) and tropical bed bugs (C. hemipterus [F.]) is thought to be primarily due to insecticide resistance. While there are many reports on insecticide resistance mechanisms in C. lectularius, such information in C. hemipterus is limited. We examined dichloro-diphenyl-trichloroethane (DDT), malathion, deltamethrin, permethrin, lambda-cyhalothrin resistance, and the underlying mechanisms in several C. hemipterus strains (Australia: Queensland [QLD-AU]; Malaysia: Kuala Lumpur [KL-MY], Tanjung Tokong [TT-MY], Christian [CH-MY], and Green Lane [GL-MY]). We used a surface contact method, synergism studies (utilizing piperonyl butoxide [PBO], S,S,S-tributyl phosphorotrithioate [DEF], and diethyl maleate [DEM]), and molecular detection of kdr mutations. Results demonstrated that all C. hemipterus strains possessed high resistance to DDT and the pyrethroids and moderate to high resistance to malathion. Synergism studies showed that deltamethrin resistance in all strains was significantly (P < 0.05) inhibited by PBO. In contrast, deltamethrin resistance was not affected in DEF or DEM. Similar findings were found with lambda-cyhalothrin resistance. Malathion resistance was significantly (P < 0.05) reduced by DEF in all strains. Resistance to DDT was not affected by DEM in all strains. Multiple kdr mutations (M918I, D953G, and L1014F) were detected by molecular analyses. TT-MY strain was found with individuals possessing three kdr mutation combinations; D953G + L1014F (homozygous susceptible: M918), M918I + D953G + L1014F (heterozygous resistant: I918), and M918I + D953G + L1014F (homozygous resistant: I918). Individuals with M918I + D953G + L1014F (homozygous resistant: I918) survived longer on deltamethrin (>12 h) than those (≤1 h) with other combinations. M918I + L1014F mutations most likely conferred super-kdr characteristic toward pyrethroids and DDT in C. hemipterus.
Collapse
Affiliation(s)
- Kai Dang
- Urban Entomology Laboratory, Vector Control Research Unit, School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia
- Department of Medical Entomology, NSW Health Pathology - ICPMR, Westmead Hospital, Westmead, NSW, Australia
| | - Stephen L Doggett
- Department of Medical Entomology, NSW Health Pathology - ICPMR, Westmead Hospital, Westmead, NSW, Australia
| | - Xin-Yeng Leong
- Urban Entomology Laboratory, Vector Control Research Unit, School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia
- Ecolab Malaysia, Level 12, The Pinnacle Persiaran Lagoon, Bandar Sunway, Petaling Jaya 46150, Selangor, Malaysia
| | - G Veera Singham
- Centre for Chemical Biology, Universiti Sains Malaysia, 11900 Bayan Lepas, Penang, Malaysia
| | - Chow-Yang Lee
- Urban Entomology Laboratory, Vector Control Research Unit, School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia
- Department of Entomology, University of California, Riverside, CA, USA
| |
Collapse
|
13
|
Soh LS, Veera Singham G. Cuticle thickening associated with fenitrothion and imidacloprid resistance and influence of voltage-gated sodium channel mutations on pyrethroid resistance in the tropical bed bug, Cimex hemipterus. PEST MANAGEMENT SCIENCE 2021; 77:5202-5212. [PMID: 34272799 DOI: 10.1002/ps.6561] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The common bed bug, Cimex lectularius L., and the tropical bed bug, Cimex hemipterus (F.), are now widely regarded as important public health pests following their rapid global resurgence, largely due to insecticide resistance and an increased rate of global travel. The insecticide resistance mechanisms are well documented in C. lectularius, however, only one mechanism is validated in C. hemipterus thus far. This demands further understanding on the resistance mechanisms involved in C. hemipterus. RESULTS Here, we identified differences in resistance to fenitrothion (organophosphate) and imidacloprid (neonicotinoid) related cuticle thickness in C. hemipterus. There is evidence of a possible association between cuticle thickness and resistance, but the association can be tenuous, likely because resistance is multifactorial in C. hemipterus. We also discovered a novel T1011 residue in domain IIS6 of the voltage-gated sodium channel that likely enhanced susceptibility to deltamethrin (pyrethroid) despite the presence of a L1014F mutation known to confer pyrethroid resistance in C. hemipterus. Our findings also confirmed that the M918I mutation enhanced resistance to pyrethroid when present with the L1014F mutation, which was consistent with a super-kdr phenotype, as reported previously. Multiple resistance mechanisms can be found within a single C. hemipterus population, and the presence of both M918I + L1014F mutations likely masked the influence of cuticle thickness in conferring resistance against deltamethrin. The elevated metabolic enzyme activities in some strains were not necessarily associated with increased insecticide resistance. CONCLUSION This study has enhanced our understanding on the penetration resistance mechanism and target site insensitivity of sodium channels in C. hemipterus.
