1
|
Kwak Y, Argandona JA, Miao S, Son TJ, Hansen AK. A dual insect symbiont and plant pathogen improves insect host fitness under arginine limitation. mBio 2025; 16:e0358824. [PMID: 39998220 PMCID: PMC11980576 DOI: 10.1128/mbio.03588-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 02/05/2025] [Indexed: 02/26/2025] Open
Abstract
Some facultative bacterial symbionts are known to benefit insects, but nutritional advantages are rare among these non-obligate symbionts. Here, we demonstrate that the facultative symbiont Candidatus Liberibacter psyllaurous enhances the fitness of its psyllid insect host, Bactericera cockerelli, by providing nutritional benefits. L. psyllaurous, an unculturable pathogen of solanaceous crops, also establishes a close relationship with its insect vector, B. cockerelli, increasing in titer during insect development, vertically transmitting through eggs, and colonizing various tissues, including the bacteriome, which houses the obligate nutritional symbiont, Carsonella. Carsonella supplies essential amino acids to its insect host but has gaps in some of its essential amino acid pathways that the psyllid complements with its own genes, many of which have been acquired through horizontal gene transfer (HGT) from bacteria. Our findings reveal that L. psyllaurous increases psyllid fitness on plants by reducing developmental time and increasing adult weight. In addition, through metagenomic sequencing, we reveal that L. psyllaurous maintains complete pathways for synthesizing the essential amino acids arginine, lysine, and threonine, unlike the psyllid's other resident microbiota, Carsonella, and two co-occurring Wolbachia strains. RNA sequencing reveals the downregulation of a HGT collaborative psyllid gene (ASL), which indicates a reduced demand for arginine supplied by Carsonella when the psyllid is infected with L. psyllaurous. Notably, artificial diet assays show that L. psyllaurous enhances psyllid fitness on an arginine-deplete diet. These results corroborate the role of L. psyllaurous as a beneficial insect symbiont, contributing to the nutrition of its insect host.IMPORTANCEUnlike obligate symbionts that are permanently associated with their hosts, facultative symbionts rarely show direct nutritional contributions, especially under nutrient-limited conditions. This study demonstrates, for the first time, that Candidatus Liberibacter psyllaurous, a facultative symbiont and a plant pathogen, enhances the fitness of its Bactericera cockerelli host by supplying an essential nutrient arginine that is lacking in the plant sap diet. Our findings reveal how facultative symbionts can play a vital role in helping their insect hosts adapt to nutrient-limited environments. This work provides new insights into the dynamic interactions between insect hosts, their symbiotic microbes, and their shared ecological niches, broadening our understanding of symbiosis and its role in shaping adaptation and survival.
Collapse
Affiliation(s)
- Younghwan Kwak
- Department of Life and Environmental Sciences, University of California, Merced, California, USA
| | - Jacob A. Argandona
- Department of Entomology, University of California, Riverside, California, USA
| | - Sen Miao
- Department of Entomology, University of California, Riverside, California, USA
| | - Thomas J. Son
- Department of Entomology, University of California, Riverside, California, USA
| | - Allison K. Hansen
- Department of Entomology, University of California, Riverside, California, USA
| |
Collapse
|
2
|
Nian X, Wu S, He J, Holford P, Beattie GAC, Wang D, Cen Y, He Y, Zhang S. The conserved role of miR-2 and novel miR-109 in the increase in fecundity of Diaphorina citri induced by symbiotic bacteria and pathogenic fungi. mBio 2024; 15:e0154124. [PMID: 39373536 PMCID: PMC11559015 DOI: 10.1128/mbio.01541-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/15/2024] [Indexed: 10/08/2024] Open
Abstract
Infection with pathogens can increase the fecundity and other fitness-related traits of insect vectors for their own advantage. Our previous research has reported the pivotal role of DcKr-h1 in the fecundity improvement of Diaphorina citri induced by the bacterium, "Candidatus Liberibacter asiaticus" (CLas), and the fungus, Cordyceps fumosorosea (Cf). However, the posttranscriptional regulation of this process remains poorly understood. Given the significance of miRNAs in gene regulation, we delved into their roles in shaping phenotypes and their underlying molecular mechanisms. Our results indicated that two miRNAs, miR-2 and novel-miR-109, jointly inhibited DcKr-h1 expression by binding to its 3' untranslated region (UTR). In the D. citri-CLas interaction, the expression levels of miR-2 and novel-miR-109 in the ovaries of CLas-positive psyllids were lower compared to CLas-negative