1
|
Paddock KJ, Corcoran JA. Life-stage dependent behavior mimics chemosensory repertoire diversity in a belowground, specialist herbivore. G3 (BETHESDA, MD.) 2025; 15:jkaf041. [PMID: 39999386 PMCID: PMC12060231 DOI: 10.1093/g3journal/jkaf041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 02/18/2025] [Indexed: 02/27/2025]
Abstract
Insects rely on the translation of environmental chemical cues into behaviors necessary for survival and reproduction. Specific chemosensory receptors belonging to the odorant and gustatory receptor groups detect odorant and gustatory cues, respectively, making them crucial to these processes. How odorant (OR) and gustatory (GR) receptor expression profiles change in combination with changing life strategies is not well understood. Using genomic and transcriptomic resources, we annotated the OR and GR expression profiles across all life stages of the western corn rootworm (WCR), Diabrotica virgifera virgifera LeConte, a major pest of corn in the United States and Europe. Genomic analyses identified 193 ORs and 189 GRs, of which 125 and 116 were found to be expressed, respectively, in one or more WCR life stages. WCR larvae are subterranean and feed on roots before emerging as adults aboveground. Expression profile analyses revealed first instar larvae possess a unique OR and GR repertoire distinct from other instars and adults, suggesting a role in host plant finding. Similarly, a subset of ORs and GRs differed in their expression levels between adult male and female antennae. By comparing the phylogenetic relationship of ORs and GRs, we identified several receptors with potentially important roles in WCR foraging and reproductive behavior. Together, this study provides support for future investigations into the ecology and evolution of chemoreception in insects.
Collapse
Affiliation(s)
- Kyle J Paddock
- United States Department of Agriculture, Agricultural Research Service, Biological Control of Insects Research Laboratory, Columbia, MO 65203, USA
| | - Jacob A Corcoran
- United States Department of Agriculture, Agricultural Research Service, Biological Control of Insects Research Laboratory, Columbia, MO 65203, USA
| |
Collapse
|
2
|
Huynh MP, Geisert RW, Ludwick DC, Pekarcik AJ, Hibbard BE. Host search behaviors of specialist and generalist root feeding herbivores (Diabrotica spp.) on host and non-host plants. Sci Rep 2023; 13:17583. [PMID: 37845376 PMCID: PMC10579251 DOI: 10.1038/s41598-023-44760-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/12/2023] [Indexed: 10/18/2023] Open
Abstract
Western, northern, Mexican, and southern corn rootworms (WCR, NCR, MCR, and SCR) are serious corn pests. We evaluated host search behavior of these pests on six plant species using a video tracking system. After a 5-min exposure to plant roots, behavioral parameters were automatically recorded and used to quantify the search behavior. The search behavior was not observed for sorghum since no neonates survived after contacting sorghum roots. After exposures to corn roots, all neonates exhibited the localized search behaviors (i.e., shortening total distance traveled, lowering movement speed, increasing turn angle, moving farther from origin) which are used to stay in and search within root systems. When larvae contacted roots of wheat, barley, oats, soybean, or controls, they expanded the search area by extending the travel path, increasing velocity, and reducing turn angles and total distance moved. The intensity of the search expansion is highly associated with the host preferences known for the four rootworm species and subspecies. Neonates of each corn rootworm exhibited distinct search behaviors. In fact, NCR larvae had the highest speed, the greatest travel path, and the lowest turn angle, whereas MCR larvae had the highest turn angle and moved faster than WCR and SCR larvae.
Collapse
Affiliation(s)
- Man P Huynh
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, USA.