Collapse
Affiliation(s)
- Li-Shen Soh
- Centre for Chemical Biology, Universiti Sains Malaysia, Bayan Lepas, Malaysia
| | - G Veera Singham
- Centre for Chemical Biology, Universiti Sains Malaysia, Bayan Lepas, Malaysia
| |
Collapse
|
14
|
González-Morales MA, DeVries Z, Sierras A, Santangelo RG, Kakumanu ML, Schal C. Resistance to Fipronil in the Common Bed Bug (Hemiptera: Cimicidae). JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:1798-1807. [PMID: 33822102 PMCID: PMC12102608 DOI: 10.1093/jme/tjab040] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Indexed: 06/12/2023]
Abstract
Cimex lectularius L. populations have been documented worldwide to be resistant to pyrethroids and neonicotinoids, insecticides that have been widely used to control bed bugs. There is an urgent need to discover new active ingredients with different modes of action to control bed bug populations. Fipronil, a phenylpyrazole that targets the GABA receptor, has been shown to be highly effective on bed bugs. However, because fipronil shares the same target site with dieldrin, we investigated the potential of fipronil resistance in bed bugs. Resistance ratios in eight North American populations and one European population ranged from 1.4- to >985-fold, with highly resistant populations on both continents. We evaluated metabolic resistance mechanisms mediated by cytochrome P450s, esterases, carboxylesterases, and glutathione S-transferases using synergists and a combination of synergists. All four detoxification enzyme classes play significant but variable roles in bed bug resistance to fipronil. Suppression of P450s and esterases with synergists eliminated resistance to fipronil in highly resistant bed bugs. Target-site insensitivity was evaluated by sequencing a fragment of the Rdl gene to detect the A302S mutation, known to confer resistance to dieldrin and fipronil in other species. All nine populations were homozygous for the wild-type genotype (susceptible phenotype). Highly resistant populations were also highly resistant to deltamethrin, suggesting that metabolic enzymes that are responsible for pyrethroid detoxification might also metabolize fipronil. It is imperative to understand the origins of fipronil resistance in the development or adoption of new active ingredients and implementation of integrated pest management programs.
