1
|
Lee DE, Kim HC, Klein TA, Lee SH, Kim JH. Seasonal fluctuation of insecticide resistance mutation frequencies in field populations of Anopheles and Culex species in Korea. JOURNAL OF MEDICAL ENTOMOLOGY 2025; 62:155-163. [PMID: 39673260 DOI: 10.1093/jme/tjae140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 10/04/2024] [Accepted: 10/22/2024] [Indexed: 12/16/2024]
Abstract
Members of the Anopheles Hyrcanus Group, Culex pipiens complex, and Culex tritaeniorhynchus are prevalent vector species in the Republic of Korea (ROK), transmitting Plasmodium vivax and various arboviruses. Extensive use of insecticides to control these mosquitoes has led to insecticide resistance. In this study, we monitored 3 target site mutations associated with insecticide resistance (kdr for pyrethroid resistance, ace1 for organophosphate resistance, and rdl for phenylpyrazole resistance) in these mosquito groups over four consecutive years to understand the seasonal dynamics of resistance in different areas with distinct ecological characteristics. In the Anopheles Hyrcanus Group, the frequencies of kdr and ace1 mutations exhibited seasonal fluctuations in an urban-rural complex area (Humphreys US Army Garrison) (hereafter Humphreys), suggesting an overwintering fitness cost, whereas the rdl mutation frequencies remained constant at nearly saturated levels. These patterns were less clear in rural areas (the demilitarized zone separating Korea), indicating area-specific profiles related to different insecticide usage patterns. The kdr and rdl mutation frequencies associated with the Cx. pipiens complex were relatively constant, but varied by the collection area, with higher rdl frequency in Humphreys and higher kdr frequency in Yongsan, a metropolitan area, suggesting different selection pressures. Overall resistance mutation frequencies were highest in Cx. tritaeniorhynchus, with ace1 and rdl mutations being seasonally saturated, while the kdr mutation frequency varied over time. Our findings demonstrate species- or group-specific seasonal and regional dynamic patterns of insecticide resistance, presenting the need for targeted control strategies and further improving the management of mosquito-borne diseases in the ROK.
Collapse
Affiliation(s)
- Do Eun Lee
- Department of Tropical Medicine and Parasitology, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | | | - Terry A Klein
- Medical Department Activity-Korea/65th Medical Brigade, Force Health Protection and Preventive Medicine, Unit 15281, APO AP 96271-5281, USA
| | - Si Hyeock Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Ju Hyeon Kim
- Department of Tropical Medicine and Parasitology, Seoul National University, Seoul, Republic of Korea
- Institute of Endemic Diseases, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
2
|
Gul H, Gadratagi BG, Güncan A, Tyagi S, Ullah F, Desneux N, Liu X. Fitness costs of resistance to insecticides in insects. Front Physiol 2023; 14:1238111. [PMID: 37929209 PMCID: PMC10620942 DOI: 10.3389/fphys.2023.1238111] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 09/22/2023] [Indexed: 11/07/2023] Open
Abstract
The chemical application is considered one of the most crucial methods for controlling insect pests, especially in intensive farming practices. Owing to the chemical application, insect pests are exposed to toxic chemical insecticides along with other stress factors in the environment. Insects require energy and resources for survival and adaptation to cope with these conditions. Also, insects use behavioral, physiological, and genetic mechanisms to combat stressors, like new environments, which may include chemicals insecticides. Sometimes, the continuous selection pressure of insecticides is metabolically costly, which leads to resistance development through constitutive upregulation of detoxification genes and/or target-site mutations. These actions are costly and can potentially affect the biological traits, including development and reproduction parameters and other key variables that ultimately affect the overall fitness of insects. This review synthesizes published in-depth information on fitness costs induced by insecticide resistance in insect pests in the past decade. It thereby highlights the insecticides resistant to insect populations that might help design integrated pest management (IPM) programs for controlling the spread of resistant populations.
