1
|
Van Lommel J, Holtof M, Tilleman L, Cools D, Vansteenkiste S, Polgun D, Verdonck R, Van Nieuwerburgh F, Vanden Broeck J. Post-feeding transcriptomics reveals essential genes expressed in the midgut of the desert locust. Front Physiol 2023; 14:1232545. [PMID: 37692997 PMCID: PMC10484617 DOI: 10.3389/fphys.2023.1232545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/26/2023] [Indexed: 09/12/2023] Open
Abstract
The digestive tract constitutes an important interface between an animal's internal and external environment. In insects, available gut transcriptome studies are mostly exploratory or look at changes upon infection or upon exposure to xenobiotics, mainly performed in species belonging to holometabolan orders, such as Diptera, Lepidoptera or Coleoptera. By contrast, studies focusing on gene expression changes after food uptake and during digestion are underrepresented. We have therefore compared the gene expression profiles in the midgut of the desert locust, Schistocerca gregaria, between three different time points after feeding, i.e., 24 h (no active digestion), 10 min (the initial stage of feeding), and 2 h (active food digestion). The observed gene expression profiles were consistent with the polyphagous herbivorous lifestyle of this hemimetabolan (orthopteran) species. Our study reveals the upregulation of 576 genes 2 h post-feeding. These are mostly predicted to be associated with digestive physiology, such as genes encoding putative digestive enzymes or nutrient transporters, as well as genes putatively involved in immunity or in xenobiotic metabolism. The 10 min time point represented an intermediate condition, suggesting that the S. gregaria midgut can react rapidly at the transcriptional level to the presence of food. Additionally, our study demonstrated the critical importance of two transcripts that exhibited a significant upregulation 2 h post-feeding: the vacuolar-type H(+)-ATPase and the sterol transporter Niemann-Pick 1b protein, which upon RNAi-induced knockdown resulted in a marked increase in mortality. Their vital role and accessibility via the midgut lumen may make the encoded proteins promising insecticidal target candidates, considering that the desert locust is infamous for its huge migrating swarms that can devastate the agricultural production in large areas of Northern Africa, the Middle East, and South Asia. In conclusion, the transcriptome datasets presented here will provide a useful and promising resource for studying the midgut physiology of S. gregaria, a socio-economically important pest species.
Collapse
Affiliation(s)
- Joachim Van Lommel
- Molecular Developmental Physiology and Signal Transduction Lab, Department of Biology, University of Leuven, Leuven, Belgium
| | - Michiel Holtof
- Molecular Developmental Physiology and Signal Transduction Lab, Department of Biology, University of Leuven, Leuven, Belgium
| | | | - Dorien Cools
- Molecular Developmental Physiology and Signal Transduction Lab, Department of Biology, University of Leuven, Leuven, Belgium
| | - Seppe Vansteenkiste
- Molecular Developmental Physiology and Signal Transduction Lab, Department of Biology, University of Leuven, Leuven, Belgium
| | - Daria Polgun
- Molecular Developmental Physiology and Signal Transduction Lab, Department of Biology, University of Leuven, Leuven, Belgium
| | - Rik Verdonck
- Molecular Developmental Physiology and Signal Transduction Lab, Department of Biology, University of Leuven, Leuven, Belgium
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | | | - Jozef Vanden Broeck
- Molecular Developmental Physiology and Signal Transduction Lab, Department of Biology, University of Leuven, Leuven, Belgium
| |
Collapse
|
2
|
Wang Y, Huang X, Li H, Chen G. Occurrence, Density, and Transcriptomic Response of the Leafhopper Erythroneura sudra (Hemiptera: Cicadellidae) When Confronted With Different Fruit Tree Species. JOURNAL OF INSECT SCIENCE (ONLINE) 2022; 22:18. [PMID: 35763316 PMCID: PMC9239223 DOI: 10.1093/jisesa/ieac037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Indexed: 06/15/2023]
Abstract
The leafhopper, Erythroneura sudra (Distant) is becoming a dominant insect pest, and usually can cause significant damage to fruit production in northern China. We studied the occurrence and density of E. sudra on three fruit tree species and its transcriptomic responses when it was fed on leaves of these tree species. A higher density and survival rate of E. sudra were recorded when it fed on leaves of peach (Amygdalus persica L.) (Rosales: Rosaceae) and cherry (Cerasus pseudocerasus Lindl) (Rosales: Rosaceae) than on apple (Malus domestica Mill) (Rosales: Rosaceae). Also, feeding on M. domestica induced the largest variation in transcriptomic profiles in E. sudra. In total, 166 genes were differentially expressed (89 upregulated and 77 downregulated) in E. sudra when it fed on M. domestica, compared to when it fed on the other two tree species. The upregulated genes were mainly related to 'response to oxidative stress', 'stress-resistance', and 'xenobiotic metabolic process'. The downregulated genes were mainly related to 'structural constituent of cuticle', 'biosynthetic process', and 'development regulation'. These results suggested that M. domestica significantly changed the expression of many genes and consequently caused lower occurrence and density of E. sudra. Such information could enhance our understanding of the leafhopper-host plant relationship. Additionally, it can contribute to the improvement of current control strategies for this pest.