- Department of Plant Protection, Can Tho University, Can Tho, Vietnam.
| | - Ryan W Geisert
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, USA
| | - Dalton C Ludwick
- Department of Entomology, Texas A&M, AgriLife Extension Service, Corpus Christi, TX, USA
| | - Adrian J Pekarcik
- North Central Agricultural Research Laboratory, USDA-Agricultural Research Service, Brookings, SD, USA
| | - Bruce E Hibbard
- Plant Genetics Research Unit, USDA-Agricultural Research Service, Columbia, MO, USA.
| |
Collapse
|
3
|
Jabeur R, Guyon V, Toth S, Pereira AE, Huynh MP, Selmani Z, Boland E, Bosio M, Beuf L, Clark P, Vallenet D, Achouak W, Audiffrin C, Torney F, Paul W, Heulin T, Hibbard BE, Toepfer S, Sallaud C. A novel binary pesticidal protein from Chryseobacterium arthrosphaerae controls western corn rootworm by a different mode of action to existing commercial pesticidal proteins. PLoS One 2023; 18:e0267220. [PMID: 36800363 PMCID: PMC9937505 DOI: 10.1371/journal.pone.0267220] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 04/04/2022] [Indexed: 02/18/2023] Open
Abstract
The western corn rootworm (WCR) Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae) remains one of the economically most important pests of maize (Zea mays) due to its adaptive capabilities to pest management options. This includes the ability to develop resistance to some of the commercial pesticidal proteins originating from different strains of Bacillus thuringiensis. Although urgently needed, the discovery of new, environmentally safe agents with new modes of action is a challenge. In this study we report the discovery of a new family of binary pesticidal proteins isolated from several Chryseobacterium species. These novel binary proteins, referred to as GDI0005A and GDI0006A, produced as recombinant proteins, prevent growth and increase mortality of WCR larvae, as does the bacteria. These effects were found both in susceptible and resistant WCR colonies to Cry3Bb1 and Cry34Ab1/Cry35Ab1 (reassigned Gpp34Ab1/Tpp35Ab1). This suggests GDI0005A and GDI0006A may not share the same binding sites as those commercially deployed proteins and thereby possess a new mode of action. This paves the way towards the development of novel biological or biotechnological management solutions urgently needed against rootworms.
Collapse
Affiliation(s)
- Rania Jabeur
- Limagrain Europe, Centre de recherche, Chappes, France
| | | | - Szabolcs Toth
- Integrated Pest Management Department, Hungarian University of Agriculture and Life Sciences—MATE, Godollo, Hungary
- CABI Switzerland, c/o Plant Protection and Soil Conservation Directorate, Hodmezovasarhely, Hungary
| | - Adriano E. Pereira
- Division of Plant Science & Technology, University of Missouri, Columbia, MO, United States of America
| | - Man P. Huynh
- Division of Plant Science & Technology, University of Missouri, Columbia, MO, United States of America
| | - Zakia Selmani
- Laboratoire de Biologie et Physiologie des Organismes, Faculté des Sciences Biologiques, Université des Sciences et de la Technologie Houari Boumediène, USTHB, Alger, Algérie
| | - Erin Boland
- Genective USA Corp, Champaign, IL, United States of America
| | - Mickael Bosio
- Limagrain Europe, Centre de recherche, Chappes, France
| | - Laurent Beuf
- Limagrain Europe, Centre de recherche, Chappes, France
| | - Pete Clark
- Genective USA Corp, Champaign, IL, United States of America
| | - David Vallenet
- LABGeM, Génomique Métabolique, CEA, Genoscope, Institut François Jacob, Université d’Evry, Université Paris-Saclay, CNRS, Evry, France
| | - Wafa Achouak
- Aix Marseille Univ, CEA, CNRS, BIAM, LEMIRE, Saint Paul-Lez-Durance, France
| | | | | | - Wyatt Paul
- Limagrain Europe, Centre de recherche, Chappes, France
| | - Thierry Heulin
- Aix Marseille Univ, CEA, CNRS, BIAM, LEMIRE, Saint Paul-Lez-Durance, France
| | - Bruce E. Hibbard
- USDA-ARS, Plant Genetics Research Unit, Univ. Missouri, Columbia, MO, United States of America
| | - Stefan Toepfer
- CABI Switzerland, c/o Plant Protection and Soil Conservation Directorate, Hodmezovasarhely, Hungary
| | | |
Collapse
|
4
|
Du L, Wang B, Diao Y, Yuan J, Zhang F, Zhou H. Optimization of Methyl Anthranilate Synthesis Process by Response Surface Methodology and Its Reaction Mechanism. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/s-0042-1751357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
AbstractIn this paper, a unique process for the production of methyl anthranilate (MA) was investigated. The factors of the phthalimide/sodium hypochlorite/methanol molar ratio, reaction temperature, hydrolysis temperature, and water consumption on the yield and purity of MA were analyzed. Response surface methodology (RSM) was used to optimize conditions for the semi-batch synthesis process of MA. The best synthetic conditions for the formation of MA were reaction temperature 0.5 °C, hydrolysis temperature 70 °C and n(phthalimide)/n(sodium hypochlorite)/n(methanol) = 1:2.03:5.87, and water consumption m(H2O)/m(phthalimide) = 7.16:1. The yield of MA could reach 90% under the optimal conditions, which is more than 10% higher than that of the previous semi-batch process. Furthermore, the reaction mechanism was investigated by infrared spectroscopy analysis, and the mechanism of ester group formation and the structure of intermediate products are proposed. The byproduct of the reaction was studied by GC-MS analysis, a byproduct called 2-cyanobenzoic acid has been discovered. Therefore, an unprecedented reaction mechanism of the whole synthesis process is proposed.