individuals. Overexpression of miR-2 or novel-miR-109 significantly decreased fecundity and CLas titer in ovaries and caused reproductive defects reminiscent of DcKr-h1 knockdown. Similarly, in the D. citri-Cf interaction, the levels of miR-2 and novel-miR-109 markedly decreased in the ovaries. Upregulation of miR-2 or novel-miR-109 also resulted in reduced fecundity and ovary defects similar to those caused by DcKr-h1 silencing. Moreover, feeding antagomir-2 or antagomir-109 partially rescued the defective phenotypes caused by DcKr-h1 silencing in both model systems, and miR-2 and novel-miR-109 were repressed by juvenile hormone (JH) and regulated the genes associated with egg development. This study shows a conserved regulatory mechanism, whereby JH suppresses the expression of miR-2 and novel-miR-109 which, together with JH-induced transcription of DcKr-h1, increases female fecundity induced by both symbiotic bacteria and pathogenic fungi. IMPORTANCE Infection with pathogens can increase the fecundity and other fitness-related traits of insect vectors for their own advantage. Our previous research has reported that DcKr-h1 plays a critical role in the increase in fecundity of Diaphorina citri induced by the bacterium, "Candidatus Liberibacter asiaticus" (CLas) and the fungus, Cordyceps fumosorosea (Cf). However, the posttranscriptional regulation of this process remains poorly understood. Given the significance of miRNAs in gene regulation, we delved into their roles in shaping phenotypes and their underlying molecular mechanisms. Our results indicated that two miRNAs, miR-2 and novel-miR-109, jointly inhibited DcKr-h1 expression by binding to its 3' untranslated region (UTR). In both D. citri-CLas and D. citri-Cf interactions, the increased juvenile hormone (JH) titer and reduced abundance of miR-2 and novel-miR-109 ensure high levels of DcKr-h1 expression, consequently stimulating ovarian development and enhancing fecundity. These observations provide evidence that miR-2 and miR-109 are crucial players in the JH-dependent increase in fecundity in psyllids induced by infection with different pathogens.
Collapse
Affiliation(s)
- Xiaoge Nian
- National Key Laboratory of Green Pesticide, Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
- School of Biology and Agriculture, Shaoguan University, Shaoguan, China
| | - Shujie Wu
- National Key Laboratory of Green Pesticide, Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Jielan He
- National Key Laboratory of Green Pesticide, Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Paul Holford
- School of Science, Western Sydney University, Penrith, Australia
| | | | - Desen Wang
- National Key Laboratory of Green Pesticide, Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Yijing Cen
- National Key Laboratory of Green Pesticide, Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Yurong He
- National Key Laboratory of Green Pesticide, Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Songdou Zhang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
3
|
Mubeen M, Ali A, Iftikhar Y, Shahbaz M, Ullah MI, Ali MA, Fatima N, Sathiya Seelan JS, Tan YS, Algopishi UB. Innovative strategies for characterizing and managing huanglongbing in citrus. World J Microbiol Biotechnol 2024; 40:342. [PMID: 39375239 DOI: 10.1007/s11274-024-04135-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/08/2024] [Indexed: 10/09/2024]
Abstract
Huanglongbing is a severe citrus disease that causes significant tree and crop losses worldwide. It is caused by three Candidatus liberibacter species and spread by psyllids and infected budwood. Various methods have been used to diagnose and understand HLB, including recent advances in molecular and biochemical assays that explore the pathogen's mode of action and its impact on the host plant. Characterization is essential for developing sustainable HLB management strategies. Nanotechnology, particularly nano sensors and metal nanoparticles, shows potential for precise disease diagnosis and control. Additionally, antibiotics, nanomaterials, and genetic engineering techniques like transgenesis offer promising avenues for mitigating HLB. These diverse approaches, from conventional to cutting-edge, contribute to developing integrated HLB management strategies for sustainable citrus cultivation. The review highlights the significant advancements in conventional and advanced molecular and biochemical characterization of HLB, aiding in early detection and understanding of the infection mechanism. It emphasizes the multidimensional efforts required to characterize disease and devise innovative management strategies. As the citrus industry faces unprecedented challenges, exploring new frontiers in HLB research provides hope for sustainable solutions and a resilient future for global citrus cultivation.
