1
|
Liu X, Liang X, Shi X, Zhang J. Vacuolar (H +)-ATPase Genes Are Essential for Cuticle and Wing Development in Locusta migratoria. Genes (Basel) 2025; 16:145. [PMID: 40004474 PMCID: PMC11854941 DOI: 10.3390/genes16020145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/09/2025] [Accepted: 01/17/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Vacuolar (H+)-ATPases (V-ATPases) are crucial in several significant biological processes, including intracellular transport, endocytosis, autophagy and protein degradation. However, their role in the growth and development of insects remains largely unknown. This study aimed to explore the molecular and functional properties of V-ATPases in Locusta migratoria. METHODS LmV-ATPase genes were identified based on the locust transcriptome database and bioinformatics analysis. Quantitative reverse-transcription polymerase chain reaction was used to assess the relative expression of LmV-ATPases in different tissues and developmental stages. RNA interference combined with hematoxylin-eosin staining and transmission electron microscopy was used to explore the functions of LmV-ATPases. RESULTS Ten V-ATPase genes were identified in L. migratoria and were named LmV-ATPase A, B, C, D, E, F, G, c″, d and e, respectively. These genes were highly expressed in the head, integument, gastric caecum, midgut, hindgut, fat body, trachea and ovary. The transcripts of LmV-ATPases were expressed in the developmental stages examined (from the 3rd to 5th instar nymphs). The injection of double-stranded RNA (dsRNA) against each LmV-ATPase induced high silencing efficiency in the 3rd instar nymphs. Knockdown of LmV-ATPases resulted in lethal phenotypes, with visible defects of the wing and cuticle. We further demonstrated that the deformation was caused by the defects of epidermal cells and fewer new cuticles. CONCLUSIONS These findings suggest that LmV-ATPases are required for the wing and cuticle development of L. migratoria, which could be potential targets for the control of locusts.
Collapse
Affiliation(s)
- Xiaojian Liu
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, Research Institute of Applied Biology, Shanxi University, Taiyuan 030006, China
| | - Xiaoyu Liang
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, Research Institute of Applied Biology, Shanxi University, Taiyuan 030006, China
| | - Xuekai Shi
- College of Biological Sciences and Technology, Taiyuan Normal University, Jinzhong 030619, China
| | - Jianzhen Zhang
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, Research Institute of Applied Biology, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
2
|
Reddy NV, Suman TC, Gandhi GR, Pathak J, Yadu YK, Venkatesan T, Sushil SN. Apprehending siRNA Machinery and Gene Silencing in Brinjal Shoot and Fruit Borer, Leucinodes orbonalis. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2025; 118:e70029. [PMID: 39835496 DOI: 10.1002/arch.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/07/2025] [Accepted: 01/11/2025] [Indexed: 01/22/2025]
Abstract
RNA interference (RNAi) technology is widely used in gene functional studies and has been shown to be a promising next generation alternative for insect pest management. To understand the efficiency of RNAi machinery in Leucinodes orbonalis (L. orbonalis) Guenee, a destructive pest of eggplant, core RNAi pathway genes Argonaute-2, Dicer-2, Loquacious, and Sid-1 were mined from the transcriptome and characterized. The transcript abundance of these genes was studied after exposure to exogenous double-stranded RNA (dsRNA). Domain structure analysis revealed that these genes have conserved domains required for the definite protein function in the siRNA pathway. The protein sequences when subjected to phylogenetic analysis showed a close relation with homologs obtained from Ostrinia sp. The insects fed with dsRNA designed for vacuolar sorting protein SNF7 gene showed significant downregulation at 48 h post treatment and about 79% larval mortality. The expression study of genes showed a significant spike in transcript abundance of Dicer-2, Argonatute-2, and downregulation of Loquacious at 24 and 48 h post dsRNA exposure. The results on siRNA machinery genes expression and target gene knockdown implies L. orbonalis has an ample response to exogenous dsRNA.