Collapse
Affiliation(s)
- Lei Du
- College of Chemical Engineering, Qingdao University of Science and Technology
| | - Ben Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology
| | - Yanwei Diao
- College of Environment and Safety Engineering, Qingdao University of Science and Technology
| | - Jinqiu Yuan
- College of Chemical Engineering, Qingdao University of Science and Technology
| | - Fuyue Zhang
- College of Chemical Engineering, Qingdao University of Science and Technology
| | - Haoyu Zhou
- College of Chemical Engineering, Qingdao University of Science and Technology
| |
Collapse
|
5
|
Ye W, Bustos‐Segura C, Degen T, Erb M, Turlings TCJ. Belowground and aboveground herbivory differentially affect the transcriptome in roots and shoots of maize. PLANT DIRECT 2022; 6:e426. [PMID: 35898557 PMCID: PMC9307387 DOI: 10.1002/pld3.426] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 06/20/2022] [Indexed: 05/13/2023]
Abstract
Plants recognize and respond to feeding by herbivorous insects by upregulating their local and systemic defenses. While defense induction by aboveground herbivores has been well studied, far less is known about local and systemic defense responses against attacks by belowground herbivores. Here, we investigated and compared the responses of the maize transcriptome to belowground and aboveground mechanical damage and infestation by two well-adapted herbivores: the soil-dwelling western corn rootworm Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae) and the leaf-chewing fall armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae). In responses to both herbivores, maize plants were found to alter local transcription of genes involved in phytohormone signaling, primary and secondary metabolism. Induction by real herbivore damage was considerably stronger and modified the expression of more genes than mechanical damage. Feeding by the corn rootworm had a strong impact on the shoot transcriptome, including the activation of genes involved in defense and development. By contrast, feeding by the fall armyworm induced only few transcriptional changes in the roots. In conclusion, feeding by a leaf chewer and a root feeder differentially affects the local and systemic defense of maize plants. Besides revealing clear differences in how maize plants respond to feeding by these specialized herbivores, this study reveals several novel genes that may play key roles in plant-insect interactions and thus sets the stage for in depth research into the mechanism that can be exploited for improved crop protection. Significance statement Extensive transcriptomic analyses revealed a clear distinction between the gene expression profiles in maize plants upon shoot and root attack, locally as well as distantly from the attacked tissue. This provides detailed insights into the specificity of orchestrated plant defense responses, and the dataset offers a molecular resource for further genetic studies on maize resistance to herbivores and paves the way for novel strategies to enhance maize resistance to pests.