Collapse
Affiliation(s)
- Hina Gul
- MARA Key Laboratory of Pest Monitoring and Green Management, Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Basana Gowda Gadratagi
- Division of Crop Protection, ICAR-National Rice Research Institute, Cuttack, Odisha, India
| | - Ali Güncan
- Department of Plant Protection, Faculty of Agriculture, Ordu University, Ordu, Türkiye
| | - Saniya Tyagi
- Department of Entomology, BRD PG College, Deoria, Uttar Pradesh, India
| | - Farman Ullah
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | | | - Xiaoxia Liu
- MARA Key Laboratory of Pest Monitoring and Green Management, Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
3
|
Roca-Acevedo G, Boscaro I, Toloza AC. Global Pattern of kdr-Type Alleles in Musca domestica (L.). CURRENT TROPICAL MEDICINE REPORTS 2022; 10:1-10. [PMID: 36569791 PMCID: PMC9760529 DOI: 10.1007/s40475-022-00281-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2022] [Indexed: 12/23/2022]
Abstract
Purpose of Review Houseflies, Musca domestica L., are an important sanitary pest that affects human and domesticated animals. They are mechanical carriers of more than 100 human and animal diseases including protozoan, bacterial, helminthic, and viral infections. Recently, it was demonstrated that houseflies acquired, harbored, and transmitted SARS-CoV-2 (COVID-19) for up to 1 day post-exposure. The most widely used control strategy relays on the application of pyrethroid insecticides due to their effectiveness, low mammalian toxicity, low cost, and environmental safety. The main mechanism of action of pyrethroids is to exert their toxic effects through affecting the voltage-sensitive sodium channel (VSSC) modifying the transmission of the nerve impulse and leading to the death of the insects. Target site insensitivity of the VSSC is due to the presence of single nuclear polymorphisms (SNPs) named knockdown mutations (kdr). In this review, we synthetize recent data on the type and distribution of these mutations globally. Recent Findings Housefly resistance is reported in several countries. Increased applications of pyrethroids to control housefly populations led to the emergence of multiple evolutionary origins of resistance determined by five amino acid substitutions or specific mutations in the VSSC: kdr (L1014F), kdr-his (L1014H), super-kdr (M918T + L1014F), type N (D600N + M918T + L1014F), and 1B (T929I + L1014F). According to the global map obtained, high levels of resistance to pyrethroids are associated with the L1014F mutation found mostly in North America, Europe, and Asia, while the super-kdr mutation was mostly found in the American continent. The level of protection conferred by these alleles against pyrethroids was generally kdr-his < kdr < Type N ≤ super-kdr ≤ 1B. The relative fitness of the alleles under laboratory conditions was susceptible ≅ kdr-his > kdr > super-kdr suggesting that the fitness cost of an allele was relative to the presence of other alleles in a population and that the reversion of resistance in a free insecticide environment might be quite variable from one region to another. Summary An adequate integrated pest management program should consider monitoring susceptibility to pyrethroids to detect early levels of resistance and predict the spread and evolution of resistant phenotypes and genotypes. From this review, the pyrethroid resistance status of housefly population was determined in very few countries and has evolved independently in different areas of the world affecting chemical control programs.
Collapse
Affiliation(s)
- Gonzalo Roca-Acevedo
- Centro de Investigaciones de Plagas e Insecticidas (CIPEIN-UNIDEF-CONICET), Juan Bautista de La Salle 4397, Villa Martelli, Buenos Aires, Argentina
- Universidad CAECE, Avenida de Mayo 866, Ciudad Autónoma de Buenos Aires, Argentina
| | - Ivana Boscaro
- Universidad CAECE, Avenida de Mayo 866, Ciudad Autónoma de Buenos Aires, Argentina
| | - Ariel Ceferino Toloza
- Centro de Investigaciones de Plagas e Insecticidas (CIPEIN-UNIDEF-CONICET), Juan Bautista de La Salle 4397, Villa Martelli, Buenos Aires, Argentina
- Universidad CAECE, Avenida de Mayo 866, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
4
|
Kaduskar B, Kushwah RBS, Auradkar A, Guichard A, Li M, Bennett JB, Julio AHF, Marshall JM, Montell C, Bier E. Reversing insecticide resistance with allelic-drive in Drosophila melanogaster. Nat Commun 2022; 13:291. [PMID: 35022402 PMCID: PMC8755802 DOI: 10.1038/s41467-021-27654-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 12/02/2021] [Indexed: 12/27/2022] Open
Abstract
A recurring target-site mutation identified in various pests and disease vectors alters the voltage gated sodium channel (vgsc) gene (often referred to as knockdown resistance or kdr) to confer resistance to commonly used insecticides, pyrethroids and DDT. The ubiquity of kdr mutations poses a major global threat to the continued use of insecticides as a means for vector control. In this study, we generate common kdr mutations in isogenic laboratory Drosophila strains using CRISPR/Cas9 editing. We identify differential sensitivities to permethrin and DDT versus deltamethrin among these mutants as well as contrasting physiological consequences of two different kdr mutations. Importantly, we apply a CRISPR-based allelic-drive to replace a resistant kdr mutation with a susceptible wild-type counterpart in population cages. This successful proof-of-principle opens-up numerous possibilities including targeted reversion of insecticide-resistant populations to a native susceptible state or replacement of malaria transmitting mosquitoes with those bearing naturally occurring parasite resistant alleles. Insecticide resistance (IR) poses a major global health challenge. Here, the authors generate common IR mutations in laboratory Drosophila strains and use a CRISPR-based allelic-drive to replace an IR allele with a susceptible wild-type counterpart, providing a potent new tool for vector control.