Collapse
Affiliation(s)
- N Veeramanikanta Reddy
- Division of Genomic Resources, ICAR-National Bureau of Agricultural Insect Resources, Bengaluru, India
- Department of Entomology, Indira Gandhi Krishi Vishwavidyalaya, Raipur, India
| | - T C Suman
- Division of Genomic Resources, ICAR-National Bureau of Agricultural Insect Resources, Bengaluru, India
- Department of Plant Biotechnology, University of Agricultural Sciences, Bengaluru, India
| | - Gracy R Gandhi
- Division of Genomic Resources, ICAR-National Bureau of Agricultural Insect Resources, Bengaluru, India
| | - Jyoti Pathak
- Division of Genomic Resources, ICAR-National Bureau of Agricultural Insect Resources, Bengaluru, India
| | - Y K Yadu
- Department of Entomology, Indira Gandhi Krishi Vishwavidyalaya, Raipur, India
| | - T Venkatesan
- Division of Genomic Resources, ICAR-National Bureau of Agricultural Insect Resources, Bengaluru, India
| | - Satya Nand Sushil
- Division of Genomic Resources, ICAR-National Bureau of Agricultural Insect Resources, Bengaluru, India
| |
Collapse
|
3
|
Rakesh V, Singh A, Ghosh A. Suppression of Thrips palmi population by spray-on application of dsRNA targeting V-ATPase-B. Int J Biol Macromol 2024; 280:135576. [PMID: 39270896 DOI: 10.1016/j.ijbiomac.2024.135576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/26/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
The RNA interference (RNAi)-based gene silencing technique has enormous potential as a non-chemical and eco-friendly alternative to hazardous pesticides. This study reports a spray-induced gene silencing (SIGS) approach for managing Thrips palmi by lowering survival and offspring development. Vacuolar ATP synthases (V-ATPases) are responsible for survival, egg-laying, and viability of eggs in insects. In the current study, T. palmi V-ATPase-B was targeted to suppress the pest population by spray-on application of double-stranded RNA (dsRNA). Silencing of V-ATPase-B was first validated by oral administration of dsV-ATPase-B. The expression of V-ATPase-B was reduced by 5.40-fold post-dsRNA feeding leading to increased mortality (57.03 %) and reduced reproductive fitness (67.73 %). Spray-on application of naked dsV-ATPase-B at concentrations of 3.0 μg/mL and 5.0 μg/mL effectively suppressed the population by 30.00 % and 43.33 %, respectively. The expression of the target gene was downregulated by up to 4.24-fold. Two consecutive sprays at a concentration of 5.0 μg/mL provided substantial protection against the fresh release of T. palmi for up to 10 days. The spray-on application of dsV-ATPase-B would be an eco-friendly alternative for managing T. palmi populations thereby reducing crop damage and limiting the spread of orthotospoviruses.
Collapse
Affiliation(s)
- V Rakesh
- Insect Vector Laboratory, Advanced Centre for Plant Virology, ICAR-Indian Agricultural Research Institute, New Delhi -110012, India; Division of Entomology, ICAR-Indian Agricultural Research Institute, New Delhi -110012, India
| | - Anupma Singh
- Insect Vector Laboratory, Advanced Centre for Plant Virology, ICAR-Indian Agricultural Research Institute, New Delhi -110012, India
| | - Amalendu Ghosh
- Insect Vector Laboratory, Advanced Centre for Plant Virology, ICAR-Indian Agricultural Research Institute, New Delhi -110012, India.
| |
Collapse
|
4
|
Zhang X, Fan Z, Zhang R, Kong X, Liu F, Fang J, Zhang S, Zhang Z. Bacteria-mediated RNAi for managing fall webworm, Hyphantria cunea: screening target genes and analyzing lethal effect. PEST MANAGEMENT SCIENCE 2023; 79:1566-1577. [PMID: 36527705 DOI: 10.1002/ps.7326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/23/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND The fall webworm, Hyphantria cunea, an invasive forest pest found worldwide, causes serious ecological and economic damage. Currently, the application of chemical pesticides is the most widely used strategy for H. cunea management. However, long-term pesticide use leads to pest resistance, phytotoxicity, human poisoning, and environmental deterioration. RNA interference (RNAi) technology may provide an environmentally friendly and cost-effective option for H. cunea control. However, effective RNAi targets and application methods for H. cunea are lacking. RESULTS We screened and obtained two highly effective RNAi targets, vATPase A (V-type proton ATPase catalytic subunit A) and Rop (Ras opposite), from 23 candidate genes, using initial and repeat screening tests with the double-stranded RNA (dsRNA) injection method. RNAi against these two genes was effective in suppressing each target messenger RNA level and interfering with larval growth, leading to significant larval mortality and pupal abnormality. For massive production of dsRNA and practical application of RNAi technology in H. cunea, transformed bacteria expressing dsRNAs of these two genes were prepared using the L4440 expression vector and HT115 strain of Escherichia coli. Oral administration of bacterially expressed dsRNA targeting vATPase A and Rop genes showed high mortality and the same malformed phenotype as the injection treatment. To further investigate the lethal effects of targeting these two genes on larval development, transcriptome sequencing (RNA-seq) was performed on RNAi samples. The results demonstrated disorders in multiple metabolic pathways, and the expression levels of most genes related to insect cuticle metabolism were significantly different, which may directly threaten insect survival. In addition, some new findings were obtained via RNA-seq analysis; for example, the progesterone-mediated oocyte maturation and oocyte meiosis processes were significantly different after silencing vATPase A, and the insect olfactory protein-related genes were significantly downregulated after dsHcRop treatment. CONCLUSION vATPase A and Rop are two highly effective RNAi-mediated lethal genes in H. cunea that regulate insect growth via multiple metabolic pathways. Oral delivery of bacterially expressed dsRNA specific to vATPase A and Rop can potentially be used for RNAi-based H. cunea management. This is the first study to apply bacteria-mediated RNAi for the control of this invasive pest, which is a major step forward in the application of the RNAi technology in H. cunea. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xun Zhang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Zhizhi Fan