Collapse
Affiliation(s)
| | - Zachary DeVries
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Angela Sierras
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Richard G Santangelo
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Madhavi L Kakumanu
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Coby Schal
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
15
|
Gaire S, Zheng W, Scharf ME, Gondhalekar AD. Plant essential oil constituents enhance deltamethrin toxicity in a resistant population of bed bugs (Cimex lectularius L.) by inhibiting cytochrome P450 enzymes. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 175:104829. [PMID: 33993977 DOI: 10.1016/j.pestbp.2021.104829] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 02/15/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
Plant essential oils (EOs) are secondary metabolites derived from aromatic plants that are composed of complex mixtures of chemical constituents. EOs have been proposed as one of the alternative methods for bed bug (Cimex lectularius L.) control. In insecticide resistant mosquitoes and tobacco cutworm, EOs synergize pyrethroid toxicity by inhibiting detoxification enzymes. However, whether EOs and their constituents enhance pyrethroid toxicity in C. lectularius has remained unknown. Therefore, this study was designed to (i) determine the effects of binary mixtures of deltamethrin (a pyrethroid insecticide) with EOs or EO constituents or EcoRaider® (an EO-based product) on mortality of insecticide resistant and susceptible bed bugs, and (ii) evaluate the effects of EO constituent pre-treatment on detoxification enzyme activities of resistant and susceptible populations. Topical bioassays with binary mixtures of deltamethrin and individual EOs (e.g., thyme, oregano, clove, geranium or coriander oils) or their major constituents (e.g., thymol, carvacrol, eugenol, geraniol or linalool) or EcoRaider® at doses that kill approximately 25% of bed bugs caused significant increases in mortality of resistant bed bugs. However, in the susceptible population, only coriander oil, EcoRaider®, thymol, and carvacrol significantly increased the toxicity of deltamethrin. Detoxification enzyme assays with protein extracts from bed bugs pre-treated with EO constituents suggested selective inhibition of cytochrome P450 activity in the resistant population, but no impacts were observed on esterase and glutathione transferase activities in either population. Inhibition of P450 activity by EO constituents thus appears to be one of the mechanisms of deltamethrin toxicity enhancement in resistant bed bugs.
Collapse
Affiliation(s)
- Sudip Gaire
- Center for Urban and Industrial Pest Management, Department of Entomology, Purdue University, West Lafayette, IN 47907, USA; Department of Entomology, University of Kentucky, Lexington, KY 40546, USA.
| | - Wei Zheng
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Michael E Scharf
- Center for Urban and Industrial Pest Management, Department of Entomology, Purdue University, West Lafayette, IN 47907, USA
| | - Ameya D Gondhalekar
- Center for Urban and Industrial Pest Management, Department of Entomology, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
16
|
Todd DB, Miller DM, Gordon JR. Field Evaluations of Sulfuryl Fluoride Fumigation for Control of the Common Bed Bug (Hemiptera: Cimicidae), Using a 1.9× Dosage Factor in Motor Vehicles and Filled Cargo Trailers. JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:857-867. [PMID: 33704428 DOI: 10.1093/jee/toab033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Indexed: 06/12/2023]
Abstract
This study investigated the efficacy of using Vikane gas fumigant (sulfuryl fluoride) at the 1.9× dosage rate for eliminating bed bugs (Cimex lectularius L.) in two challenging infestation situations: personal vehicles, and confined spaces densely packed with personal belongings. The vehicles used in this study were large minivans with seating that folded into the floor. The confined spaces were cargo trailers filled to 85% capacity with books, furniture, and other household items. Each van and trailer was equipped with ~90 sentinel bed bugs consisting of three groups of 9-11 bed bug eggs, 10 nymphs, and 10 adults. The Vikane Fumiguide calculator was used to determine the target dosage (g-h/m3) to apply in each replicate (e.g., one van or trailer). Sulfuryl fluoride concentrations were measured throughout the fumigation process using a Spectros SF-ReportIR. Concentration readings were input into the Fumiguide to determine when the accumulated dosage (g-h/m3) was achieved, and when aeration should be initiated. After aeration was complete, the sentinel bed bugs were removed from the replicates and bed bug nymph and adult mortality was recorded. Bed bug eggs were monitored for 23 d to determine latent mortality. Fumigated bed bug mortality for each replication was 100% regardless of life stage. Latent mortality was observed in a single bed bug egg, but the first instar never fully eclosed. This study determined that fumigation with sulfuryl fluoride at the 1.9× dosage factor is an effective method for eliminating resistant bed bugs from vehicles and personal belongings in densely packed situations.