Collapse
Affiliation(s)
- Wenfeng Ye
- Laboratory of Fundamental and Applied Research in Chemical Ecology, Institute of BiologyUniversity of NeuchâtelNeuchâtelSwitzerland
| | - Carlos Bustos‐Segura
- Laboratory of Fundamental and Applied Research in Chemical Ecology, Institute of BiologyUniversity of NeuchâtelNeuchâtelSwitzerland
| | - Thomas Degen
- Laboratory of Fundamental and Applied Research in Chemical Ecology, Institute of BiologyUniversity of NeuchâtelNeuchâtelSwitzerland
| | - Matthias Erb
- Institute of Plant SciencesUniversity of BernBernSwitzerland
| | - Ted C. J. Turlings
- Laboratory of Fundamental and Applied Research in Chemical Ecology, Institute of BiologyUniversity of NeuchâtelNeuchâtelSwitzerland
| |
Collapse
|
6
|
Arce CC, Theepan V, Schimmel BC, Jaffuel G, Erb M, Machado RA. Plant-associated CO 2 mediates long-distance host location and foraging behaviour of a root herbivore. eLife 2021; 10:65575. [PMID: 33875133 PMCID: PMC8057813 DOI: 10.7554/elife.65575] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/08/2021] [Indexed: 11/13/2022] Open
Abstract
Insect herbivores use different cues to locate host plants. The importance of CO2 in this context is not well understood. We manipulated CO2 perception in western corn rootworm (WCR) larvae through RNAi and studied how CO2 perception impacts their interaction with their host plant. The expression of a carbon dioxide receptor, DvvGr2, is specifically required for dose-dependent larval responses to CO2. Silencing CO2 perception or scrubbing plant-associated CO2 has no effect on the ability of WCR larvae to locate host plants at short distances (<9 cm), but impairs host location at greater distances. WCR larvae preferentially orient and prefer plants that grow in well-fertilized soils compared to plants that grow in nutrient-poor soils, a behaviour that has direct consequences for larval growth and depends on the ability of the larvae to perceive root-emitted CO2. This study unravels how CO2 can mediate plant–herbivore interactions by serving as a distance-dependent host location cue. Living deep in the ground and surrounded by darkness, soil insects must rely on the chemicals released by plants to find the roots they feed on. Carbon dioxide, for example, is a by-product of plant respiration, which, above ground, is thought to attract moths to flowers and flies to apples; underground, however, its role is still unclear. This gaseous compound can travel through soil and potentially act as a compass for root-eating insects. Yet, it is also produced by decaying plants or animals, which are not edible. It is therefore possible that insects use this signal as a long-range cue to orient themselves, but then switch to another chemical when closer to their target to narrow in on an actual food source. To test this idea, Arce et al. investigated whether carbon dioxide guides the larvae of Western corn rootworm to maize roots. First, the rootworm genes responsible for sensing carbon dioxide were identified and switched off, making the larvae unable to detect this gas. When the genetically engineered rootworms were further than 9cm from maize roots, they were less able to locate that food source; closer to the roots, however, the insects could orient themselves towards the plant. This suggests that the insects use carbon dioxide at long distances but rely on another chemicals to narrow down their search at close range. To confirm this finding, Arce et al. tried absorbing the carbon dioxide using soda lime, leading to similar effects: carbon dioxide sensitive insects stopped detecting the roots at long but not short distances. Additional experiments then revealed that the compound could help insects find the best roots to feed on. Indeed, eating plants that grow on rich terrain – for instance, fertilized soils – helps insects to grow bigger and faster. These roots also release more carbon dioxide, in turn attracting rootworms more frequently. In the United States and Eastern Europe, Western corn rootworms inflict major damage to crops, highlighting the need to understand and manage the link between fertilization regimes, carbon dioxide release and how these pests find their food.