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Rong Zhang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Xiangbo Kong
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Fu Liu
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Jiaxing Fang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Sufang Zhang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Zhen Zhang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
5
|
Li Y, Ze LJ, Liu FJ, Liao W, Lu M, Liu XL. RNA interference of vATPase subunits A and E affects survival of larvae and adults in Plagiodera versicolora (Coleoptera: Chrysomelidae). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 188:105275. [PMID: 36464380 DOI: 10.1016/j.pestbp.2022.105275] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/23/2022] [Accepted: 10/27/2022] [Indexed: 06/17/2023]
Abstract
Vacuolar-type H+-ATPases (vATPases) are ATP-driven proton pumps and play essential roles in many physiological functions. Plagiodera versicolora (Coleoptera: Chrysomelidae) is a leaf-eating forest pest found in salicaceous trees worldwide. RNA interference (RNAi) is a powerful tool for functional identify and pest control. In this study, we used RNAi as an approach to knock down subunits A and E of the vATPase gene. The phylogenetic analysis showed that vATPase-A and vATPase-E from the same order were clustered together to form Coleoptera subclades, respectively. The expression levels of vATPase-A and vATPase-E were higher in gut, Malpighian tubules and 1st instar larvae. Ingest the dsvATPase-A and dsvATPase-E significantly inhibited the development of 1st to 3th instar larvae, incapacitated of mating and oviposition in adults. In addition, knockdown of vATPase subunit genes caused higher mortality in larvae and adults. The results demonstrate that RNAi efficiencies both vATPase-A and vATPase-E genes at various larvae stages and adults. Moreover, this research suggested that silencing of two vATPase subunits A and E offers a potential strategy to control P. versicolora.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Long-Ji Ze
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/ Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng-Jie Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Wang Liao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Min Lu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.
| | - Xiao-Long Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.
| |
Collapse
|
6
|
Reinders JD, Reinders EE, Robinson EA, Moar WJ, Price PA, Head GP, Meinke LJ. Characterizing the sublethal effects of SmartStax PRO dietary exposure on life history traits of the western corn rootworm, Diabrotica virgifera virgifera LeConte. PLoS One 2022; 17:e0268902. [PMID: 35613094 PMCID: PMC9132300 DOI: 10.1371/journal.pone.0268902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/10/2022] [Indexed: 12/03/2022] Open
Abstract
The western corn rootworm (WCR), Diabrotica virgifera virgifera LeConte, is an economically important pest of field corn (Zea mays L.) across the United States (U.S.) Corn Belt. Repeated use of transgenic hybrids expressing Bacillus thuringiensis (Bt) proteins has selected for field-evolved resistance to all current rootworm-active Bt proteins. The newest product available for WCR management is SmartStax® PRO, a rootworm-active pyramid containing Cry3Bb1, Cry34/35Ab1 [now reclassified as Gpp34Ab1/Tpp35Ab1] and a new mode of action, DvSnf7 dsRNA. Understanding the fitness of adult WCR after dietary exposure to SmartStax® PRO will identify potential impacts on WCR population dynamics and inform efforts to optimize resistance management strategies. Therefore, the objective of the present study was to characterize the effect of SmartStax® PRO dietary exposure on WCR life history traits. Adult WCR were collected during 2018 and 2019 from emergence tents placed over replicated field plots of SmartStax® PRO or non-rootworm Bt corn at a site with a history of rootworm-Bt trait use and suspected resistance to Cry3Bb1 and Cry34/35Ab1. Adult survival was reduced by 97.1–99.7% in SmartStax® PRO plots relative to the non-rootworm Bt corn plots during the study. Individual male/female pairs were fed different diets of ear tissue to simulate lifetime or adult exposure. Life history parameters measured included adult longevity, adult head capsule width, lifetime female egg production, and egg viability. Results indicate that lifetime or adult exposure to SmartStax® PRO significantly reduced adult longevity and lifetime egg production. Larval exposure to SmartStax® PRO significantly reduced WCR adult size. Results from this study collectively suggest that SmartStax® PRO may negatively impact WCR life history traits, which may lead to reduced population growth when deployed in an area with WCR resistance to Bt traits.