Collapse
Affiliation(s)
- D B Todd
- Department of Entomology, Virginia Tech University, Blacksburg, VA, USA
| | - D M Miller
- Department of Entomology, Virginia Tech University, Blacksburg, VA, USA
| | - J R Gordon
- Douglas Products and Packaging Company, LLC, Liberty, MO, USA
| |
Collapse
|
17
|
Gaire S, Lewis CD, Booth W, Scharf ME, Zheng W, Ginzel MD, Gondhalekar AD. Bed bugs, Cimex lectularius L., exhibiting metabolic and target site deltamethrin resistance are susceptible to plant essential oils. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 169:104667. [PMID: 32828373 DOI: 10.1016/j.pestbp.2020.104667] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/05/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
Pyrethroid resistance has been a major hurdle limiting the effective control of bed bugs (Cimex lectularius L.). Alternative approaches that include the use of plant essential oils (EOs) have been proposed for effective management of bed bugs. However, EO resistance level comparisons between pyrethroid susceptible and resistant bed bug populations have not been previously conducted. The goal of this study was twofold: (i) determine deltamethrin resistance levels and associated resistance mechanisms in the field-collected Knoxville strain and (ii) quantify resistance levels of the Knoxville strain to five EOs (thyme, oregano, clove, geranium and coriander), their major insecticidal constituents (thymol, carvacrol, eugenol, geraniol and linalool) and an EO-based product (EcoRaider®). First, we found that the Knoxville strain was 72,893 and 291,626 fold more resistant to topically applied deltamethrin in comparison to the susceptible Harlan strain at the LD25 and LD50 lethal dose levels, respectively. Synergist bioassays and detoxification enzyme assays revealed significantly higher activity of cytochrome P450 and esterase enzymes in the resistant Knoxville strain. Further, Sanger sequencing revealed the presence of the L925I mutation in the voltage-sensitive sodium channel α subunit gene. The Knoxville strain that possesses both enzymatic and target site deltamethrin resistance, however, did not show any resistance to EOs, their major insecticidal constituents and EcoRaider® in topical bioassays (resistance ratio of ~1). In conclusion, this study demonstrated that a deltamethrin-resistant strain of bed bugs is susceptible to EOs and their insecticidal constituents.
Collapse
Affiliation(s)
- Sudip Gaire
- Department of Entomology, Purdue University, West Lafayette, IN 47907, USA; Current address: Department of Entomology, University of Kentucky, Lexington, KY 40546, USA.
| | - Cari D Lewis
- Department of Biological Science, The University of Tulsa, Tulsa, OK 74104, USA
| | - Warren Booth
- Department of Biological Science, The University of Tulsa, Tulsa, OK 74104, USA
| | - Michael E Scharf
- Department of Entomology, Purdue University, West Lafayette, IN 47907, USA
| | - Wei Zheng
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Matthew D Ginzel
- Department of Entomology, Purdue University, West Lafayette, IN 47907, USA
| | | |
Collapse
|
18
|
Lewis CD, Levine BA, Vargo EL, Schal C, Booth W. Recent Detection of Multiple Populations of the Tropical Bed Bug (Hemiptera: Cimicidae) Exhibiting kdr-Associated Mutations in Hawaii. JOURNAL OF MEDICAL ENTOMOLOGY 2020; 57:1077-1081. [PMID: 32083299 PMCID: PMC12102603 DOI: 10.1093/jme/tjaa022] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Indexed: 05/16/2023]
Abstract
In recent years, bed bugs have experienced a remarkable resurgence on a near global scale. While reports have primarily focused on the common bed bug, Cimex lectularius (L.), which has resurged largely in temperate regions, in tropical regions the tropical bed bug, Cimex hemipterus (F.) (Hemiptera: Cimicidae), has reemerged as well. Recent reports of C. hemipterus introductions to subtropical and temperate regions, outside of the species natural distribution, suggest the potential for establishment and further spread. Establishment may be aided by insecticide resistance mechanisms, such as the presence of knockdown resistance (kdr)-associated mutations, which potentially confer resistance to pyrethroid, pyrethrin, and organochloride insecticides. Here, we present the first report of the detection and likely establishment of C. hemipterus in Honolulu, Hawaii, from samples collected in 2009 and 2019. Furthermore, through partial sequencing of the voltage-gated sodium channel, we report the presence of kdr-associated mutations in all samples. These findings have implications for the implementation of control strategies aimed at eradicating infestations.
