1
|
Guo PL, Guo ZQ, Liu XD. Cuticular protein genes involve heat acclimation of insect larvae under global warming. INSECT MOLECULAR BIOLOGY 2022; 31:519-532. [PMID: 35403301 DOI: 10.1111/imb.12777] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 03/24/2022] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
Cuticular proteins (CPs) play important roles in insect growth and development. However, it is unknown whether CPs are related to heat tolerance. Cnaphalocrocis medinalis, a serious pest of rice, occurs in summer and exhibits strong adaptability to high temperature, but the underlying mechanism is unclear. Here, the role of CP genes in heat acclimation was studied. Heat tolerance of the heat-acclimated larvae was significantly stronger than the unacclimated larvae. The cuticular protein content in the heat-acclimated larvae was higher than that of the unacclimated larvae. 191 presumed CP genes of C. medinalis (CmCPs) were identified. Expression patterns of 14 CmCPs were different between the heat acclimated (S39) and unacclimated (S27) larvae under heat stress. CmCPs were specifically expressed in epidermis and the head except CmCPR20 mainly expressed in Malpighian tubules. CmCPR20 was upregulated in S39 while downregulated in S27, but CmTweedle1 and CmCPG1 were upregulated in S27 and downregulated in S39. RNAi CmTweedle1 or CmCPG1 remarkably decreased heat tolerance and cuticular protein content of the heat-acclimated larvae but not the unacclimated larvae. RNAi CmCPR20 decreased heat tolerance and cuticular protein content of the unacclimated larvae but not the heat-acclimated larvae. CmTweedle1 and CmCPG1 genes involve heat acclimation of C. medinalis.
Collapse
Affiliation(s)
- Pan-Long Guo
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Zi-Qian Guo
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Xiang-Dong Liu
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
2
|
Capobianco JN, Pietrantuono AL, Aparicio AG, Fernández‐Arhex V. Host plant choice and effect of temperature on feeding behaviour of
Perzelia arda
(Lepidoptera: Depressariidae), a leaf‐tying larva, on Nothofagaceae from the Andean Patagonian forest. AUSTRAL ECOL 2021. [DOI: 10.1111/aec.13101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Julio Nahuel Capobianco
- Centro Regional Universitario Bariloche Universidad Nacional del Comahue Quintral 1250 San Carlos de Bariloche 8400 Argentina
| | - Ana Laura Pietrantuono
- IFAB – Instituto de Investigaciones Forestales y Agropecuarias Bariloche (INTA– CONICET) San Carlos de Bariloche Argentina
| | - Alejandro Gabriel Aparicio
- IFAB – Instituto de Investigaciones Forestales y Agropecuarias Bariloche (INTA– CONICET) San Carlos de Bariloche Argentina
| | - Valeria Fernández‐Arhex
- IFAB – Instituto de Investigaciones Forestales y Agropecuarias Bariloche (INTA– CONICET) San Carlos de Bariloche Argentina
| |
Collapse
|
3
|
Zhao X, Xu H, He K, Shi Z, Chen X, Ye X, Mei Y, Yang Y, Li M, Gao L, Xu L, Xiao H, Liu Y, Lu Z, Li F. A chromosome-level genome assembly of rice leaffolder, Cnaphalocrocis medinalis. Mol Ecol Resour 2020; 21:561-572. [PMID: 33051980 DOI: 10.1111/1755-0998.13274] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/21/2020] [Accepted: 10/01/2020] [Indexed: 12/01/2022]
Abstract
The rice leaffolder, Cnaphalocrocis medinalis Guenée (Crambidae, Lepidoptera), is an important agricultural pest that causes serious losses to rice production in rice-growing regions with high humidity and temperature. However, a lack of genomic resources limits in-depth understanding of its biological characteristics and ecological adaptation. Here, we sequenced the genome of rice leaffolder using the Illumina and PacBio platforms, yielding a genome assembly of 528.3 Mb with a contig N50 of 524.6 kb. A high percentage (96.4%) of Benchmarking Universal Single-Copy Orthologs (BUSCOs) were successfully detected, suggesting high-level completeness of the genome assembly. In total, 39.5% of the genome consists of repeat sequences and 15,045 protein-coding genes were annotated. Comparative phylogenomic analysis showed that some gene families associated with hormone biosynthesis expanded in rice leaffolder. Next, we used the Hi-C technique to produce a chromosome-level genome assembly with a scaffold N50 of 16.1 Mb by anchoring 3,248 scaffolds to 31 chromosomes. The rice leaffolder genome showed high chromosomal synteny with the genome of four other lepidopteran insects. By comparing coverage ratios from the genome resequencing of male and female pupae, we identified near intact Z and W chromosomes. The W chromosome is estimated as 20.75 Mb, which is the most complete known W chromosome in Lepidoptera. The protein-coding genes on the W chromosome were significantly enriched in metabolic pathways. In all, the high-quality genome assembly and the near-intact W chromosome of rice leaffolder should be a useful resource for the fields of insect migration, chromosome evolution and pest control.