Collapse
Affiliation(s)
- Carla Cm Arce
- Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Vanitha Theepan
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | | | - Geoffrey Jaffuel
- Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Matthias Erb
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Ricardo Ar Machado
- Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland.,Institute of Plant Sciences, University of Bern, Bern, Switzerland
| |
Collapse
|
7
|
The plant metabolome guides fitness-relevant foraging decisions of a specialist herbivore. PLoS Biol 2021; 19:e3001114. [PMID: 33600420 PMCID: PMC7924754 DOI: 10.1371/journal.pbio.3001114] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 03/02/2021] [Accepted: 01/26/2021] [Indexed: 01/01/2023] Open
Abstract
Plants produce complex mixtures of primary and secondary metabolites. Herbivores use these metabolites as behavioral cues to increase their fitness. However, how herbivores combine and integrate different metabolite classes into fitness-relevant foraging decisions in planta is poorly understood. We developed a molecular manipulative approach to modulate the availability of sugars and benzoxazinoid secondary metabolites as foraging cues for a specialist maize herbivore, the western corn rootworm. By disrupting sugar perception in the western corn rootworm and benzoxazinoid production in maize, we show that sugars and benzoxazinoids act as distinct and dynamically combined mediators of short-distance host finding and acceptance. While sugars improve the capacity of rootworm larvae to find a host plant and to distinguish postembryonic from less nutritious embryonic roots, benzoxazinoids are specifically required for the latter. Host acceptance in the form of root damage is increased by benzoxazinoids and sugars in an additive manner. This pattern is driven by increasing damage to postembryonic roots in the presence of benzoxazinoids and sugars. Benzoxazinoid- and sugar-mediated foraging directly improves western corn rootworm growth and survival. Interestingly, western corn rootworm larvae retain a substantial fraction of their capacity to feed and survive on maize plants even when both classes of chemical cues are almost completely absent. This study unravels fine-grained differentiation and combination of primary and secondary metabolites into herbivore foraging and documents how the capacity to compensate for the lack of important chemical cues enables a specialist herbivore to survive within unpredictable metabolic landscapes.
Collapse
|
8
|
Paddock KJ, Robert CAM, Erb M, Hibbard BE. Western Corn Rootworm, Plant and Microbe Interactions: A Review and Prospects for New Management Tools. INSECTS 2021; 12:171. [PMID: 33671118 PMCID: PMC7922318 DOI: 10.3390/insects12020171] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/11/2021] [Accepted: 02/13/2021] [Indexed: 12/12/2022]
Abstract
The western corn rootworm, Diabrotica virgifera virgifera LeConte, is resistant to four separate classes of traditional insecticides, all Bacillius thuringiensis (Bt) toxins currently registered for commercial use, crop rotation, innate plant resistance factors, and even double-stranded RNA (dsRNA) targeting essential genes via environmental RNA interference (RNAi), which has not been sold commercially to date. Clearly, additional tools are needed as management options. In this review, we discuss the state-of-the-art knowledge about biotic factors influencing herbivore success, including host location and recognition, plant defensive traits, plant-microbe interactions, and herbivore-pathogens/predator interactions. We then translate this knowledge into potential new management tools and improved biological control.
Collapse
Affiliation(s)
- Kyle J. Paddock
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA;
| | - Christelle A. M. Robert
- Institute of Plant Sciences, University of Bern, 3013 Bern, Switzerland; (C.A.M.R.); (M.E.)
- Oeschger Centre for Climate Change Research, University of Bern, 3013 Bern, Switzerland
| | - Matthias Erb
- Institute of Plant Sciences, University of Bern, 3013 Bern, Switzerland; (C.A.M.R.); (M.E.)