Collapse
Affiliation(s)
- Cari D Lewis
- Department of Biological Science, The University of Tulsa, Tulsa, OK
| | - Brenna A Levine
- Department of Biological Science, The University of Tulsa, Tulsa, OK
| | - Edward L Vargo
- Department of Entomology, Texas A&M University, College Station, TX
| | - Coby Schal
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC
| | - Warren Booth
- Department of Biological Science, The University of Tulsa, Tulsa, OK
| |
Collapse
|
19
|
Biodegradation of recalcitrant compounds and phthalates by culturable bacteria isolated from Liometopum apiculatum microbiota. World J Microbiol Biotechnol 2020; 36:73. [PMID: 32385754 DOI: 10.1007/s11274-020-02850-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 05/04/2020] [Indexed: 10/24/2022]
Abstract
Liometopum apiculatum is a species of ants widely distributed in arid and semi-arid ecosystems where there is a relative food shortage compared with tropical ecosystems. L. apiculatum has established an ecological balance involving symbiotic interactions, which have allowed them to survive through mechanisms that are still unknown. Therefore, the aim of this study was to explore the metabolic potential of isolated bacteria from L. apiculatum using enzymatic activity assay and substrate assimilation. Results revealed a complex bacteria consortium belonging to Proteobacteria, Firmicutes, and Actinobacteria phylum. Most of the isolated bacteria showed activities associated with biopolymers degradation, from them Exiguobacterium and B. simplex showed the highest amylolytic activity (27 U/mg protein), while A. johnsonii and B. pumulis showed the highest cellulolytic and xylanolytic activities (1 and 2.9 U/mg protein, respectively). By other hand, some microorganisms such as S. ficaria, E. asburiae, P. agglomerans, A. johnsonii, S. rubidaea, S. marcescens, S. warneri, and M. hydrocarbonoxydans were able to grow up to 1000 mg/L of phthalates esters. These results not only revealed the important contribution of the symbionts in L apiculatum ants feeding habits, but also have shown a promising source of enzymes with potential biotechnological applications such as lignocellulosic biomass hydrolysis and bioremediation processes.
Collapse
|
20
|
Cáceres M, Santo-Orihuela PL, Vassena CV. Evaluation of Resistance to Different Insecticides and Metabolic Detoxification Mechanism by Use of Synergist in the Common Bed Bug (Heteroptera: Cimicidae). JOURNAL OF MEDICAL ENTOMOLOGY 2019; 56:1324-1330. [PMID: 31121041 DOI: 10.1093/jme/tjz068] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Indexed: 06/09/2023]
Abstract
Bed bugs have become a common urban pest with consequences on human health and economic costs to the hotel and tourism sectors. Insecticide resistance is considered an important factor in the current bed bug resurgence, and multiple resistance mechanisms could be working in the resistant bed bug populations. In the present study, we determined the resistance profile to four insecticides with a different mode of action in Cimex lectularius L. (Heteroptera: Cimicidae) field-collected colonies from Argentina. Furthermore, the synergism effect of piperonyl butoxide (PBO) with deltamethrin was investigated to explore the contribution of detoxification metabolism to resistance. Our results showed that most of the field-collected colonies are extremely resistant to deltamethrin and propoxur, much more than to azametiphos and imidacloprid. The differences in resistance ratios among field-collected colonies could be associated with different modes of action of insecticides used in control pest and the mechanisms involved in the resistance. PBO pretreatment led to a significantly decreased RR in pyrethroid-resistant colonies, suggesting an upturn of monooxygenase activity for deltamethrin detoxification. However, the high RR detected could involve other mechanisms as part of the whole resistant phenotype in colonies of C. lectularius resistant to pyrethroids.