Collapse
Affiliation(s)
| | | | - Hui Li
- Corresponding author, e-mail:
| | - Guangyan Chen
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi, P.R. China
| |
Collapse
|
3
|
Avanesyan A, Sutton H, Lamp WO. Choosing an Effective PCR-Based Approach for Diet Analysis of Insect Herbivores: A Systematic Review. JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:1035-1046. [PMID: 33822094 DOI: 10.1093/jee/toab057] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Indexed: 06/12/2023]
Abstract
Identification of ingested plant species using polymerase chain reaction (PCR)-based methods is an increasingly useful yet challenging approach to accurately determine the diet composition of insect herbivores and thus their trophic interactions. A typical process of detection of DNA of ingested plants involves the choice of a DNA extraction method, a genomic target region, and/or the best approach for an accurate plant species identification. The wide range of available techniques makes the choice of the most appropriate method for an accurately and timely identification of ingested plants from insect guts difficult. In our study, we reviewed the commonly used PCR-based approaches in studies published from 1977 to 2019, to provide researchers with the information on the tools which have been shown to be effective for obtaining and identifying ingested plants. Our results showed that among five insect orders used in the retrieved studies Coleoptera and Hemiptera were prevalent (33 and 28% of all the records, respectively). In 79% of the studies a DNA barcoding approach was employed. In a substantial number of studies Qiagen DNA extraction kits and CTAB protocol were used (43 and 23%, respectively). Of all records, 65% used a single locus as a targeted plant DNA fragment; trnL, rbcL, and ITS regions were the most frequently used loci. Sequencing was the dominant type of among DNA verification approaches (70% of all records). This review provides important information on the availability of successfully used PCR-based approaches to identify ingested plant DNA in insect guts, and suggests potential directions for future studies on plant-insect trophic interactions.
Collapse
Affiliation(s)
- Alina Avanesyan
- Department of Entomology, University of Maryland, 4291 Fieldhouse Drive, 4112 Plant Sciences, College Park, MD 20742, USA
| | - Hannah Sutton
- Department of Entomology, University of Maryland, 4291 Fieldhouse Drive, 4112 Plant Sciences, College Park, MD 20742, USA
| | - William O Lamp
- Department of Entomology, University of Maryland, 4291 Fieldhouse Drive, 4112 Plant Sciences, College Park, MD 20742, USA
| |
Collapse
|
4
|
Noriega DD, Arraes FBM, Antonino JD, Macedo LLP, Fonseca FCA, Togawa RC, Grynberg P, Silva MCM, Negrisoli AS, Grossi-de-Sa MF. Transcriptome Analysis and Knockdown of the Juvenile Hormone Esterase Gene Reveal Abnormal Feeding Behavior in the Sugarcane Giant Borer. Front Physiol 2020; 11:588450. [PMID: 33192604 PMCID: PMC7655874 DOI: 10.3389/fphys.2020.588450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/06/2020] [Indexed: 12/13/2022] Open
Abstract
The sugarcane giant borer (SGB), Telchin licus licus, is a pest that has strong economic relevance for sugarcane producers. Due to the endophytic behavior of the larva, current methods of management are inefficient. A promising biotechnological management option has been proposed based on RNA interference (RNAi), a process that uses molecules of double-stranded RNA (dsRNA) to specifically knock down essential genes and reduce insect survival. The selection of suitable target genes is often supported by omic sciences. Studies have shown that genes related to feeding adaptation processes are good candidates to be targeted by RNAi for pest management. Among those genes, esterases are highlighted because of their impact on insect development. In this study, the objective was to evaluate the transcriptome responses of the SGB’s gut in order to provide curated data of genes that could be used for pest management by RNAi in future studies. Further, we validated the function of an esterase-coding gene and its potential as a target for RNAi-based control. We sequenced the gut transcriptome of SGB larvae by Illumina HiSeq and evaluated its gene expression profiles in response to different diets (sugarcane stalk and artificial diet). We obtained differentially expressed genes (DEGs) involved in detoxification, digestion, and transport, which suggest a generalist mechanism of adaptation in SGB larvae. Among the DEGs, was identified and characterized a candidate juvenile hormone esterase gene (Tljhe). We knocked down the Tljhe gene by oral delivery of dsRNA molecules and evaluated gene expression in the gut. The survival and nutritional parameters of the larvae were measured along the developmental cycle of treated insects. We found that the gene Tljhe acts as a regulator of feeding behavior. The knockdown of Tljhe triggered a forced starvation state in late larval instars that significantly reduced the fitness of the larvae. However, the mechanism of action of this gene remains unclear, and the correlation between the expression of Tljhe and the levels of juvenile hormone (JH) metabolites in the hemolymph of the SGB must be assessed in future research.