Collapse
Affiliation(s)
- Jordan D. Reinders
- Department of Entomology, University of Nebraska, Lincoln, Nebraska, United States of America
- * E-mail:
| | - Emily E. Reinders
- Department of Entomology, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Emily A. Robinson
- Department of Statistics, University of Nebraska, Lincoln, Nebraska, United States of America
| | - William J. Moar
- CropScience Division, Bayer AG, Chesterfield, Missouri, United States of America
| | - Paula A. Price
- CropScience Division, Bayer AG, Chesterfield, Missouri, United States of America
| | - Graham P. Head
- CropScience Division, Bayer AG, Chesterfield, Missouri, United States of America
| | - Lance J. Meinke
- Department of Entomology, University of Nebraska, Lincoln, Nebraska, United States of America
| |
Collapse
|
7
|
Zeng J, Kang WN, Jin L, Anjum AA, Li GQ. Vacuolar ATPase subunit F is critical for larval survival in Henosepilachna vigintioctopunctata. INSECT MOLECULAR BIOLOGY 2022; 31:177-189. [PMID: 34787941 DOI: 10.1111/imb.12749] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 11/02/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
Vacuolar ATPase (vATPase) is an important proton pump in insect tissues including gut and Malpighian tubule. Subunit F, one of the 16 subunits of the vATPase holoenzyme, is not well characterized. Here, we found that two HvvATPaseF isoforms were highly expressed in the hindgut and Malpighian tubules (MT) in the 28-spotted lady-beetle Henosepilachna vigintioctopunctata, an agricultural pest that feeds on Solanaceae and Cucurbitaceae. Knockdown of both HvvATPaseF variants by RNA interference (RNAi) delayed larval growth and negatively affected ecdysis and adult emergence. In the midgut, RNAi treatment resulted in the disappearance of peritrophic membrane, the reduction in the size and the impaired integrity of the gut, which was associated with sparse principle cells and an increase in TUNEL- and EdU-positive cells. Whereas the MT were opaque and the tubule lumens were full of urine in dsegfp-fed larvae, the tubules were clear and the tubule lumens were empty in the dsvATPaseF-fed larvae. HvvATPaseF knockdown was also associated with a decrease in the abundance of the fat body and the levels of glucose, trehalose, triglyceride, total soluble amino acids and proteins, and an increase in glycogen. Consistent with the known effects of sugars on chitin formation, both the expression level of a chitin biosynthesis gene and the thickness of the head capsule cuticle were reduced in the HvvATPaseF-depleted beetles. Our results demonstrated that subunit F plays an essential role in H. vigintioctopunctata development.
Collapse
Affiliation(s)
- Jie Zeng
- Agriculture Ministry Key Laboratory of Integrated Pest Management on Crops in East China/State and Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Wei-Nan Kang
- Agriculture Ministry Key Laboratory of Integrated Pest Management on Crops in East China/State and Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Lin Jin
- Agriculture Ministry Key Laboratory of Integrated Pest Management on Crops in East China/State and Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Ahmad Ali Anjum
- Agriculture Ministry Key Laboratory of Integrated Pest Management on Crops in East China/State and Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Guo-Qing Li
- Agriculture Ministry Key Laboratory of Integrated Pest Management on Crops in East China/State and Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
8
|
Martinez Z, De Schutter K, Van Damme EJM, Vogel E, Wynant N, Vanden Broeck J, Christiaens O, Smagghe G. Accelerated delivery of dsRNA in lepidopteran midgut cells by a Galanthus nivalis lectin (GNA)-dsRNA-binding domain fusion protein. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 175:104853. [PMID: 33993971 DOI: 10.1016/j.pestbp.2021.104853] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
Lepidopteran insects are highly refractory to oral RNA interference (RNAi). Degradation, impaired cellular uptake and intracellular transport of double-stranded RNA (dsRNA) are considered the major factors responsible for the reduced RNAi efficiency in these insects. In this study, the potential of lectins to improve dsRNA delivery and RNAi efficacy was evaluated. First, a fusion protein consisting of the Galanthus nivalis agglutinin (GNA) and a dsRNA binding domain was developed, further referred to as GNA:dsRBD (GNAF). Then, its ability to increase dsRNA uptake and transfection efficiency in lepidopteran midgut cells was evaluated, as well as its ability to protect and promote the RNAi response in the beet armyworm Spodoptera exigua. Confocal microscopy analysis showed that GNAF-complexed dsRNA was internalized faster in Choristoneura fumiferana midgut CF1 cells (1 min) compared to naked dsRNA (>1 h). The faster uptake was also correlated with an increased RNAi efficiency in these CF1 cells. In vivo feeding bioassays with GNAF-complexed dsRNA led to an increased mortality in S. exigua compared to the controls. By targeting the essential gene V-ATPase A, we observed that the mortality increased to 48% in the GNAF-dsRNA treatment compared to only 8.3% and 6.6% in the control treatments with the naked dsRNA and the GNAF, respectively.
