1
|
Izadi H, Cuthbert RN, Haubrock PJ, Renault D. Advances in understanding Lepidoptera cold tolerance. J Therm Biol 2024; 125:103992. [PMID: 39418723 DOI: 10.1016/j.jtherbio.2024.103992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024]
Abstract
Ambient thermal conditions mediate insect growth, development, reproduction, survival, and distribution. With increasingly frequent and severe cold spells, it is critical to determine low-temperature performance and cold tolerances of ecologically and economically essential insect groups to predict their responses to global environmental change. This review covers the cold tolerance strategies of 49 species of Lepidoptera (moths and butterflies), focusing on species that are known as crop pests and crop storage facilities. We synthesize cold tolerance strategies of well-studied species within this order, finding that diapause is a distinctive mechanism that has independently evolved in different genera and families of Lepidoptera. However, the occurrence of diapause in each life stage is specific to the species, and in most studied lepidopteran species, the feeding stage (as larva) is the predominant overwintering stage. We also found that the onset of diapause and the improvement of cold tolerance are interdependent phenomena that typically occur together. Moreover, adopting a cold tolerance strategy is not an inherent, fixed trait and is greatly influenced by a species' geographic distribution and rearing conditions. This review further finds that freeze avoidance rather than freeze tolerance or chill susceptibility is the primary cold tolerance strategy among lepidopteran species. The cold hardiness of lepidopteran insects primarily depends on the accumulation of cryoprotectants and the depression of the supercooling point. We highlight variations in cold tolerance strategies and mechanisms among a subset of Lepidoptera, however, further work is needed to elucidate these strategies for the vast numbers of neglected species and populations to understand broad-scale responses to global change.
Collapse
Affiliation(s)
- Hamzeh Izadi
- Division of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran.
| | - Ross N Cuthbert
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, BT9 5DL, United Kingdom
| | - Phillip J Haubrock
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, 389 25, Vodňany, Czech Republic
| | - David Renault
- Université de Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)], 35000, Rennes, France
| |
Collapse
|
2
|
Chen L, Gómez R, Weiss LC. Distinct Gene Expression Patterns of Two Heat Shock Protein 70 Members During Development, Diapause, and Temperature Stress in the Freshwater Crustacean Daphnia magna. Front Cell Dev Biol 2021; 9:692517. [PMID: 34277636 PMCID: PMC8281232 DOI: 10.3389/fcell.2021.692517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/20/2021] [Indexed: 12/15/2022] Open
Abstract
Dormancy is a lifecycle delay that allows organisms to escape suboptimal environmental conditions. As a genetically programmed type of dormancy, diapause is usually accompanied by metabolic depression and enhanced tolerance toward adverse environmental factors. However, the drivers and regulators that steer an organism’s development into a state of suspended animation to survive environmental stress have not been fully uncovered. Heat shock proteins 70 (HSP70s), which are often produced in response to various types of stress, have been suggested to play a role in diapause. Considering the diversity of the Hsp70 family, different family members may have different functions during diapause. In the present study, we demonstrate the expression of two hsp70 genes (A and B together with protein localization of B) throughout continuous and diapause interrupted development of Daphnia magna. Before and after diapause, the expression of Dmhsp70-A is low. Only shortly before diapause and during diapause, Dmhsp70-A is significantly upregulated and may therefore be involved in diapause preparation and maintenance. In contrast, Dmhsp70-B is expressed only in developing embryos but not in diapausing embryos. During continuous development, the protein of this Hsp70 family member is localized in the cytosol. When we expose both embryo types to heat stress, expression of both hsp70 genes increases only in developing embryos, and the protein of family member B is translocated to the nucleus. In this stress formation, this protein provides effective protection of nucleoplasmic DNA. As we also see this localization in diapausing embryos, it seems that Daphnia embryo types share a common subcellular strategy when facing dormancy or heat shock, i.e., they protect their DNA by HSP70B nuclear translocation. Our study underlines the distinctive roles that different Hsp70 family members play throughout continuous and diapause interrupted development.