Collapse
Affiliation(s)
- Bhagyashree Kaduskar
- Tata Institute for Genetics and Society, Center at inStem, Bangalore, Karnataka, 560065, India.,Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093, USA.,Tata Institute for Genetics and Society, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Raja Babu Singh Kushwah
- Tata Institute for Genetics and Society, Center at inStem, Bangalore, Karnataka, 560065, India.,Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093, USA.,Tata Institute for Genetics and Society, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Ankush Auradkar
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Annabel Guichard
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093, USA.,Tata Institute for Genetics and Society, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Menglin Li
- Neuroscience Research Institute, University of California, Santa Barbara, CA, 93106, USA.,Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, 93106, USA
| | - Jared B Bennett
- Biophysics Graduate Group, Division of Biological Sciences, College of Letters and Science, University of California, Berkeley, CA, 94720, USA
| | | | - John M Marshall
- Division of Biostatistics and Epidemiology - School of Public Health, University of California, Berkeley, CA, 94720, USA.,Innovative Genomics Institute, Berkeley, CA, 94720, USA
| | - Craig Montell
- Neuroscience Research Institute, University of California, Santa Barbara, CA, 93106, USA.,Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, 93106, USA
| | - Ethan Bier
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093, USA. .,Tata Institute for Genetics and Society, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
5
|
Major KM, Brander SM. The Ecological and Evolutionary Implications of Pyrethroid Exposure: A New Perspective on Aquatic Ecotoxicity. THE HANDBOOK OF ENVIRONMENTAL CHEMISTRY 2020. [DOI: 10.1007/698_2019_432] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
6
|
Fang Y, Shi WQ, Wu JT, Li YY, Xue JB, Zhang Y. Resistance to pyrethroid and organophosphate insecticides, and the geographical distribution and polymorphisms of target-site mutations in voltage-gated sodium channel and acetylcholinesterase 1 genes in Anopheles sinensis populations in Shanghai, China. Parasit Vectors 2019; 12:396. [PMID: 31399130 PMCID: PMC6688361 DOI: 10.1186/s13071-019-3657-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 08/03/2019] [Indexed: 12/14/2022] Open
Abstract
Background In the final phase of China’s national programme to eliminate malaria by 2020, it is vitally important to monitor the resistance of malaria vectors for developing effective vector control strategies. In 2017 Shanghai declared that it had eliminated malaria; however, the insecticide resistance status of the primary malaria vector Anopheles sinensis remains unknown. Methods We examined the pyrethroid and organophosphate resistance of An. sinensis via a bioassay of two populations from the Chongming District of Shanghai. The voltage-gated sodium channel (VGSC) and acetylcholinesterase 1 (ace-1) genes were partially sequenced to examine the association between resistance phenotype and target site genotype. In addition, the geographical distribution, polymorphism and genotype frequencies of insecticide resistance genes were examined using samples collected during routine mosquito surveillance in 2016 and 2017 from Chongming, Songjiang, Jiading and Qingpu Districts. Results In Chongming District, the An. sinensis population near Dongtan National Nature Reserve showed resistance to pyrethroids, sensitivity to organophosphate, no knockdown resistance (kdr) mutations in the VGSC gene, and a low frequency (1.71%) of the ace-1 119S allele. An An. sinensis population near the Chongming central area (CM-Xinhe population) showed high resistance to pyrethroids and organophosphates and high frequencies of kdr 1014F and 1014C (80.73%) and ace-1 119S (85.98%) alleles. A significant association was detected between the homozygous kdr mutation 1014F/1014F and pyrethroid resistance in the CM-Xinhe population, indicating that the kdr mutation is probably recessive. Eight kdr genotypes with 1014F and 1014C substitutions were detected in the four surveyed districts of Shanghai. TTT and GGC/AGC were the dominant kdr allele and ace-1 genotype, respectively, and were prevalent in most Shanghai An. sinensis populations. Conclusions On the basis of our assessment of insecticide resistance gene mutations in Shanghai, we identified a kdr mutation-free population in Chongming Dongtan. However, high frequencies of target-site mutations of insecticide resistance genes were observed in most areas of Shanghai. Bioassays of An. sinensis populations in the central Chongming District indicated the high insecticide resistance status of An. sinensis populations in Shanghai. We accordingly recommend a restriction on insecticide usage and development of effective integrated pest/vector management interventions to support disease control efforts.
