1
|
García-Elfring A, Roffey HL, Abergas JM, Hendry AP, Barrett RDH. GTP cyclohydrolase II (gch2) and axanthism in ball pythons: A new vertebrate model for pterin-based pigmentation. Anim Genet 2025; 56:e70011. [PMID: 40235167 DOI: 10.1111/age.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 03/24/2025] [Accepted: 04/04/2025] [Indexed: 04/17/2025]
Abstract
Pterin pigments are responsible for many of the bright colors observed across the animal kingdom. However, unlike melanin, the genetics of pterin-based pigmentation has received relatively little attention in animal coloration studies. Here, we investigate a lineage of axanthic ball pythons (Python regius) found in captivity as a model system to study pterin pigmentation in vertebrates. By crowdsourcing shed skin samples from commercial breeders and applying a case-control study design, we used whole-genome pool sequencing (pool-seq) and variant annotation. We identified a premature stop codon in the gene GTP cyclohydrolase II (gch2), which is associated with the axanthic phenotype. GCH2 catalyzes the first rate-limiting step in riboflavin biosynthesis. This study provides the first identification of an axanthism-associated gene in vertebrates and highlights the utility of ball pythons as a model to study pterin-based pigmentation.
Collapse
Affiliation(s)
| | | | - Jaren M Abergas
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Andrew P Hendry
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
2
|
Xu J, Li P, Xu M, Wang C, Kocher TD, Wang D. Mutation of mpv17 results in loss of iridophores due to mitochondrial dysfunction in tilapia. J Hered 2025; 116:101-112. [PMID: 38946032 DOI: 10.1093/jhered/esae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/15/2024] [Indexed: 07/02/2024] Open
Abstract
Mpv17 (mitochondrial inner membrane protein MPV17) deficiency causes severe mitochondrial DNA depletion syndrome in mammals and loss of pigmentation of iridophores and a significant decrease of melanophores in zebrafish. The reasons for this are still unclear. In this study, we established an mpv17 homozygous mutant line in Nile tilapia. The developing mutants are transparent due to the loss of iridophores and aggregation of pigment granules in the melanophores and disappearance of the vertical pigment bars on the side of the fish. Transcriptome analysis using the skin of fish at 30 dpf (days post fertilization) revealed that the genes related to purine (especially pnp4a) and melanin synthesis were significantly downregulated. However, administration of guanine diets failed to rescue the phenotype of the mutants. In addition, no obvious apoptosis signals were observed in the iris of the mutants by TUNEL staining. Significant downregulation of genes related to iridophore differentiation was detected by qPCR. Insufficient ATP, as revealed by ATP assay, α-MSH treatment, and adcy5 mutational analysis, might account for the defects of melanophores in mpv17 mutants. Several tissues displayed less mtDNA and decreased ATP levels. Taken together, these results indicated that mutation of mpv17 led to mitochondrial dTMP deficiency, followed by impaired mtDNA content and mitochondrial function, which in turn, led to loss of iridophores and a transparent body color in tilapia.
Collapse
Affiliation(s)
- Jia Xu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Peng Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Mengmeng Xu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Chenxu Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Thomas D Kocher
- Department of Biology, University of Maryland College Park, Maryland, United States
| | - Deshou Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
3
|
Korzeniwsky KG, de Mello PL, Liang Y, Feltes M, Farber SA, Parichy DM. Dominant Negative Mitf Allele Impacts Melanophore and Xanthophore Development and Reveals Collaborative Interactions With Tfec in Zebrafish Chromatophore Lineages. Pigment Cell Melanoma Res 2025; 38:e70009. [PMID: 40123122 PMCID: PMC11931198 DOI: 10.1111/pcmr.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/28/2025] [Accepted: 03/08/2025] [Indexed: 03/25/2025]
Abstract
Ectothermic vertebrates exhibit a diverse array of pigment cell types-chromatophores-that provide valuable opportunities to uncover mechanisms of fate specification and how they evolve. Like melanocytes of mammals, the melanophores of teleosts and other ectotherms depend on basic helix-loop-helix leucine zipper transcription factors encoded by orthologues of MITF. A different chromatophore, the iridescent iridophore, depends on the closely related transcription factor Tfec. Requirements for the specification of other chromatophore lineages remain largely uncertain. Here we identify a new allele of the zebrafish Mitf gene, mitfa, that results in a complete absence of not only melanophores but also yellow-orange xanthophores. Harboring a missense substitution in the DNA-binding domain identical to previously isolated alleles of mouse, we show that this new allele has defects in chromatophore precursor survival and xanthophore differentiation that extend beyond those of mitfa loss-of-function. Additional genetic analyses revealed interactions between Mitfa and Tfec as a likely basis for the observed phenotypes. Our findings point to collaborative roles for Mitfa and Tfec in promoting chromatophore development, particularly in xanthophore lineages, and provide new insights into evolutionary aspects of MITF functions across vertebrates.