Collapse
Affiliation(s)
- Mariano Cáceres
- Centro de Investigaciones de Plagas e Insecticidas (CIPEIN)-UNIDEF-CITEDEF-CONICET, San Juan Bautista de La Salle 4397 (CP. 1603), Villa Martelli, Buenos Aires, Argentina
- Instituto de Ingeniería e Investigación Ambiental-Universidad Nacional de San Martín, Campus Miguelete, 25 de Mayo y Francia (CP. 1650), San Martín, Buenos Aires, Argentina
| | - Pablo L Santo-Orihuela
- Centro de Investigaciones de Plagas e Insecticidas (CIPEIN)-UNIDEF-CITEDEF-CONICET, San Juan Bautista de La Salle 4397 (CP. 1603), Villa Martelli, Buenos Aires, Argentina
- Universidad de Buenos Aires-Facultad de Farmacia y Bioquímica-Cátedra de Química Analítica Instrumental, Junín 954 (CP. 1113), Ciudad Autónoma de Buenos Aires, Argentina
| | - Claudia V Vassena
- Centro de Investigaciones de Plagas e Insecticidas (CIPEIN)-UNIDEF-CITEDEF-CONICET, San Juan Bautista de La Salle 4397 (CP. 1603), Villa Martelli, Buenos Aires, Argentina
- Instituto de Ingeniería e Investigación Ambiental-Universidad Nacional de San Martín, Campus Miguelete, 25 de Mayo y Francia (CP. 1650), San Martín, Buenos Aires, Argentina
| |
Collapse
|
21
|
Rehman JU, Wang M, Yang Y, Liu Y, Li B, Qin Y, Wang W, Chittiboyina AG, Khan IA. Toxicity of Kadsura coccinea (Lem.) A. C. Sm. Essential Oil to the Bed Bug, Cimex lectularius L. (Hemiptera: Cimicidae). INSECTS 2019; 10:insects10060162. [PMID: 31181642 PMCID: PMC6627317 DOI: 10.3390/insects10060162] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/17/2019] [Accepted: 05/20/2019] [Indexed: 11/16/2022]
Abstract
Kadsura coccinea (Lem.) A.C. Smith is an evergreen, woody climbing plant that is widely distributed throughout southwest mainland China. Extracts of this plant are used in traditional Chinese medicine (TCM) for the treatment of various diseases, like cancer and dermatosis, and as an anodyne to relieve pain, while the leaves are used to treat eczema. In the current study, the toxicity of essential oil from its stem (EOKC) was studied against two strains of bed bugs (Cimex lectularius). Essential oil from the plant was obtained by hydrodistillation and analyzed by GC/MS. The major compound identified was β-caryophyllene (24.73%), followed by caryophyllene oxide (5.91%), α-humulene (3.48%), and β-pinene (2.54%). Preliminary screening was performed by topically delivering a 1 µL droplet of the treatments dissolved in acetone. At 24 h after treatment, the EOKC induced mortality rates of 61.9% and 66.7% in the Bayonne and Ft. Dix strains, respectively, at 100 µg/bug. Four major compounds-β-caryophyllene, caryophyllene oxide, α-humulene, and β-pinene-were selected based on their availability and were subjected to topical, residual, and fumigation methods. When applied topically, only β-caryophyllene induced high toxicity in both strains. None of the selected compounds induced significant toxicity in the residual and fumigation methods.