Collapse
Affiliation(s)
- Yuan Fang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, 20025, China
| | - Wen-Qi Shi
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, 20025, China
| | - Jia-Tong Wu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, 20025, China
| | - Yuan-Yuan Li
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, 20025, China
| | - Jing-Bo Xue
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, 20025, China
| | - Yi Zhang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, 20025, China.
| |
Collapse
|
7
|
Guichard A, Haque T, Bobik M, Xu XRS, Klanseck C, Kushwah RBS, Berni M, Kaduskar B, Gantz VM, Bier E. Efficient allelic-drive in Drosophila. Nat Commun 2019; 10:1640. [PMID: 30967548 PMCID: PMC6456580 DOI: 10.1038/s41467-019-09694-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 03/21/2019] [Indexed: 01/08/2023] Open
Abstract
Gene-drive systems developed in several organisms result in super-Mendelian inheritance of transgenic insertions. Here, we generalize this "active genetic" approach to preferentially transmit allelic variants (allelic-drive) resulting from only a single or a few nucleotide alterations. We test two configurations for allelic-drive: one, copy-cutting, in which a non-preferred allele is selectively targeted for Cas9/guide RNA (gRNA) cleavage, and a more general approach, copy-grafting, that permits selective inheritance of a desired allele located in close proximity to the gRNA cut site. We also characterize a phenomenon we refer to as lethal-mosaicism that dominantly eliminates NHEJ-induced mutations and favors inheritance of functional cleavage-resistant alleles. These two efficient allelic-drive methods, enhanced by lethal mosaicism and a trans-generational drive process we refer to as "shadow-drive", have broad practical applications in improving health and agriculture and greatly extend the active genetics toolbox.
Collapse
Affiliation(s)
- Annabel Guichard
- Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0335, USA
| | - Tisha Haque
- Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0335, USA
| | - Marketta Bobik
- Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0335, USA
| | - Xiang-Ru S Xu
- Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0335, USA
| | - Carissa Klanseck
- Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0335, USA
| | - Raja Babu Singh Kushwah
- Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0335, USA
- Tata Institute for Genetics and Society-India (TIGS), TIGS Center at inStem, Bangalore, 560065, India
| | - Mateus Berni
- Instituto de Ciências Biomédicas (ICB), Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Ilha do Fundão, Rio de Janeiro, 21941-902, RJ, Brazil
- Post-graduate Program in Morphological Sciences, Federal University of Rio de Janeiro (PCM/UFRJ), Rio de Janeiro, 21941-902, RJ, Brazil
| | - Bhagyashree Kaduskar
- Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0335, USA
- Tata Institute for Genetics and Society-India (TIGS), TIGS Center at inStem, Bangalore, 560065, India
| | - Valentino M Gantz
- Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0335, USA
| | - Ethan Bier
- Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0335, USA.
- Tata Institute for Genetics and Society-UCSD, La Jolla, CA, 92093-0335, USA.
| |
Collapse
|
8
|
Scott JG. Life and Death at the Voltage-Sensitive Sodium Channel: Evolution in Response to Insecticide Use. ANNUAL REVIEW OF ENTOMOLOGY 2019; 64:243-257. [PMID: 30629893 DOI: 10.1146/annurev-ento-011118-112420] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The voltage-sensitive sodium channel (VSSC) is a critical component of the insect nervous system. Pyrethroids and DDT are insecticides that have been widely used, and they kill insects by perturbations of the VSSC. Decades of insecticide use selected for mutations in Vssc that give rise to resistance in almost all pest insects. However, the mutations responsible for the resistance are not always the same, and some unusual patterns have emerged. This review focuses on what pyrethroid/DDT selection has done, in terms of Vssc changes that have occurred, using four well-studied species as examples of the differences that have evolved. Information is provided about the mutations that occur, potential pathways by which alleles with multiple mutations arose, the relative fitness of the alleles, the levels of resistance conferred, and the geographic distribution of the mutations. The lessons learned and exciting new areas of research are discussed.
Collapse
Affiliation(s)
- Jeffrey G Scott
- Department of Entomology, Cornell University, Ithaca, New York 14853, USA;
| |
Collapse
|