Collapse
Affiliation(s)
- Luxi Chen
- Department of Animal Ecology, Evolution and Biodiversity, Ruhr-University Bochum, Bochum, Germany
| | - Rocío Gómez
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Linda C Weiss
- Department of Animal Ecology, Evolution and Biodiversity, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
3
|
Huang J, Li G, Lei H, Fan C, Tian C, Chen Q, Huang B, Li H, Lu Z, Feng H. Low-temperature derived temporal change in the vertical distribution of Sesamia inferens larvae in winter, with links to its latitudinal distribution. PLoS One 2020; 15:e0236174. [PMID: 32722719 PMCID: PMC7386632 DOI: 10.1371/journal.pone.0236174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 06/30/2020] [Indexed: 11/18/2022] Open
Abstract
To escape or alleviate low temperatures in winter, insects have evolved many behavioral and physiological strategies. The purple stem borer, Sesamia inferens (Walker) is currently reported to be expanding their northern distributions and causing damage to summer maize in Xinxiang, China. However, their method of coping with the lower temperature in the new northern breeding area in winter is largely unknown. This paper investigates the overwinter site of S. inferens, and identifies the cold hardiness of larvae collected from a new breeding area in winter and explores a potential distribution based on low temperature threshold and on species distribution model MaxEnt. The results show that the overwintering location of the S. inferens population is more likely to be underground with increasing latitude and the population gradually moved down the corn stalk and drilled completely underground in later winter (February) in the north. The cold hardiness test shows the species is a moderate freeze-tolerant one, and Supercooling Points (SCP), Freezing Points (FP) and the incidence of mortality during the middle of winter (January, SCP: -7.653, FP: -6.596) were significantly lower than early winter (October) or late winter (March). Distribution in the new expansion area was predicted and the survival probability area was below N 35° for the Air Lower Lethal Temperature (ALLT50) and below N 40° for the Underground Lower Lethal Temperature (ULLT50). The suitable habitat areas for S. inferens with MaxEnt were also below N 40°. This study suggests the overwinter strategies of S. inferens have led to the colonization of up to a five degree more northerly overwintering latitude.
Collapse
Affiliation(s)
- Jianrong Huang
- Henan Key Laboratory of Crop Pest Control, MOA's Regional Key Lab of Crop IPM in Southern Part of Northern China; Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, China
- Centre for Ecology and Conservation, University of Exeter, Penryn, Cornwall, United Kingdom
- * E-mail: (JH); (HF)
| | - Guoping Li
- Henan Key Laboratory of Crop Pest Control, MOA's Regional Key Lab of Crop IPM in Southern Part of Northern China; Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Haixia Lei
- Xinyang Academy of Agricultural Sciences, Xinyang, China
| | - Chunbin Fan
- Tianjing Beidagang Wetland Conservation Centre, Tianjing, China
| | - Caihong Tian
- Henan Key Laboratory of Crop Pest Control, MOA's Regional Key Lab of Crop IPM in Southern Part of Northern China; Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Qi Chen
- Luohe Academy of Agricultural Sciences, Luohe, China
| | - Bo Huang
- Henan Key Laboratory of Crop Pest Control, MOA's Regional Key Lab of Crop IPM in Southern Part of Northern China; Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Huilong Li
- Xinyang Academy of Agricultural Sciences, Xinyang, China
| | - Zhaocheng Lu
- Xinyang Academy of Agricultural Sciences, Xinyang, China
| | - Hongqiang Feng
- Henan Key Laboratory of Crop Pest Control, MOA's Regional Key Lab of Crop IPM in Southern Part of Northern China; Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, China
- * E-mail: (JH); (HF)
| |
Collapse
|
4
|
Zhao LN, Ma Y, Yang X, Iqbal A, Ruan CC, Zang LS. Identification of Serratia marcescens isolated from Antheraea pernyi eggs and determination of bacterial pathogenicity and transmission pathway. J Invertebr Pathol 2019; 169:107297. [PMID: 31783030 DOI: 10.1016/j.jip.2019.107297] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 11/22/2019] [Accepted: 11/25/2019] [Indexed: 01/21/2023]
Abstract