Collapse
Affiliation(s)
| | | | - Yipeng Liang
- Department of BiologyUniversity of VirginiaVirginiaUSA
| | - McKenna Feltes
- Department of BiologyJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Steven A. Farber
- Department of BiologyJohns Hopkins UniversityBaltimoreMarylandUSA
| | - David M. Parichy
- Department of BiologyUniversity of VirginiaVirginiaUSA
- Department of Cell BiologyUniversity of VirginiaVirginiaUSA
| |
Collapse
|
4
|
Ng TT, Lau CC, Tan MP, Wong LL, Sung YY, Muhammad TST, Liying S, Danish-Daniel M. Comparative Transcriptome Analysis Reveals Differential Cutaneous Gene Expression in the Color Variation of Two Ornamental Discus, Red Melon and Red Cover. Pigment Cell Melanoma Res 2024; 37:881-888. [PMID: 39140294 DOI: 10.1111/pcmr.13190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/02/2024] [Accepted: 07/29/2024] [Indexed: 08/15/2024]
Abstract
Red Melon (RM) and Red Cover (RC) discus (Symphysodon spp.) are ornamental fish varieties that were selectively bred from the wild parental lineages of the brown discus S. aquafaciatus over many generations, resulting in distinct cutaneous patterns from juveniles to adults. To better understand the underlying mechanisms, skin samples were collected from juveniles aged 60 days and adults aged 1 year from RM and RC for investigations. Microscopic observation detected xanthophores and erythrophores in all samples, except RC juveniles with no erythrophores. Melanophores were presented only in RC. The comparative analysis revealed that genes involved in pteridine synthesis (gch1 and zgc:153031), one-carbon metabolism (aldh1l2 and zgc153031), and lipid metabolism (apoda and klf1) were differentially expressed in RM juveniles, which may be associated with the development of erythrophores and xanthophores. The temporal inhibition of melanophore differentiation and development was observed in RM juveniles, coupled with elevated expression of notum2 and sost, two antagonist genes in Wnt-signaling, suggesting their roles in melanophore development. Distinct pigment pattern between RM and RC since the juvenile stage may be driven by the differential expression of multiple axial developmental genes, including GATA, ankyrin, and mitotic spindle orientation proteins. This is the first report to describe the differential growth of cutaneous pigments and the molecular processes involved in red discus. The results provided valuable insights into pigment pattern differences in an interesting ornamental fish model.
Collapse
Affiliation(s)
- Tian Tsyh Ng
- Institute of Climate Adaptation and Marine Biotechnology (ICAMB), Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
- Aquacity Tropical Fish Sdn. Bhd., Kuala Lumpur, Malaysia
| | - Cher Chien Lau
- Institute of Climate Adaptation and Marine Biotechnology (ICAMB), Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Min Pau Tan
- Institute of Climate Adaptation and Marine Biotechnology (ICAMB), Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Li Lian Wong
- Institute of Climate Adaptation and Marine Biotechnology (ICAMB), Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Yeong Yik Sung
- Institute of Climate Adaptation and Marine Biotechnology (ICAMB), Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Tengku Sifzizul Tengku Muhammad
- Institute of Climate Adaptation and Marine Biotechnology (ICAMB), Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Sui Liying
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, China
| | - Muhd Danish-Daniel
- Institute of Climate Adaptation and Marine Biotechnology (ICAMB), Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| |
Collapse
|
5
|
Li M, Sun L, Zhou L, Wang D. Tilapia, a good model for studying reproductive endocrinology. Gen Comp Endocrinol 2024; 345:114395. [PMID: 37879418 DOI: 10.1016/j.ygcen.2023.114395] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/07/2023] [Accepted: 10/21/2023] [Indexed: 10/27/2023]
Abstract