- Oeschger Centre for Climate Change Research, University of Bern, 3013 Bern, Switzerland
| | - Bruce E. Hibbard
- Plant Genetics Research Unit, United States Department of Agriculture, Agricultural Research Service, Columbia, MO 65211, USA
| |
Collapse
|
9
|
Pollier J, De Geyter N, Moses T, Boachon B, Franco-Zorrilla JM, Bai Y, Lacchini E, Gholami A, Vanden Bossche R, Werck-Reichhart D, Goormachtig S, Goossens A. The MYB transcription factor Emission of Methyl Anthranilate 1 stimulates emission of methyl anthranilate from Medicago truncatula hairy roots. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:637-654. [PMID: 31009122 DOI: 10.1111/tpj.14347] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 03/13/2019] [Accepted: 04/10/2019] [Indexed: 06/09/2023]
Abstract
Plants respond to herbivore or pathogen attacks by activating specific defense programs that include the production of bioactive specialized metabolites to eliminate or deter the attackers. Volatiles play an important role in the interaction of a plant with its environment. Through transcript profiling of jasmonate-elicited Medicago truncatula cells, we identified Emission of Methyl Anthranilate (EMA) 1, a MYB transcription factor that is involved in the emission of the volatile compound methyl anthranilate when expressed in M. truncatula hairy roots, giving them a fruity scent. RNA sequencing (RNA-Seq) analysis of the fragrant roots revealed the upregulation of a methyltransferase that was subsequently characterized to catalyze the O-methylation of anthranilic acid and was hence named M. truncatula anthranilic acid methyl transferase (MtAAMT) 1. Given that direct activation of the MtAAMT1 promoter by EMA1 could not be unambiguously demonstrated, we further probed the RNA-Seq data and identified the repressor protein M. truncatula plant AT-rich sequence and zinc-binding (MtPLATZ) 1. Emission of Methyl Anthranilate 1 binds a tandem repeat of the ACCTAAC motif in the MtPLATZ1 promoter to transactivate gene expression. Overexpression of MtPLATZ1 in transgenic M. truncatula hairy roots led to transcriptional silencing of EMA1, indicating that MtPLATZ1 may be part of a negative feedback loop to control the expression of EMA1. Finally, application of exogenous methyl anthranilate boosted EMA1 and MtAAMT1 expression dramatically, thus also revealing a positive amplification loop. Such positive and negative feedback loops seem to be the norm rather than the exception in the regulation of plant specialized metabolism.
Collapse
Affiliation(s)
- Jacob Pollier
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, B-9052, Ghent, Belgium
| | - Nathan De Geyter
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, B-9052, Ghent, Belgium
| | - Tessa Moses
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, B-9052, Ghent, Belgium
| | - Benoît Boachon
- Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357 du Centre National de la Recherche Scientifique, Université de Strasbourg, 67000, Strasbourg, France
| | | | - Yuechen Bai
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, B-9052, Ghent, Belgium
| | - Elia Lacchini
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, B-9052, Ghent, Belgium
| | - Azra Gholami
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, B-9052, Ghent, Belgium
| | - Robin Vanden Bossche
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, B-9052, Ghent, Belgium
| | - Danièle Werck-Reichhart
- Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357 du Centre National de la Recherche Scientifique, Université de Strasbourg, 67000, Strasbourg, France
| | - Sofie Goormachtig
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, B-9052, Ghent, Belgium
| | - Alain Goossens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, B-9052, Ghent, Belgium
| |
Collapse
|
10
|
Bernklau EJ, Hibbard BE, Bjostad LB. Repellent Effects of Methyl Anthranilate on Western Corn Rootworm Larvae (Coleoptera: Chrysomelidae) in Soil Bioassays. JOURNAL OF ECONOMIC ENTOMOLOGY 2019; 112:683-690. [PMID: 30423133 DOI: 10.1093/jee/toy346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Indexed: 06/09/2023]
Abstract
Methyl anthranilate (MA), a compound in maize roots that is repellent to western corn rootworm larvae (Diabrotica virgifera virgifera LeConte) was tested in behavioral bioassays in a soil environment. MA prevented larvae from locating roots of a maize seedling, and the repellency strengthened with increasing rates of MA. In a simple push-pull strategy between an MA-treated seedling and an untreated seedling, granules containing 0.1 mg/g MA pushed larvae to the untreated seedling. This push effect increased with dose, with 90% repellency observed for the highest dose tested (100 mg/g). Chemical analysis showed that MA concentrations remained high for 4 wk in dry, sterilized or unsterilized soil, but declined rapidly in moist soil. After 7 d, 50% less MA was recovered in moist, sterilized soil than in dry soil, and only a trace of MA remained in unsterilized moist soil, suggesting that both moisture and microbial activity contributed to the loss of MA. Various (MA) carrier granules were tested in bioassays after aging in moist soil. After 1 d, all of the MA granules were repellent at the 10 mg/g rate and clay granules were also effective at 1 mg/g. After 1 wk, only molecular sieve granules elicited repellency, but that activity disappeared after 2 wk. These results demonstrate that MA is repellent to western corn rootworm larvae in the soil environment and may have potential as a rootworm treatment if formulations can be developed that protect the material from decomposition in the soil.