The Chinese oak silkworm, Antheraea pernyi, is an important alternate host for mass production of Trichogramma parasitoids, which play a vital role in the biological control of lepidopterous pests in China. The quality of A. pernyi eggs is particularly important for mass production of these parasitoids. In this study, a pathogenic bacterium, isolated and purified from A. pernyi eggs that had turned gray in color, was identified as Serratia marcescens. We used morphology, biochemistry and 16S rDNA analysis to characterize the strain, which was named "APE strain". Serratia marcescens APE strain was determined to be the causal bacterium associated with the disease in the eggs, verified by a test based on Koch's Postulates. We tested the pathogenicity of S. marcescens APE strain on A. pernyi eggs; the percentage of diseased (gray) eggs reached 57.78% when uninfected eggs were exposed to a concentration of 1 × 109 cfu/mL bacterial suspension for 7 h. S. marcescens was transmitted mechanically by Trichogramma parasitoids. The transmission rate was 25.56%. In a horizontal transmission test, the highest percentage of uninfected eggs that developed infections was 51.43% after being treated with contents of diseased eggs for 12 h. In a vertical transmission test, the number of infected eggs per treated adult female was 63.8-92.3 after treatment with different S. marcescens concentrations, significantly lower than the 304.3 eggs per female in the control group. Furthermore, the percentage of infected (gray) eggs produced by adult moths exposed to bacteria in the larval stage was 80.5-85.3%.
Collapse
Affiliation(s)
- Li-Na Zhao
- Jilin Engineering Research Center of Resource Insects Industrialization, Institute of Biological Control, Jilin Agricultural University, Changchun, China; Jilin Agricultural Science and Technology College, Jilin, China
| | - Yue Ma
- Jilin Engineering Research Center of Resource Insects Industrialization, Institute of Biological Control, Jilin Agricultural University, Changchun, China
| | | | - Asim Iqbal
- Jilin Engineering Research Center of Resource Insects Industrialization, Institute of Biological Control, Jilin Agricultural University, Changchun, China
| | - Chang-Chun Ruan
- Jilin Engineering Research Center of Resource Insects Industrialization, Institute of Biological Control, Jilin Agricultural University, Changchun, China.
| | - Lian-Sheng Zang
- Jilin Engineering Research Center of Resource Insects Industrialization, Institute of Biological Control, Jilin Agricultural University, Changchun, China.
| |
Collapse
|
5
|
Su H, Zou J, Zhou Q, Yu Q, Yang Y, Yang Y. Better cold tolerance of Bt-resistant Spodoptera exigua strain and the corresponding cold-tolerant mechanism. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2017; 140:51-57. [PMID: 28755694 DOI: 10.1016/j.pestbp.2017.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 05/31/2017] [Accepted: 06/02/2017] [Indexed: 06/07/2023]
Abstract
Spodoptera exigua is a secondary target pest of Bt cotton commercialized in China. With the continuous adoption of Bt cotton, populations of S. exigua have gradually increased. However, the cold tolerance ability of Bt-resistant S. exigua and the effect of continuous Bt diet on anti-cold materials are unknown. In our study, it was found that Bt-resistant S. exigua (Bt10) developed better with shorter larval and pupal duration and higher pupation rate compared to CK at the suboptimal low temperature. The supercooling points and freezing points of the Bt-resistant S. exigua strain were determined, and body water content and anti-cold materials such as total sugar, trehalose and glycogen, glycerol and fat were examined to explore the effect of Bt toxin on overwintering and on population increase. The results showed that the supercooling point and the freezing point of the Bt-resistant S. exigua pupae were both significantly lower than that of the Bt-susceptible strain. No difference was found in the body water content of pupae and adults between the two strains. Total sugar content of the Bt-resistant strain at both the pupal and adult stages was higher than that of the susceptible strain at the corresponding stages, and glycogen content of the Bt-resistant strain at the larval stage was higher than that of the susceptible larval S. exigua. Fat content of the Bt-resistant larvae, pupae and adults was for each higher than that of the susceptible strain, but the difference was not significant except for that of the 3rd instar larvae. Glycerol content of the Bt-resistant strain at larval, pupal and adult stages was for each higher than that of the corresponding life stages of the susceptible strain. It can be seen that more glycerol was accumulated in Bt-resistant S. exigua. The results indicate that Bt-resistant S. exigua has better cold tolerance. The contents of the anti-freeze substances of progeny, especially glycerol, were increased after previous generations were continuously fed on Bt protein, which means that the Bt-resistant secondary target pests could more easily overcome the overwinter season and become a source of crop damage the following year.