The Nile tilapia (Oreochromis niloticus), with a system of XX/XY sex determination, is a worldwide farmed fish with a shorter sexual maturation time than that of most cultured fish. Tilapia show a spawning cycle of approximately 14 days and can be artificially propagated in the laboratory all year round to obtain genetically all female (XX) and all male (XY) fry. Its genome sequence has been opened, and a perfect gene editing platform has been established. With a moderate body size, it is convenient for taking enough blood to measure hormone level. In recent years, using tilapia as animal model, we have confirmed that estrogen is crucial for female development because 1) mutation of star2, cyp17a1 or cyp19a1a (encoding aromatase, the key enzyme for estrogen synthesis) results in sex reversal (SR) due to estrogen deficiency in XX tilapia, while mutation of star1, cyp11a1, cyp17a2, cyp19a1b or cyp11c1 affects fertility due to abnormal androgen, cortisol and DHP levels in XY tilapia; 2) when the estrogen receptors (esr2a/esr2b) are mutated, the sex is reversed from female to male, while when the androgen receptors are mutated, the sex cannot be reversed; 3) the differentiated ovary can be transdifferentiated into functional testis by inhibition of estrogen synthesis, and the differentiated testis can be transdifferentiated into ovary by simultaneous addition of exogenous estrogen and androgen synthase inhibitor; 4) loss of male pathway genes amhy, dmrt1, gsdf causes SR with upregulation of cyp19a1a in XY tilapia. Disruption of estrogen synthesis rescues the male to female SR of amhy and gsdf but not dmrt1 mutants; 5) mutation of female pathway genes foxl2 and sf-1 causes SR with downregulation of cyp19a1a in XX tilapia; 6) the germ cell SR of foxl3 mutants fails to be rescued by estrogen treatment, indicating that estrogen determines female germ cell fate through foxl3. This review also summarized the effects of deficiency of other steroid hormones, such as androgen, DHP and cortisol, on fish reproduction. Overall, these studies demonstrate that tilapia is an excellent animal model for studying reproductive endocrinology of fish.
Collapse
Affiliation(s)
- Minghui Li
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Lina Sun
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Linyan Zhou
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China.
| |
Collapse
|
6
|
Clark B, Kuwalekar M, Fischer B, Woltering J, Biran J, Juntti S, Kratochwil CF, Santos ME, Almeida MV. Genome editing in East African cichlids and tilapias: state-of-the-art and future directions. Open Biol 2023; 13:230257. [PMID: 38018094 PMCID: PMC10685126 DOI: 10.1098/rsob.230257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/27/2023] [Indexed: 11/30/2023] Open
Abstract
African cichlid fishes of the Cichlidae family are a group of teleosts important for aquaculture and research. A thriving research community is particularly interested in the cichlid radiations of the East African Great Lakes. One key goal is to pinpoint genetic variation underlying phenotypic diversification, but the lack of genetic tools has precluded thorough dissection of the genetic basis of relevant traits in cichlids. Genome editing technologies are well established in teleost models like zebrafish and medaka. However, this is not the case for emerging model organisms, such as East African cichlids, where these technologies remain inaccessible to most laboratories, due in part to limited exchange of knowledge and expertise. The Cichlid Science 2022 meeting (Cambridge, UK) hosted for the first time a Genome Editing Workshop, where the community discussed recent advances in genome editing, with an emphasis on CRISPR/Cas9 technologies. Based on the workshop findings and discussions, in this review we define the state-of-the-art of cichlid genome editing, share resources and protocols, and propose new possible avenues to further expand the cichlid genome editing toolkit.