Collapse
Affiliation(s)
- Mustansar Mubeen
- Department of Plant Pathology, College of Agriculture, University of Sargodha, Sargodha, 40100, Pakistan
| | - Amjad Ali
- Department of Plant Protection, Sivas University of Science and Technology, Sivas, 58140, Turkey
| | - Yasir Iftikhar
- Department of Plant Pathology, College of Agriculture, University of Sargodha, Sargodha, 40100, Pakistan.
| | - Muhammad Shahbaz
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, Sabah, 88400, Malaysia.
| | - Muhammad Irfan Ullah
- Department of Entomology, College of Agriculture, University of Sargodha, Sargodha, 40100, Pakistan
| | - Md Arshad Ali
- Biotechnology Programme, Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, Sabah, 88400, Malaysia
| | - Noor Fatima
- Department of Botany, Lahore College for Women University, Lahore, 44444, Pakistan
| | - Jaya Seelan Sathiya Seelan
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, Sabah, 88400, Malaysia
- Mushroom Research Centre, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Yee Shin Tan
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
- Mushroom Research Centre, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | | |
Collapse
|
4
|
Li J, Holford P, Beattie GAC, Wu S, He J, Tan S, Wang D, He Y, Cen Y, Nian X. Adipokinetic hormone signaling mediates the enhanced fecundity of Diaphorina citri infected by ' Candidatus Liberibacter asiaticus'. eLife 2024; 13:RP93450. [PMID: 38985571 PMCID: PMC11236419 DOI: 10.7554/elife.93450] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024] Open
Abstract
Diaphorina citri serves as the primary vector for 'Candidatus Liberibacter asiaticus (CLas),' the bacterium associated with the severe Asian form of huanglongbing. CLas-positive D. citri are more fecund than their CLas-negative counterparts and require extra energy expenditure. Therefore, understanding the molecular mechanisms linking metabolism and reproduction is of particular importance. In this study, we found adipokinetic hormone (DcAKH) and its receptor (DcAKHR) were essential for increasing lipid metabolism and fecundity in response to CLas infection in D. citri. Knockdown of DcAKH and DcAKHR not only resulted in the accumulation of triacylglycerol and a decline of glycogen, but also significantly decreased fecundity and CLas titer in ovaries. Combined in vivo and in vitro experiments showed that miR-34 suppresses DcAKHR expression by binding to its 3' untranslated region, whilst overexpression of miR-34 resulted in a decline of DcAKHR expression and CLas titer in ovaries and caused defects that mimicked DcAKHR knockdown phenotypes. Additionally, knockdown of DcAKH and DcAKHR significantly reduced juvenile hormone (JH) titer and JH signaling pathway genes in fat bodies and ovaries, including the JH receptor, methoprene-tolerant (DcMet), and the transcription factor, Krüppel homolog 1 (DcKr-h1), that acts downstream of it, as well as the egg development related genes vitellogenin 1-like (DcVg-1-like), vitellogenin A1-like (DcVg-A1-like) and the vitellogenin receptor (DcVgR). As a result, CLas hijacks AKH/AKHR-miR-34-JH signaling to improve D. citri lipid metabolism and fecundity, while simultaneously increasing the replication of CLas, suggesting a mutualistic interaction between CLas and D. citri ovaries.