Collapse
Affiliation(s)
- Junaid U Rehman
- National Center for Natural Products Research, The University of Mississippi, University, MS 38677, USA.
| | - Mei Wang
- National Center for Natural Products Research, The University of Mississippi, University, MS 38677, USA.
| | - Yupei Yang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Drug Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Yongbei Liu
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Drug Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Bin Li
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Drug Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Yan Qin
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Drug Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Drug Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Amar G Chittiboyina
- National Center for Natural Products Research, The University of Mississippi, University, MS 38677, USA.
| | - Ikhlas A Khan
- National Center for Natural Products Research, The University of Mississippi, University, MS 38677, USA.
- Department of BioMolecular Sciences, Division of Pharmacognosy, School of Pharmacy, The University of Mississippi, University, MS 38677, USA.
| |
Collapse
|
22
|
Dang K, Doggett SL, Veera Singham G, Lee CY. Insecticide resistance and resistance mechanisms in bed bugs, Cimex spp. (Hemiptera: Cimicidae). Parasit Vectors 2017; 10:318. [PMID: 28662724 PMCID: PMC5492349 DOI: 10.1186/s13071-017-2232-3] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 06/06/2017] [Indexed: 11/16/2022] Open
Abstract
The worldwide resurgence of bed bugs [both Cimex lectularius L. and Cimex hemipterus (F.)] over the past two decades is believed in large part to be due to the development of insecticide resistance. The transcriptomic and genomic studies since 2010, as well as morphological, biochemical and behavioral studies, have helped insecticide resistance research on bed bugs. Multiple resistance mechanisms, including penetration resistance through thickening or remodelling of the cuticle, metabolic resistance by increased activities of detoxification enzymes (e.g. cytochrome P450 monooxygenases and esterases), and knockdown resistance by kdr mutations, have been experimentally identified as conferring insecticide resistance in bed bugs. Other candidate resistance mechanisms, including behavioral resistance, some types of physiological resistance (e.g. increasing activities of esterases by point mutations, glutathione S-transferase, target site insensitivity including altered AChEs, GABA receptor insensitivity and altered nAChRs), symbiont-mediated resistance and other potential, yet undiscovered mechanisms may exist. This article reviews recent studies of resistance mechanisms and the genes governing insecticide resistance, potential candidate resistance mechanisms, and methods of monitoring insecticide resistance in bed bugs. This article provides an insight into the knowledge essential for the development of both insecticide resistance management (IRM) and integrated pest management (IPM) strategies for successful bed bug management.
Collapse
Affiliation(s)
- Kai Dang
- Urban Entomology Laboratory, Vector Control Research Unit, School of Biological Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Stephen L. Doggett
- Department of Medical Entomology, NSW Health Pathology, Westmead Hospital, Westmead, NSW 2145 Australia
| | - G. Veera Singham
- Centre for Chemical Biology, Universiti Sains Malaysia, 10 Persiaran Bukit Jambul, 11900 Penang, Malaysia
| | - Chow-Yang Lee
- Urban Entomology Laboratory, Vector Control Research Unit, School of Biological Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| |
Collapse
|
23
|
Dang K, Singham GV, Doggett SL, Lilly DG, Lee CY. Effects of Different Surfaces and Insecticide Carriers on Residual Insecticide Bioassays Against Bed Bugs, Cimex spp. (Hemiptera: Cimicidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2017; 110:558-566. [PMID: 28115498 DOI: 10.1093/jee/tow296] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Indexed: 06/06/2023]
Abstract
The performance of five insecticides (bendiocarb, deltamethrin, DDT, malathion, and imidacloprid) using three application methods (oil-based insecticide films on filter paper, and acetone-based insecticide deposits on two substrates: filter paper and glass) was assessed against a susceptible strain of Cimex lectularius (L.) and two resistant strains of Cimex hemipterus (F.). Substrate type significantly affected (P < 0.05) the insecticide knockdown response of the susceptible strain in acetone-based insecticide bioassays, with longer survival time on filter paper than on the glass surface. With the exception of deltamethrin, the different diluents (oil and acetone) also significantly affected (P < 0.05) the insecticide knockdown response of the susceptible strain in the filter paper-based insecticide bioassays, with longer survival time with acetone as the diluent. For both strains of C. hemipterus, there were no significant effects with the different surfaces and diluents for all insecticides except for malathion and imidacloprid, which was largely due to high levels of resistance. The lower effectiveness for the insecticide acetone-based treatment on filter paper may be due to crystal bloom. This occurs when an insecticide, dissolved in a volatile solvent, is applied onto absorptive surfaces. The effect is reduced on nonabsorptive surfaces and slowed down with oil-based insecticides, whereby the oil forms a film on absorptive surfaces. These findings suggest that nonabsorptive surfaces should be used in bioassays to monitor insecticide resistance. If absorptive surfaces are used in bioassays for testing active ingredients, then oil-based insecticides should be preferably used.