Collapse
Affiliation(s)
- Daniel D Noriega
- Embrapa Genetic Resources and Biotechnology, Brasília, Brazil.,Department of Cellular Biology, University of Brasília, Brasília, Brazil.,PPG in Genomic Sciences and Biotechnology, Catholic University of Brasília, Brasília, Brazil
| | - Fabricio B M Arraes
- Embrapa Genetic Resources and Biotechnology, Brasília, Brazil.,Biotechnology Center, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - José Dijair Antonino
- Embrapa Genetic Resources and Biotechnology, Brasília, Brazil.,Department of Agronomy/Entomology, Universidade Federal Rural de Pernambuco (UFRPE), Recife, Brazil
| | | | - Fernando C A Fonseca
- Embrapa Genetic Resources and Biotechnology, Brasília, Brazil.,Department of Cellular Biology, University of Brasília, Brasília, Brazil
| | | | | | - Maria C M Silva
- Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
| | | | - Maria F Grossi-de-Sa
- Embrapa Genetic Resources and Biotechnology, Brasília, Brazil.,PPG in Genomic Sciences and Biotechnology, Catholic University of Brasília, Brasília, Brazil.,National Institute of Science and Technology (INCT) PlantStress Biotech, Brazilian Agricultural Research Corporation (EMBRAPA), Brasília, Brazil
| |
Collapse
|
5
|
Noriega DD, Arraes FBM, Antonino JD, Macedo LLP, Fonseca FCA, Togawa RC, Grynberg P, Silva MCM, Negrisoli AS, Morgante CV, Grossi-de-Sa MF. Comparative gut transcriptome analysis of Diatraea saccharalis in response to the dietary source. PLoS One 2020; 15:e0235575. [PMID: 32745084 PMCID: PMC7398519 DOI: 10.1371/journal.pone.0235575] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/17/2020] [Indexed: 12/21/2022] Open
Abstract
The sugarcane borer (Diatraea saccharalis, Fabricius, 1794) is a devastating pest that causes millions of dollars of losses each year to sugarcane producers by reducing sugar and ethanol yields. The control of this pest is difficult due to its endophytic behavior and rapid development. Pest management through biotechnological approaches has emerged in recent years as an alternative to currently applied methods. Genetic information about the target pests is often required to perform biotechnology-based management. The genomic and transcriptomic data for D. saccharalis are very limited. Herein, we report a tissue-specific transcriptome of D. saccharalis larvae and a differential expression analysis highlighting the physiological characteristics of this pest in response to two different diets: sugarcane and an artificial diet. Sequencing was performed on the Illumina HiSeq 2000 platform, and a de novo assembly was generated. A total of 27,626 protein-coding unigenes were identified, among which 1,934 sequences were differentially expressed between treatments. Processes such as defence, digestion, detoxification, signaling, and transport were highly represented among the differentially expressed genes (DEGs). Furthermore, seven aminopeptidase genes were identified as candidates to encode receptors of Cry proteins, which are toxins of Bacillus thuringiensis used to control lepidopteran pests. Since plant-insect interactions have produced a considerable number of adaptive responses in hosts and herbivorous insects, the success of phytophagous insects relies on their ability to overcome challenges such as the response to plant defences and the intake of nutrients. In this study, we identified metabolic pathways and specific genes involved in these processes. Thus, our data strongly contribute to the knowledge advancement of insect transcripts, which can be a source of target genes for pest management.