Collapse
Affiliation(s)
- Jiayun Li
- National Key Laboratory of Green Pesticide, Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Paul Holford
- School of Science, Western Sydney University, Penrith, Australia
| | | | - Shujie Wu
- National Key Laboratory of Green Pesticide, Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Jielan He
- National Key Laboratory of Green Pesticide, Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Shijian Tan
- National Key Laboratory of Green Pesticide, Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Desen Wang
- National Key Laboratory of Green Pesticide, Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Yurong He
- National Key Laboratory of Green Pesticide, Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Yijing Cen
- National Key Laboratory of Green Pesticide, Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Xiaoge Nian
- National Key Laboratory of Green Pesticide, Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
- Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan, China
| |
Collapse
|
5
|
de Souza Pacheco I, Manzano Galdeano D, Spotti Lopes JR, Machado MA. Development on Infected Citrus over Generations Increases Vector Infection by ' Candidatus Liberibacter Asiaticus in Diaphorina citri'. INSECTS 2020; 11:insects11080469. [PMID: 32722346 PMCID: PMC7469140 DOI: 10.3390/insects11080469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 05/13/2023]
Abstract
'Candidatus Liberibacter asiaticus' (CLas) is a major causal agent of citrus Huanglongbing (HLB), which is transmitted by Asian citrus psyllid (ACP), Diaphorina citri, causing severe losses in various regions of the world. Vector efficiency is higher when acquisition occurs by ACP immature stages and over longer feeding periods. In this context, our goal was to evaluate the progression of CLas population and infection rate over four ACP generations that continuously developed on infected citrus plants. We showed that the frequency of CLas-positive adult samples increased from 42% in the parental generation to 100% in the fourth generation developing on CLas-infected citrus. The bacterial population in the vector also increased over generations. This information reinforces the importance of HLB management strategies, such as vector control and eradication of diseased citrus trees, to avoid the development of CLas-infected ACP generations with higher bacterial loads and, likely, a higher probability of spreading the pathogen in citrus orchards.
Collapse
Affiliation(s)
- Inaiara de Souza Pacheco
- Centro de Citricultura Sylvio Moreira, Instituto Agronômico de Campinas, Cordeirópolis, São Paulo 13490-970, Brazil; (D.M.G.); (M.A.M.)
- Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo 13083-862, Brazil
- Correspondence:
| | - Diogo Manzano Galdeano
- Centro de Citricultura Sylvio Moreira, Instituto Agronômico de Campinas, Cordeirópolis, São Paulo 13490-970, Brazil; (D.M.G.); (M.A.M.)
| | - João Roberto Spotti Lopes
- Departamento de Entomologia e Acarologia, Escola Superior de Agricultura “Luiz de Queiroz”—Universidade de São Paulo, Piracicaba, São Paulo 13418-900, Brazil;
| | - Marcos Antonio Machado
- Centro de Citricultura Sylvio Moreira, Instituto Agronômico de Campinas, Cordeirópolis, São Paulo 13490-970, Brazil; (D.M.G.); (M.A.M.)
| |
Collapse
|
6
|
Ammar ED, Achor D, Levy A. Immuno-Ultrastructural Localization and Putative Multiplication Sites of Huanglongbing Bacterium in Asian Citrus Psyllid Diaphorina citri. INSECTS 2019; 10:insects10120422. [PMID: 31771154 PMCID: PMC6955907 DOI: 10.3390/insects10120422] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 11/16/2022]
Abstract
Huanglongbing, the most destructive citrus disease worldwide, is caused by the bacterium 'Candidatus Liberibacter asiaticus' (CLas) and is vectored by the Asian citrus psyllid (ACP). Very little is known about the form and distribution of CLas in infected psyllids, especially at the ultrastructural level. Here, we examined these aspects by transmission electron microscopy, combined with immunogold labeling. In CLas-exposed ACP adults, the CLas bacterial cells were found to be pleomorphic taking tubular, spherical, or flask-shaped forms, some of which seemed to divide further. Small or large aggregates of CLas were found in vacuolated cytoplasmic pockets of most ACP organs and tissues examined, including the midgut, filter chamber, hindgut, Malpighian tubules, and secretory cells of the salivary glands, in addition to fat tissues, epidermis, muscle, hemocytes, neural tissues, bacteriome, and walls of the female spermatheca and oviduct. Large aggregates of CLas were found outside the midgut within the filter chamber and between the sublayers of the basal lamina of the hindgut and Malpighian tubules. Novel intracytoplasmic structures that we hypothesized as 'putative CLas multiplication sites' were found in the cells of the midgut, salivary glands, and other tissues in CLas-exposed ACP. These structures, characterized by containing a granular matrix and closely packed bacterial cells, were unbound by membranes and were frequently associated with rough endoplasmic reticulum. Our results point to the close association between CLas and its psyllid vector, and provide support for a circulative-propagative mode of transmission.
Collapse
Affiliation(s)
- El-Desouky Ammar
- Agriculture Research Service, -United States Department of Agriculture (ARS-USDA), Fort Pierce, FL 34945, USA;
| | - Diann Achor
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850, USA;
| | - Amit Levy
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850, USA;
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA
- Correspondence:
| |
Collapse
|