Collapse
Affiliation(s)
- E J Bernklau
- Department of Bioagricultural Sciences & Pest Management, Colorado State University, Fort Collins, CO
| | - B E Hibbard
- USDA-ARS, University of Missouri, Columbia, MO
| | - L B Bjostad
- Department of Bioagricultural Sciences & Pest Management, Colorado State University, Fort Collins, CO
| |
Collapse
|
11
|
Huynh MP, Hibbard BE, Lapointe SL, Niedz RP, French BW, Pereira AE, Finke DL, Shelby KS, Coudron TA. Multidimensional approach to formulating a specialized diet for northern corn rootworm larvae. Sci Rep 2019; 9:3709. [PMID: 30842452 PMCID: PMC6403226 DOI: 10.1038/s41598-019-39709-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 01/29/2019] [Indexed: 11/14/2022] Open
Abstract
The northern corn rootworm (NCR), Diabrotica barberi Smith & Lawrence, is a major pest of maize (Zea mays L.). This pest has developed resistance to insecticides and adapted to crop rotation and may already be in the early stages of adaptation to toxins produced by Bacillus thuringiensis (Bt). Toxicity bioassays using artificial diet have proven to be valuable for monitoring resistance in many species, but no artificial diet has been developed specifically for NCR larvae. Toward this end, we first evaluated known Diabrotica diets to identify a starting media. We then developed a specialized diet for NCR using an iterative approach. Screening designs including 8 diet components were performed to identify the principal nutritional components contributing to multiple developmental parameters (survival, weight, and molting). We then applied mixture designs coupled with response surface modeling to optimize a blend of those components. Finally, we validated an improved NCR diet formulation that supports approximately 97% survival and molting, and a 150% increase in larval weight after 10 days of feeding compared with the best previously published artificial diet. This formulation appears suitable for use in diet bioassays as a tool for evaluating the resistance of NCR populations to insecticides.
Collapse
Affiliation(s)
- Man P Huynh
- Division of Plant Sciences, University of Missouri, Columbia, Missouri, 65211, USA.
| | - Bruce E Hibbard
- Plant Genetics Research Unit, USDA-Agricultural Research Service, Columbia, Missouri, 65211, USA
| | - Stephen L Lapointe
- U.S. Horticultural Research Laboratory, USDA-Agricultural Research Service, Fort Pierce, Florida, 34945, USA
| | - Randall P Niedz
- U.S. Horticultural Research Laboratory, USDA-Agricultural Research Service, Fort Pierce, Florida, 34945, USA
| | - B Wade French
- North Central Agricultural Research Laboratory, USDA-Agricultural Research Service, Brookings, South Dakota, 57006, USA
| | - Adriano E Pereira
- Plant Genetics Research Unit, USDA-Agricultural Research Service, Columbia, Missouri, 65211, USA
| | - Deborah L Finke
- Division of Plant Sciences, University of Missouri, Columbia, Missouri, 65211, USA
| | - Kent S Shelby
- Biological Control of Insects Research Laboratory, USDA-Agricultural Research Service, Columbia, Missouri, 65203, USA
| | - Thomas A Coudron
- Biological Control of Insects Research Laboratory, USDA-Agricultural Research Service, Columbia, Missouri, 65203, USA
| |
Collapse
|
12
|
Huynh MP, Bernklau EJ, Coudron TA, Shelby KS, Bjostad LB, Hibbard BE. Characterization of Corn Root Factors to Improve Artificial Diet for Western Corn Rootworm (Coleoptera: Chrysomelidae) Larvae. JOURNAL OF INSECT SCIENCE (ONLINE) 2019; 19:20. [PMID: 30953583 PMCID: PMC6451652 DOI: 10.1093/jisesa/iez030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Indexed: 06/09/2023]
Abstract
The western corn rootworm, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), is an important economic pest of maize (Zea mays L.) in North America and Europe. Previous efforts to formulate an artificial diet for western corn rootworm larvae highlighted an important role of corn root powder, which had a significant positive impact on several larval developmental traits. Unfortunately, this ingredient is not available for purchase. Toward the goal of developing an artificial diet for western corn rootworm larvae with all ingredients readily accessible, we conducted research to isolate essential growth factors for larval development from corn root powder to improve the performance of diet without corn root powder. For all experiments, multiple life history parameters (survival, weight, and molting) were recorded from 15-d diet bioassays. Corn roots may contain factors that assist in larval growth, but some of these factors were not fully extracted by methanol and remained in the extracted root. Methanolic extracts significantly increased molting to second instar, but did not significantly increase survival, dry weight, or molting to third instar, suggesting the primary corn root substituents affecting these factors cannot be extracted or other extraction methods may be required to extract the essential factors from corn roots. We showed that whole corn root powder was best when used in combination with all the other nutrient sources in the published western corn rootworm formulation. Corn root powder made from proprietary seed and Viking seed has similar value.