Collapse
Affiliation(s)
- Xianxin Zhao
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs, Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Hongxing Xu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agroproducts, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Kang He
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs, Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Zhenmin Shi
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs, Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Xi Chen
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs, Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Xinhai Ye
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs, Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Yang Mei
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs, Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Yajun Yang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agroproducts, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Meizhen Li
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs, Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Libin Gao
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs, Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Le Xu
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs, Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Huamei Xiao
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs, Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou, China.,College of Life Sciences and Resource Environment, Key Laboratory of Crop Growth and Development Regulation of Jiangxi Province, Yichun University, Yichun, China
| | - Ying Liu
- Agriculture Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Zhongxian Lu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agroproducts, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Fei Li
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs, Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
4
|
Quan PQ, Li MZ, Wang GR, Gu LL, Liu XD. Comparative transcriptome analysis of the rice leaf folder (Cnaphalocrocis medinalis) to heat acclimation. BMC Genomics 2020; 21:450. [PMID: 32605538 PMCID: PMC7325166 DOI: 10.1186/s12864-020-06867-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 06/23/2020] [Indexed: 02/07/2023] Open
Abstract
Background The rice leaf folder Cnaphalocrocis medinalis Güenée is a serious insect pest of rice in Asia. This pest occurs in summer, and it is sensitive to high temperature. However, the larvae exhibit heat acclimation/adaptation. To understand the underlying mechanisms, we established a heat-acclimated strain via multigenerational selection at 39 °C. After heat shock at 41 °C for 1 h, the transcriptomes of the heat-acclimated (S-39) and unacclimated (S-27) larvae were sequenced, using the unacclimated larvae without exposure to 41 °C as the control. Results Five generations of selection at 39 °C led larvae to acclimate to this heat stress. Exposure to 41 °C induced 1160 differentially expressed genes (DEGs) between the heat-acclimated and unacclimated larvae. Both the heat-acclimated and unacclimated larvae responded to heat stress via upregulating genes related to sensory organ development and structural constituent of eye lens, whereas the unacclimated larvae also upregulated genes related to structural constituent of cuticle. Compared to unacclimated larvae, heat-acclimated larvae downregulated oxidoreductase activity-related genes when encountering heat shock. Both the acclimated and unacclimated larvae adjusted the longevity regulating, protein processing in endoplasmic reticulum, antigen processing and presentation, MAPK and estrogen signaling pathway to responsed to heat stress. Additionally, the unacclimated larvae also adjusted the spliceosome pathway, whereas the heat-acclimated larvae adjusted the biosynthesis of unsaturated fatty acids pathway when encountering heat stress. Although the heat-acclimated and unacclimated larvae upregulated expression of heat shock protein genes under heat stress including HSP70, HSP27 and CRYAB, their biosynthesis, metabolism and detoxification-related genes expressed differentially. Conclusions The rice leaf folder larvae could acclimate to a high temperature via multigenerational heat selection. The heat-acclimated larvae induced more DEGs to response to heat shock than the unacclimated larvae. The changes in transcript level of genes were related to heat acclimation of larvae, especially these genes in sensory organ development, structural constituent of eye lens, and oxidoreductase activity. The DEGs between heat-acclimated and unacclimated larvae after heat shock were enriched in the biosynthesis and metabolism pathways. These results are helpful to understand the molecular mechanism underlying heat acclimation of insects.
Collapse
Affiliation(s)
- Peng-Qi Quan
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ming-Zhu Li
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Gao-Rong Wang
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ling-Ling Gu
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiang-Dong Liu
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|