Collapse
Affiliation(s)
- Daniel D. Noriega
- Embrapa Genetic Resources and Biotechnology, Brasília-DF, Brazil
- Department of Cellular Biology, University of Brasília, Brasília-DF, Brazil
- Catholic University of Brasília, Brasília-DF, Brazil
| | - Fabricio B. M. Arraes
- Embrapa Genetic Resources and Biotechnology, Brasília-DF, Brazil
- Biotechnology Center, UFRGS, Porto Alegre-RS, Brazil
| | - José Dijair Antonino
- Embrapa Genetic Resources and Biotechnology, Brasília-DF, Brazil
- Departamento de Agronomia/Entomologia, UFRPE, Recife-PE, Brazil
| | | | - Fernando C. A. Fonseca
- Embrapa Genetic Resources and Biotechnology, Brasília-DF, Brazil
- Department of Cellular Biology, University of Brasília, Brasília-DF, Brazil
| | | | | | | | | | - Carolina V. Morgante
- Embrapa Genetic Resources and Biotechnology, Brasília-DF, Brazil
- Embrapa Semi Arid, Petrolina-PE, Brazil
| | - Maria F. Grossi-de-Sa
- Embrapa Genetic Resources and Biotechnology, Brasília-DF, Brazil
- Catholic University of Brasília, Brasília-DF, Brazil
- National Institute of Science and Technology–INCT PlantStress Biotech–EMBRAPA, Brasilia-DF, Brazil
| |
Collapse
|
6
|
Avanesyan A, Lamp WO. Use of Molecular Gut Content Analysis to Decipher the Range of Food Plants of the Invasive Spotted Lanternfly, Lycorma delicatula. INSECTS 2020; 11:insects11040215. [PMID: 32244630 PMCID: PMC7240569 DOI: 10.3390/insects11040215] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 11/01/2022]
Abstract
Spotted lanternfly, Lycorma delicatula (Hemiptera: Fulgoridae), is an introduced highly invasive insect pest in the US that poses a significant risk to forestry and agriculture. Assessing and predicting plant usage of the lanternfly has been challenging, and little is known regarding the lanternfly nymph association with its host plants. In this study, we focused on: (a) providing a protocol for using molecular markers for food plant identification of L. delicatula; (b) determining whether the ingested plant DNA corresponds with DNA of the plants from which the lanternfly was collected; and, (c) investigating the spectrum of ingested plants. We utilized gut contents of third and fourth instar nymphs that were collected from multiple plants; we isolated ingested plant DNA and identified consumed plants. We demonstrated that (a) up to 534 bp of the rbcL gene from ingested plants can be detected in L. delicatula guts, (b) ingested plants in ~93% of the nymphs did not correspond with the plants from which the nymphs were collected, and (c) both introduced and native plants, as well as woody and non-woody plants, were ingested. This information will aid effective the monitoring and management of the lanternfly, as well as predict the lanternfly host plants with range expansion.
Collapse
|
7
|
Le Gall M, Overson R, Cease A. A Global Review on Locusts (Orthoptera: Acrididae) and Their Interactions With Livestock Grazing Practices. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00263] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
8
|
Holtof M, Lenaerts C, Cullen D, Vanden Broeck J. Extracellular nutrient digestion and absorption in the insect gut. Cell Tissue Res 2019; 377:397-414. [DOI: 10.1007/s00441-019-03031-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/04/2019] [Indexed: 02/07/2023]
|
9
|
Avanesyan A. Should I Eat or Should I Go? Acridid Grasshoppers and Their Novel Host Plants: Potential for Biotic Resistance. PLANTS (BASEL, SWITZERLAND) 2018; 7:E83. [PMID: 30301240 PMCID: PMC6313845 DOI: 10.3390/plants7040083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 09/27/2018] [Accepted: 10/02/2018] [Indexed: 06/08/2023]
Abstract
Novel, non-coevolved associations between introduced plants and native insect herbivores may lead to changes in trophic interactions in native communities, as well as to substantial economic problems. Although some studies in invasion ecology demonstrated that native herbivores can preferentially feed on introduced plants and therefore contribute to the biotic resistance of native communities to plant invasions, the role of acridid grasshoppers as native generalist insect herbivores is largely overlooked. This systematic review aimed to identify patterns of grasshopper feeding preferences for native versus introduced plants and, consequently, a potential of grasshoppers to provide biotic resistance of native communities. The analysis of 63 records of feeding preference trials for 28 North-American grasshopper species (retrieved from 2146 studies published during 1967⁻2017) has demonstrated a preference of grasshoppers for introduced host plants, and identified 12 preferred introduced plants with high or middle invasive ranks. A significant effect of the life stage (p < 0.001), but not the experimental environment, plant material, and measurements, on grasshopper preferences for introduced plants was also detected. Overall, results suggest a potential of acridid grasshoppers to contribute to the biotic resistance of native communities. The review also provides methodological recommendations for future experimental studies on grasshopper-host plant interactions.
Collapse
Affiliation(s)
- Alina Avanesyan
- Department of Entomology, University of Maryland, 4291 Fieldhouse Drive, 3128 Plant Sciences, College Park, MD 20742, USA.
| |
Collapse
|