Collapse
Affiliation(s)
- Kai Dang
- Urban Entomology Laboratory, Vector Control Research Unit, School of Biological Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia (; )
| | - G Veera Singham
- Centre for Chemical Biology, Universiti Sains Malaysia, 10 Persiaran Bukit Jambul, Penang 11900, Malaysia
| | - Stephen L Doggett
- Department of Medical Entomology, Pathology West, Westmead Hospital, Westmead, NSW 2145, Australia
| | - David G Lilly
- Department of Medical Entomology, University of Sydney, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Chow-Yang Lee
- Urban Entomology Laboratory, Vector Control Research Unit, School of Biological Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia (; )
| |
Collapse
|
24
|
Lilly DG, Webb CE, Doggett SL. Evidence of Tolerance to Silica-Based Desiccant Dusts in a Pyrethroid-Resistant Strain of Cimex lectularius (Hemiptera: Cimicidae). INSECTS 2016; 7:insects7040074. [PMID: 27941664 PMCID: PMC5198222 DOI: 10.3390/insects7040074] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 12/02/2016] [Accepted: 12/05/2016] [Indexed: 11/30/2022]
Abstract
Insecticide resistance in bed bugs (Cimex lectularius and Cimex hemipterus) has become widespread, which has necessitated the development of new IPM (Integrated Pest Management) strategies and products for the eradication of infestations. Two promising options are the diatomaceous earth and silica gel-based desiccant dusts, both of which induce dehydration and eventual death upon bed bugs exposed to these products. However, the impact of underlying mechanisms that confer resistance to insecticides, such as cuticle thickening, on the performance of these dusts has yet to be determined. In the present study, two desiccant dusts, CimeXa Insecticide Dust (silica gel) and Bed Bug Killer Powder (diatomaceous earth) were evaluated against two strains of C. lectularius; one highly pyrethroid-resistant and one insecticide-susceptible. Label-rate doses of both products produced 100% mortality in both strains, albeit over dissimilar time-frames (3–4 days with CimeXa vs. 14 days with Bed Bug Killer). Sub-label rate exposure to CimeXa indicated that the pyrethroid-resistant strain possessed a degree of tolerance to this product, surviving 50% longer than the susceptible strain. This is the first study to suggest that mechanisms conferring resistance to pyrethroids, such as cuticular thickening, may have potential secondary impacts on non-synthetic insecticides, including desiccant dusts, which target the bed bug’s cuticle.
Collapse
Affiliation(s)
- David G Lilly
- Department of Medical Entomology, University of Sydney, Westmead Hospital, Westmead, NSW 2145, Australia.
| | - Cameron E Webb
- Department of Medical Entomology, University of Sydney, Westmead Hospital, Westmead, NSW 2145, Australia.
- Department of Medical Entomology, Pathology West-ICPMR Westmead, Westmead Hospital, Westmead, NSW 2145, Australia.
| | - Stephen L Doggett
- Department of Medical Entomology, Pathology West-ICPMR Westmead, Westmead Hospital, Westmead, NSW 2145, Australia.
| |
Collapse
|