Collapse
Affiliation(s)
- Zarel Martinez
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Belgium
| | - Kristof De Schutter
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Belgium
| | - Els J M Van Damme
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Belgium
| | - Elise Vogel
- Molecular Developmental Physiology and Signal Transduction Lab, Biology Department, KU Leuven, Belgium
| | - Niels Wynant
- Molecular Developmental Physiology and Signal Transduction Lab, Biology Department, KU Leuven, Belgium
| | - Jozef Vanden Broeck
- Molecular Developmental Physiology and Signal Transduction Lab, Biology Department, KU Leuven, Belgium
| | - Olivier Christiaens
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Belgium
| | - Guy Smagghe
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Belgium.
| |
Collapse
|
9
|
EFSA Panel on Plant Health (PLH), Bragard C, Dehnen‐Schmutz K, Di Serio F, Gonthier P, Jacques M, Jaques Miret JA, Justesen AF, MacLeod A, Magnusson CS, Milonas P, Navas‐Cortes JA, Parnell S, Potting R, Reignault PL, Thulke H, Van der Werf W, Civera AV, Yuen J, Zappalà L, Kertész V, Maiorano A, Streissl F, MacLeod A. Pest categorisation of Diabrotica undecimpunctata howardi. EFSA J 2020; 18:e06358. [PMID: 33318768 PMCID: PMC7729658 DOI: 10.2903/j.efsa.2020.6358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The EFSA Panel on Plant Health performed a pest categorisation of Diabrotica undecimpunctata howardi (Coleoptera: Chrysomelidae) for the EU. This subspecies occurs in North and Central America. Adults oviposit on annual plants in the families Asteraceae, Chenopodiaceae, Cucurbitaceae, Fabaceae, Poaceae, Polygonaceae and Solanaceae. Adults feed on tender plant parts in hosts in 40 additional botanical families. Preimaginal development takes place on the roots of the host plant, where larvae feed and pupate. D. undecimpunctata howardi is a multivoltine species. Overwintering adults, which may enter a facultative diapause, abandon crops in autumn and reinvade them in spring. D. undecimpunctata howardi is not known to occur in the EU and is regulated in Annex IIA of Commission Implementing Regulation 2019/2072. This species is a competent vector of Erwinia tracheiphila (Smith) Bergey et al., which can cause bacterial wilt, a serious disease of cucurbits. The bacterium, which is restricted to temperate midwestern and eastern North America, is not regulated in the EU. Within Commission Implementing Regulation 2019/2072, potential entry pathways for D. undecimpunctata howardi, such as Asteraceae, Poaceae and Solanaceae plants for planting with foliage and soil/growing medium, and soil/growing media by themselves can be considered as closed. However, plants for planting of the families Chenopodiaceae, Cucurbitaceae, Fabaceae and Polygonaceae are not specifically regulated. Should D. undecimpunctata howardi arrive in the EU, climatic conditions and availability of susceptible hosts provide conditions suitable for establishment and further spread. Economic impact is anticipated in maize and outdoor cucurbit production. D. undecimpunctata howardi satisfies the criteria that are within the remit of EFSA to assess for this species to be regarded as a potential Union quarantine pest. This species does not meet the criteria of being present in the EU, nor plants for planting being the main pathway for spread, for it to be regarded as a potential regulated non-quarantine pest.
Collapse
|
10
|
Lü J, Guo M, Chen S, Noland JE, Guo W, Sang W, Qi Y, Qiu B, Zhang Y, Yang C, Pan H. Double-stranded RNA targeting vATPase B reveals a potential target for pest management of Henosepilachna vigintioctopunctata. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 165:104555. [PMID: 32359544 DOI: 10.1016/j.pestbp.2020.104555] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 06/11/2023]
Abstract
The development of genetic based techniques, specifically RNA interference (RNAi), has emerged as a powerful tool in novel pest management strategies for pestiferous coleoptera. The 28-spotted ladybird beetle, Henosepilachna vigintioctopunctata, is a dynamic foliar pest of solenaceous plants, primarily potato plants, and has quickly become one of the most important pests attacking many crops in Asian countries. In this study, we demonstrate the efficacy of dietary RNAi targeting vATPase B, which led to significant gene silencing. Downstream effects of vATPase B silencing appeared to be both time- and partial dose-dependent. Our results indicate that silencing of vATPase B caused a significant decrease in survival rate, as well as reduced the food stuffs consumption and inhibited the overall development of H. vigintioctopunctata. Furthermore, results demonstrate expression of insect melanism related genes, TH and DDC, was significantly up regulated under the dsvATPase B (RNAi molecule designed against vATPase B) treatment. The impact of oral dsvATPase B delivery on the survival of 1st, 3rd instars, and adults was investigated through bacterially expressed dsRNA. The effectiveness of RNAi-based gene silencing in H. vigintioctopunctata provides a powerful reverse genetic tool for the functional annotation of its genes. This study demonstrates that vATPase B may represent a candidate gene for RNAi-based control of H. vigintioctopunctata.