Collapse
Affiliation(s)
- Bethan Clark
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Muktai Kuwalekar
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Uusimaa 00014, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Uusimaa 00014, Finland
| | - Bettina Fischer
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Joost Woltering
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Baden-Württemberg 78457, Germany
| | - Jakob Biran
- Department of Poultry and Aquaculture, Institute of Animal Sciences, Agricultural Research Organization, Volcani Center, Rishon Lezion, Israel
| | - Scott Juntti
- Department of Biology, University of Maryland, College Park, MD, USA
| | - Claudius F. Kratochwil
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Uusimaa 00014, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Uusimaa 00014, Finland
| | | | - Miguel Vasconcelos Almeida
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Wellcome/CRUK Gurdon Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
7
|
Liu S, Zhang N, Liang Z, Li EC, Wang Y, Zhang S, Zhang J. Butylparaben Exposure Induced Darker Skin Pigmentation in Nile Tilapia ( Oreochromis niloticus). TOXICS 2023; 11:119. [PMID: 36850994 PMCID: PMC9959106 DOI: 10.3390/toxics11020119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/16/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Butylparaben (BuP), as an emerging contaminant with endocrine-disrupting effects, may exert effects on skin pigmentation in fish by interfering with the neuroendocrine system. Therefore, models of BuP exposure in Nile tilapia (Oreochromis niloticus) were established by adding different doses of BuP (0, 5, 50, 500, and 5000 ng/L) for 56 days. The obtained results showed that BuP exposure induced darker skin pigmentation, manifested as increased melanin content of skin, while genes related to melanin synthesis, including α-MSH and Asip2, significantly changed. In addition, BuP exposure reduced dopamine and γ-aminobutyric acid content in the brain, which is related to the synthesis of α-MSH. Furthermore, the release of neurotransmitters from the brain is affected by light. Thus, the relative gene expression levels in the phototransduction pathway were evaluated to explore the molecular mechanism of BuP-induced darker skin pigmentation, and the obtained results showed that Arr3a and Arr3b expression was significantly upregulated, whereas Opsin expression was significantly downregulated in a BuP dose-dependent manner, indicating that BuP inhibited phototransduction from the retina to the brain. Importantly, correlation analysis results showed that all melanin indexes were significantly positively correlated with Arr3b expression and negatively correlated with Opsin expression. This study indicated that BuP induced darker skin pigmentation in Nile tilapia via the neuroendocrine circuit, which reveals the underlying molecular mechanism for the effects of contaminants in aquatic environments on skin pigmentation in fish.
Collapse
Affiliation(s)
- Song Liu
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 570100, China
| | - Nan Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 570100, China
| | - Zhifang Liang
- Hainan ForYou Ecological Environment Technology Co., Ltd., Haikou 570100, China
| | - Er-chao Li
- School of Life Sciences, East China Normal University, Shanghai 200062, China
| | - Yong Wang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 570100, China
| | - Shijie Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 570100, China
| | - Jiliang Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 570100, China
| |
Collapse
|
8
|
Wu S, Huang J, Li Y, Liu Z, Zhao L. MiR-382 Functions on the Regulation of Melanogenesis via Targeting dct in Rainbow Trout (Oncorhynchus mykiss). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:776-787. [PMID: 35895228 DOI: 10.1007/s10126-022-10143-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
MicroRNAs (miRNAs) are a class of endogenous small noncoding RNAs that are involved in a diverse collection of biological processes as important post-transcriptional regulators. However, little is known about the molecular regulatory mechanism of miRNAs in fish skin pigmentation. In this study, we first confirmed that dopachrome tautomerase (dct), a key gene of melanogenesis, is a target of miR-382 in rainbow trout (Oncorhynchus mykiss) using luciferase reporter assay. The analysis of different developmental stages and tissue expression patterns between wild-type and yellow mutant rainbow trout suggested that miR-382 is a potential regulator during the process of skin pigmentation. In vitro, miR-382 mimics in rainbow trout primary liver cells significantly downregulated dct expression and resulted in decreased expression of key melanogenic genes including tyrosine-related protein 1 (tyrp1) and premelanosome protein (pmel), whereas the expression level of dct was markedly increased after transfected with miR-382 inhibitor. In vivo, overexpression of miR-382 by injection of miR-382 agomir significantly depressed the expression of dct in dorsal skin, tail fin, and liver and then reduced the expression levels of tyrp1 and pmel. Furthermore, transfection of miR-382 mimics inhibited cell proliferation and induced apoptosis. Taken together, our results identified a functional role of miR-382 in rainbow trout skin pigmentation through targeting dct, which facilitate understanding the regulatory mechanism of rainbow trout skin color at the post-transcriptional level and provide a theoretical basis for molecular breeding with skin color as the target trait.