Collapse
Affiliation(s)
- Man P Huynh
- Division of Plant Sciences, University of Missouri, Columbia, MO
| | - Elisa J Bernklau
- Department of Bioagricultural Sciences & Pest Management, Colorado State University, Fort Collins, CO
| | - Thomas A Coudron
- USDA-ARS Biological Control of Insect Research Laboratory, Columbia, MO
| | - Kent S Shelby
- USDA-ARS Biological Control of Insect Research Laboratory, Columbia, MO
| | - Louis B Bjostad
- Department of Bioagricultural Sciences & Pest Management, Colorado State University, Fort Collins, CO
| | | |
Collapse
|
13
|
Huang W, Robert CAM, Hervé MR, Hu L, Bont Z, Erb M. A mechanism for sequence specificity in plant-mediated interactions between herbivores. THE NEW PHYTOLOGIST 2017; 214:169-179. [PMID: 27898177 PMCID: PMC6079637 DOI: 10.1111/nph.14328] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 10/11/2016] [Indexed: 05/20/2023]
Abstract
Herbivore communities are shaped by indirect plant-mediated interactions whose outcomes are strongly dependent on the sequence of herbivore arrival. However, the mechanisms underlying sequence specificity are poorly understood. We examined the mechanisms that govern sequence-specific effects of the interaction between two specialist maize herbivores, the leaf feeder Spodoptera frugiperda and the root feeder Diabrotica virgifera virgifera. In the field, S. frugiperda reduces D. v. virgifera abundance, but only when it arrives on the plant first. In behavioral experiments, D. v. virgifera larvae continued feeding on plants that they had infested before leaf infestation, but refused to initiate feeding on plants that were infested by S. frugiperda before their arrival. Changes in root-emitted volatiles were sufficient to elicit this sequence-specific behavior. Root volatile and headspace mixing experiments showed that early-arriving D. v. virgifera larvae suppressed S. frugiperda-induced volatile repellents, which led to the maintenance of host attractiveness to D. v. virgifera. Our study provides a physiological and behavioral mechanism for sequence specificity in plant-mediated interactions and suggests that physiological canalization of behaviorally active metabolites can drive sequence specificity and result in strongly diverging herbivore distribution patterns.
Collapse
Affiliation(s)
- Wei Huang
- Institute of Plant SciencesUniversity of BernAltenbergrain 21Bern3013Switzerland
| | | | - Maxime R. Hervé
- Institute of Plant SciencesUniversity of BernAltenbergrain 21Bern3013Switzerland
- INRAUMR1349 IGEPPLe RheuF‐35653France
| | - Lingfei Hu
- Institute of Plant SciencesUniversity of BernAltenbergrain 21Bern3013Switzerland
| | - Zoe Bont
- Institute of Plant SciencesUniversity of BernAltenbergrain 21Bern3013Switzerland
| | - Matthias Erb
- Institute of Plant SciencesUniversity of BernAltenbergrain 21Bern3013Switzerland
| |
Collapse
|