Collapse
Affiliation(s)
- Jing Lü
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou 510642, China
| | - Mujuan Guo
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou 510642, China
| | - Shimin Chen
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou 510642, China
| | - Jeffrey Edward Noland
- The Andersons, Inc., Ethanol Group, The Andersons Marathon-Holdings, LLC. Logansport, Indiana 46947, USA
| | - Wei Guo
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou 510642, China
| | - Wen Sang
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou 510642, China
| | - Yixiang Qi
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou 510642, China
| | - Baoli Qiu
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou 510642, China
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chunxiao Yang
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou 510642, China.
| | - Huipeng Pan
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
11
|
Vélez AM, Fishilevich E, Rangasamy M, Khajuria C, McCaskill DG, Pereira AE, Gandra P, Frey ML, Worden SE, Whitlock SL, Lo W, Schnelle KD, Lutz JR, Narva KE, Siegfried BD. Control of western corn rootworm via RNAi traits in maize: lethal and sublethal effects of Sec23 dsRNA. PEST MANAGEMENT SCIENCE 2020; 76:1500-1512. [PMID: 31677217 DOI: 10.1002/ps.5666] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 10/10/2019] [Accepted: 10/28/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND RNA interference (RNAi) triggered by maize plants expressing RNA hairpins against specific western corn rootworm (WCR) transcripts have proven to be effective at controlling this pest. To provide robust crop protection, mRNA transcripts targeted by double-stranded RNA must be sensitive to knockdown and encode essential proteins. RESULTS Using WCR adult feeding assays, we identified Sec23 as a highly lethal RNAi target. Sec23 encodes a coatomer protein, a component of the coat protein (COPII) complex that mediates ER-Golgi transport. The lethality detected in WCR adults was also observed in early instar larvae, the life stage causing most of the crop damage, suggesting that WCR adults can serve as an alternative to larvae for dsRNA screening. Surprisingly, over 85% transcript inhibition resulted in less than 40% protein knockdown, suggesting that complete protein knockdown is not necessary for Sec23 RNAi-mediated mortality. The efficacy of Sec23 dsRNA for rootworm control was confirmed in planta; T0 maize events carrying rootworm Sec23 hairpin transgenes showed high levels of root protection in greenhouse assays. A reduction in larval survival and weight were observed in the offspring of WCR females exposed to Sec23 dsRNA LC25 in diet bioassays. CONCLUSION We describe Sec23 as RNAi target for in planta rootworm control. High mortality in exposed adult and larvae and moderate sublethal effects in the offspring of females exposed to Sec23 dsRNA LC25 , suggest the potential for field application of this RNAi trait and the need to factor in responses to sublethal exposure into insect resistance management programs. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ana M Vélez
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Elane Fishilevich
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, USA
- Corteva Agriscience, Indianapolis, IN, USA
| | | | - Chitvan Khajuria
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | | | - Adriano E Pereira
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | | | | | | | | | - Wendy Lo
- Corteva Agriscience, Indianapolis, IN, USA
| | | | | | | | - Blair D Siegfried
- Entomology and Nematology Department, Charles Steinmetz Hall, University of Florida, Gainesville, FL, USA
| |
Collapse
|
12
|
Lü J, Liu Z, Guo W, Guo M, Chen S, Li H, Yang C, Zhang Y, Pan H. Feeding Delivery of dsHvSnf7 Is a Promising Method for Management of the Pest Henosepilachna vigintioctopunctata (Coleoptera: Coccinellidae). INSECTS 2019; 11:insects11010034. [PMID: 31906124 PMCID: PMC7022289 DOI: 10.3390/insects11010034] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 12/25/2019] [Accepted: 12/30/2019] [Indexed: 12/20/2022]
Abstract
RNA interference (RNAi) techniques have emerged as powerful tools in the development of novel management strategies for the control of insect pests, such as Henosepilachna vigintioctopunctata, which is a major solanaceous pest in Asia. Our results showed that levels of HvSnf7 expression were greater in larval midguts than in other tissues. Silencing of HvSnf7 led to greater H. vigintioctopunctata mortality rates and appeared to be time- and partially dose-dependent. Bacterially expressed dsHvSnf7 that was applied to detached plant leaves caused 98, 88, and 60% mortality in 1st and 3rd instars, and adults after 10, 12, and 14 d, respectively; when applied to living plants, bacterially expressed dsHvSnf7 led to mortality in 1st and 3rd instars, with no effect on adults. Bacterially expressed dsHvSnf7 led to improved plant protection against H. vigintioctopunctata. Ultrastructural changes caused by HvSnf7-RNAi in larval midguts showed extensive loss of cellular contents that indicate loss of membrane integrity. This study indicate that HvSnf7 potentially can be used as RNAi target gene for controlling of H. vigintioctopunctata.