Collapse
Affiliation(s)
- Honghua Su
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Jincheng Zou
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Qiuxia Zhou
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Qi Yu
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Yong Yang
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Yizhong Yang
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, Jiangsu, China.
| |
Collapse
|
6
|
Sun Y, Wang Y, Liu W, Zhou JL, Zeng J, Wang XH, Jiang YR, Li DH, Qin L. Upregulation of a Trypsin-Like Serine Protease Gene in Antheraea pernyi (Lepidoptera: Saturniidae) Strains Exposed to Different Pathogens. JOURNAL OF ECONOMIC ENTOMOLOGY 2017; 110:941-948. [PMID: 28369437 DOI: 10.1093/jee/tox096] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Indexed: 06/07/2023]
Abstract
Antheraea pernyi Guérin-Méneville is used for silk production and as a food resource. Its infection by exogenous pathogens, including microsporidia, fungi, bacteria, and virus, can lead to silkworm diseases, causing major economic losses. A trypsin-like serine protease gene (TLS) was found in A. pernyi transcriptome data resulting from two different infection experiments. The cDNA sequence of ApTLS was 1,020 bp in length and contained an open reading frame of 774 bp encoding a 257-amino acid protein (GenBank KF779933). The present study investigated the expression patterns of ApTLS after exposure to different pathogens, and in four different A. pernyi strains. Semiquantitative RT-PCR indicated that ApTLS was expressed in all developmental stages and was most expressed in the midgut. Quantitative real-time PCR indicated ApTLS was upregulated in the midgut of A. pernyi exposed to nucleopolyhedrovirus (ApNPV), Nosema pernyi, Enterococcus pernyi, and Beauveria bassiana infections, and the highest gene expression level was found under ApNPV infection. The strain Shenhuang No. 2 presented the lowest infection rate and the highest ApTLS gene expression level when exposed to ApNPV. Thus, ApTLS seems to be involved in innate defense reactions in A. pernyi.
Collapse
Affiliation(s)
- Ying Sun
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Liaoning Engineering and Technology Resource Center for Insect Resource, Shenyang 110866, China (; ; ; ; ; ; )
| | - Yong Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Liaoning Engineering and Technology Resource Center for Insect Resource, Shenyang 110866, China (; ; ; ; ; ; )
| | - Wei Liu
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Jing-Lin Zhou
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Liaoning Engineering and Technology Resource Center for Insect Resource, Shenyang 110866, China (; ; ; ; ; ; )
| | - Jun Zeng
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Liaoning Engineering and Technology Resource Center for Insect Resource, Shenyang 110866, China (; ; ; ; ; ; )
| | - Xiao-Hui Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Liaoning Engineering and Technology Resource Center for Insect Resource, Shenyang 110866, China (; ; ; ; ; ; )
| | - Yi-Ren Jiang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Liaoning Engineering and Technology Resource Center for Insect Resource, Shenyang 110866, China (; ; ; ; ; ; )
| | - Dong-Hua Li
- Yanbian Academy of Agricultural Sciences, Yanbian 133400, China
| | - Li Qin
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Liaoning Engineering and Technology Resource Center for Insect Resource, Shenyang 110866, China ( ; ; ; ; ; ; )
- Corresponding author, e-mail:
| |
Collapse
|