Collapse
Affiliation(s)
- Shenji Wu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jinqiang Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Yongjuan Li
- College of Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Zhe Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Lu Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| |
Collapse
|
9
|
Jiang B, Wang L, Luo M, Zhu W, Fu J, Dong Z. Molecular and functional analysis of the microphthalmia-associated transcription factor (mitf) gene duplicates in red tilapia. Comp Biochem Physiol A Mol Integr Physiol 2022; 271:111257. [PMID: 35691494 DOI: 10.1016/j.cbpa.2022.111257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/23/2022] [Accepted: 06/06/2022] [Indexed: 10/18/2022]
Abstract
In vertebrates, the microphthalmia-associated transcription factor (mitf) is at the hub of the melanin synthesis regulation network. However, little information is known about its molecular characterization, expression, location, or function in skin color differentiation and variation of red tilapia. The full-length cDNA sequences (1977 bp and 1999 bp) of mitfa and mitfb, encoding polypeptides of 491 and 514 amino acids, were effectively identified from red tilapia in this study. The Mitfa and Mitfb sequences of red tilapia clustered first with O. aureus, then with other teleost fish, according to phylogenetic analysis. Mitfa and mitfb mRNA were highly expressed in the brain, dorsal skin and eye tissues using quantitative real-time PCR. The mRNA expressions of mitfa and mitfb were the highest in the cleavage stage during the early development of red tilapia. Among three different colors of red tilapia, the expression levels of mitfa and mitfb were highest in the PB (pink with scattered black spots) dorsal skin. After overwintering, the mitfa and mitfb mRNA expressions were high in the dorsal skin of PB (color changed from pink to black). Mitfa and mitfb were mostly found in the epidermal layer of the dorsal skin, according to in situ hybridization (ISH) analysis. After injecting mitf-dsRNA duplicates along the tail vein of red tilapia, the activity of tyrosinase and the level of melanin in the dorsal skin both decreased significantly. The mRNA expressions of mitfa and its downstream genes (tyrb, tyrp1a and dct) decreased, whereas the mRNA expression of mitfb increased after mitfa-dsRNA injection. The mRNA expressions of mitfb, tyrb, tyrp1a and dct decreased, whereas the mRNA expression of mitfa increased after injecting mitfb-dsRNA. These findings suggest that mitf gene duplicates may play an important role in red tilapia skin color differentiation and variation via the melanogenesis pathway.
Collapse
Affiliation(s)
- Bingjie Jiang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, China
| | - Lanmei Wang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China
| | - Mingkun Luo
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China
| | - Wenbin Zhu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China
| | - Jianjun Fu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China
| | - Zaijie Dong
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China.
| |
Collapse
|
10
|
Liu F, Sun F, Kuang GQ, Wang L, Yue GH. The Insertion in the 3' UTR of Pmel17 Is the Causal Variant for Golden Skin Color in Tilapia. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:566-573. [PMID: 35416601 DOI: 10.1007/s10126-022-10125-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
Understanding of the relationships between genotypes and phenotypes is a central problem in biology. Although teleosts have colorful phenotypes, not much is known about their underlying mechanisms. Our previous study showed that golden skin color in Mozambique tilapia was mapped in the major locus containing the Pmel gene, and an insertion in 3' UTR of Pmel17 was fully correlated with the golden color. However, the molecular mechanism of how Pmel17 determines the golden skin color is unknown. In this study, knockout of Pmel17 with CRISPR/Cas9 in blackish tilapias resulted in golden coloration, and rescue of Pmel17 in golden tilapias recovered the wild-type blackish color, indicating that Pmel17 is the gene determining the golden and blackish color. Functional analysis in vitro showed that the insertion in the 3' UTR of Pmel17 reduced the transcripts of Pmel17. Our data supplies more evidence to support that Pmel17 is the gene for blackish and golden colors, and highlights that the insertion in the 3' UTR of Pmel17 is the causative mutation for the golden coloration.
Collapse
Affiliation(s)
- Feng Liu
- Molecular Population Genetics & Breeding Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
- Shanghai Fisheries Institute, 265 Jiamusi Road, Shanghai, 200433, China
| | - Fei Sun
- Molecular Population Genetics & Breeding Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Gang Qiao Kuang
- Department of Fisheries, Southwestern University, Rongchang Campus, 160 Xueyuan Road, Rongchang, Chongqing, 402460, China
| | - Le Wang
- Molecular Population Genetics & Breeding Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Gen Hua Yue
- Molecular Population Genetics & Breeding Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore.
- Department of Biological Sciences, National University of Singapore, 14 Science Drive, Queenstown, 117543, Singapore.