Collapse
Affiliation(s)
- Jing Lü
- Key Laboratory of Bio-Pesticide Innovation and Application, South China Agricultural University, Guangdong Province, Guangzhou 510642, China; (J.L.); (Z.L.); (W.G.); (M.G.); (S.C.)
- Engineering Research Center of Biocontrol, Ministry of Education and South China Agricultural University, Guangdong Province, Guangzhou 510642, China
| | - Zhuoqi Liu
- Key Laboratory of Bio-Pesticide Innovation and Application, South China Agricultural University, Guangdong Province, Guangzhou 510642, China; (J.L.); (Z.L.); (W.G.); (M.G.); (S.C.)
- Engineering Research Center of Biocontrol, Ministry of Education and South China Agricultural University, Guangdong Province, Guangzhou 510642, China
| | - Wei Guo
- Key Laboratory of Bio-Pesticide Innovation and Application, South China Agricultural University, Guangdong Province, Guangzhou 510642, China; (J.L.); (Z.L.); (W.G.); (M.G.); (S.C.)
- Engineering Research Center of Biocontrol, Ministry of Education and South China Agricultural University, Guangdong Province, Guangzhou 510642, China
| | - Mujuan Guo
- Key Laboratory of Bio-Pesticide Innovation and Application, South China Agricultural University, Guangdong Province, Guangzhou 510642, China; (J.L.); (Z.L.); (W.G.); (M.G.); (S.C.)
- Engineering Research Center of Biocontrol, Ministry of Education and South China Agricultural University, Guangdong Province, Guangzhou 510642, China
| | - Shimin Chen
- Key Laboratory of Bio-Pesticide Innovation and Application, South China Agricultural University, Guangdong Province, Guangzhou 510642, China; (J.L.); (Z.L.); (W.G.); (M.G.); (S.C.)
- Engineering Research Center of Biocontrol, Ministry of Education and South China Agricultural University, Guangdong Province, Guangzhou 510642, China
| | - Huali Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China; (H.L.); (C.Y.)
| | - Chunxiao Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China; (H.L.); (C.Y.)
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Correspondence: (Y.Z.); (H.P.)
| | - Huipeng Pan
- Key Laboratory of Bio-Pesticide Innovation and Application, South China Agricultural University, Guangdong Province, Guangzhou 510642, China; (J.L.); (Z.L.); (W.G.); (M.G.); (S.C.)
- Engineering Research Center of Biocontrol, Ministry of Education and South China Agricultural University, Guangdong Province, Guangzhou 510642, China
- Correspondence: (Y.Z.); (H.P.)
| |
Collapse
|
13
|
Basu S, Pereira AE, Pinheiro DH, Wang H, Valencia-Jiménez A, Siegfried BD, Louis J, Zhou X'J, Vélez AM. Evaluation of reference genes for real-time quantitative PCR analysis in southern corn rootworm, Diabrotica undecimpunctata howardi (Barber). Sci Rep 2019; 9:10703. [PMID: 31341190 PMCID: PMC6656754 DOI: 10.1038/s41598-019-47020-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 07/08/2019] [Indexed: 12/12/2022] Open
Abstract
Quantitative reverse transcription PCR (RT-qPCR) is one of the most efficient, reliable and widely used techniques to quantify gene expression. In this study, we evaluated the performance of six southern corn rootworm, Diabrotica undecimpunctata howardi (Barber), housekeeping genes (HKG), β-actin (Actin), β-tubulin (Tubulin), elongation factor 1 alpha (EF1α), glyceraldehyde-3 phosphate dehydrogenase (GAPDH), 40 S ribosomal protein S9 (RpS9) and ubiquitin-conjugating protein (Ubi), under different experimental conditions such as developmental stage, exposure of neonate and adults to dsRNA, exposure of adults to different temperatures, different 3rd instar larva tissues, and neonate starvation. The HKGs were analyzed with four algorithms, including geNorm, NormFinder, BestKeeper, and delta-CT. Although the six HKGs showed a relatively stable expression pattern among different treatments, some variability was observed. Among the six genes, EF1α exhibited the lowest Ct values for all treatments while Ubi exhibited the highest. Among life stages and across treatments, Ubi exhibited the least stable expression pattern. GAPDH, Actin, and EF1α were among the most stable HKGs in the majority of the treatments. This research provides HKG for accurate normalization of RT-qPCR data in the southern corn rootworm. Furthermore, this information can contribute to future genomic and functional genomic research in Diabrotica species.
Collapse
Affiliation(s)
- Saumik Basu
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA.,Department of Entomology, Washington State University, Pullman, WA, 99164, USA
| | - Adriano E Pereira
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA. .,Plant Genetics Research Unit, USDA/ARS, University of Missouri-Columbia, Columbia, MO, 65211-7020, USA.
| | | | - Haichuan Wang
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, 68583-0915, USA
| | | | - Blair D Siegfried
- Entomology and Nematology Department, University of Florida, Gainesville, FL, 32611-0620, USA
| | - Joe Louis
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA.,Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Xuguo 'Joe' Zhou
- Department of Entomology, University of Kentucky, Lexington, KY, 40546-0091, USA
| | - Ana Maria Vélez
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| |
Collapse
|
14
|
Boeckman CJ, Huang E, Sturtz K, Walker C, Woods R, Zhang J. Characterization of the Spectrum of Insecticidal Activity for IPD072Aa: A Protein Derived from Pseudomonas chlororaphis with Activity Against Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2019; 112:1190-1196. [PMID: 30817816 PMCID: PMC6529897 DOI: 10.1093/jee/toz029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/22/2019] [Accepted: 01/30/2019] [Indexed: 06/09/2023]
Abstract
Western corn rootworm (Diabrotica virgifera virgifera LeConte) presents significant pest management challenges for farmers in both North America and Europe. IPD072Aa, a protein derived from Pseudomonas chlororaphis, has previously been shown to have activity against western corn rootworm. In the current study, the spectrum of activity of IPD072Aa was evaluated in controlled laboratory diet bioassays. IPD072Aa was fed at high concentrations in subchronic or chronic bioassays to 11 different insect species, representing 4 families within Coleoptera, and an additional 4 species representing four families of Lepidoptera. No adverse effects were noted in the Lepidoptera species. Within the order Coleoptera, western corn rootworm was the most sensitive species tested. A range of responses was observed within each of the four families of Coleoptera evaluated that included either no-observed effects or reduced growth, developmental delays, and/or reduced survival. These data will help inform the environmental risk assessment of genetically modified plants that express the IPD072Aa protein for western corn rootworm control.
Collapse
|
15
|
Pereira AE, Tenhumberg B, Meinke LJ, Siegfried BD. Southern Corn Rootworm (Coleoptera: Chrysomelidae) Adult Emergence and Population Growth Assessment After Selection With Vacuolar ATPase-A double-stranded RNA Over Multiple Generations. JOURNAL OF ECONOMIC ENTOMOLOGY 2019; 112:1354-1364. [PMID: 30753514 DOI: 10.1093/jee/toz008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Indexed: 06/09/2023]
Abstract
The southern corn rootworm, Diabrotica undecimpunctata howardi Barber (Coleoptera: Chrysomelidae), was exposed over multiple generations to vacuolar (v)ATPase-A double-stranded (ds)RNA, first as adults and later, as neonate larvae. During adult selection, high mortality and lower fecundity were observed in the RNAi-selected cages after beetles were exposed to sublethal dsRNA concentrations that varied between LC40 and LC75. During larval selection, a delay in adult emergence and effects on population growth parameters were observed after neonates were exposed to sublethal dsRNA concentrations that varied between LC50 and LC70. Some of the parameters measured for adult emergence such as time to reach maximum linear adult emergence, time elapsed before attaining linear emergence, termination point of the linear emergence, and total days of linear emergence increase, were significantly different between RNAi-selected and control colonies for at least one generation. Significant differences were also observed in population growth parameters such as growth rate, net reproductive rate, doubling time, and generation time. After seven generations of selection, there was no indication that resistance evolved. The sublethal effects caused by exposures of southern corn rootworm to dsRNAs can affect important life history traits and fitness especially through delays in adult emergence and reduction in population growth. Although changes in susceptibility did not occur, the observation of sublethal effects suggests important responses to potential selection pressure. Assuming resistance involves a recessive trait, random mating between susceptible and resistant individuals is an important factor that allows sustainable use of transgenic plants, and delays in adult emergence observed in our studies could potentially compromise this assumption.
Collapse
Affiliation(s)
- Adriano E Pereira
- Plant Genetics Research Unit, USDA/ARS, University of Missouri, Columbia, MO
| | - Brigitte Tenhumberg
- School of Biological Sciences and Department of Mathematics, University of Nebraska, Lincoln, NE
| | - Lance J Meinke
- Department of Entomology, University of Nebraska, Lincoln, NE
| | - Blair D Siegfried
- Department of Entomology and Nematology, University of Florida, Gainesville, FL
| |
Collapse
|