| |
Collapse
|
11
|
Wang C, Xu J, Kocher TD, Li M, Wang D. CRISPR knockouts of pmela and pmelb engineered a golden tilapia by regulating relative pigment cell abundance. J Hered 2022; 113:398-413. [PMID: 35385582 DOI: 10.1093/jhered/esac018] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/01/2022] [Indexed: 11/13/2022] Open
Abstract
Premelanosome protein (pmel) is a key gene for melanogenesis. Mutations in this gene are responsible for white plumage in chicken, but its role in pigmentation of fish remains to be demonstrated. In this study we found that most fishes have two pmel genes arising from the teleost-specific whole genome duplication. Both pmela and pmelb were expressed at high levels in the eyes and skin of Nile tilapia. We mutated both genes in tilapia using CRISPR/Cas9. Homozygous mutation of pmela resulted in yellowish body color with weak vertical bars and a hypo-pigmented retinal pigment epithelium (RPE) due to significantly reduced number and size of melanophores. In contrast, we observed an increased number and size of xanthophores in mutants compared to wild-type fish. Homozygous mutation of pmelb resulted in a similar, but milder phenotype than pmela-/- mutants. Double mutation of pmela and pmelb resulted in loss of additional melanophores compared to the pmela-/- mutants, and also an increase in the number and size of xanthophores, producing a golden body color. The RPE pigmentation of pmela-/-;pmelb-/- was similar to pmela-/- mutants, with much less pigmentation than pmelb-/- mutants and wild-type fish. Taken together, our results indicate that, while both pmel genes are important for the formation of body color in tilapia, pmela plays a more important role than pmelb. To our knowledge, this is the first report on mutation of pmelb or both pmela;pmelb in fish. Studies on these mutants suggest new strategies for breeding golden tilapia, and also provide a new model for studies of pmel function in vertebrates.
Collapse
Affiliation(s)
- Chenxu Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Jia Xu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Thomas D Kocher
- Department of Biology, University of Maryland College Park, Maryland, USA
| | - Minghui Li
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| |
Collapse
|
12
|
Clark B, Elkin J, Marconi A, Turner GF, Smith AM, Joyce D, Miska EA, Juntti SA, Santos ME. Oca2 targeting using CRISPR/Cas9 in the Malawi cichlid Astatotilapia calliptera. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220077. [PMID: 35601449 PMCID: PMC9019512 DOI: 10.1098/rsos.220077] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/22/2022] [Indexed: 05/03/2023]
Abstract
Identifying genetic loci underlying trait variation provides insights into the mechanisms of diversification, but demonstrating causality and characterizing the role of genetic loci requires testing candidate gene function, often in non-model species. Here we establish CRISPR/Cas9 editing in Astatotilapia calliptera, a generalist cichlid of the remarkably diverse Lake Malawi radiation. By targeting the gene oca2 required for melanin synthesis in other vertebrate species, we show efficient editing and germline transmission. Gene edits include indels in the coding region, probably a result of non-homologous end joining, and a large deletion in the 3' untranslated region due to homology-directed repair. We find that oca2 knock-out A. calliptera lack melanin, which may be useful for developmental imaging in embryos and studying colour pattern formation in adults. As A. calliptera resembles the presumed generalist ancestor of the Lake Malawi cichlids radiation, establishing genome editing in this species will facilitate investigating speciation, adaptation and trait diversification in this textbook radiation.
Collapse
Affiliation(s)
- Bethan Clark
- Department of Zoology, University of Cambridge, UK
| | - Joel Elkin
- Department of Zoology, University of Cambridge, UK
| | | | - George F. Turner
- School of Natural Sciences, Bangor University, Gwynedd LL57 2TH, UK
| | - Alan M. Smith
- Department of Biological and Marine Sciences, University of Hull, UK
| | - Domino Joyce
- Department of Biological and Marine Sciences, University of Hull, UK
| | - Eric A. Miska
- Department of Genetics, University of Cambridge, UK
- Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
| | | | | |
Collapse
|
13
|
Wu S, Huang J, Li Y, Zhao L, Liu Z. Analysis of yellow mutant rainbow trout transcriptomes at different developmental stages reveals dynamic regulation of skin pigmentation genes. Sci Rep 2022; 12:256. [PMID: 34997156 PMCID: PMC8742018 DOI: 10.1038/s41598-021-04255-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/20/2021] [Indexed: 12/20/2022] Open
Abstract
Yellow mutant rainbow trout (YR), an economically important aquaculture species, is popular among consumers due to its excellent meat quality and attractive appearance. Skin color is a key economic trait for YR, but little is known about the molecular mechanism of skin color development. In this study, YR skin transcriptomes were analyzed to explore temporal expression patterns of pigmentation-related genes in three different stages of skin color development. In total, 16,590, 16,682, and 5619 genes were differentially expressed between fish at 1 day post-hatching (YR1d) and YR45d, YR1d and YR90d, and YR45d and YR90d. Numerous differentially expressed genes (DEGs) associated with pigmentation were identified, and almost all of them involved in pteridine and carotenoid synthesis were significantly upregulated in YR45d and YR90d compared to YR1d, including GCH1, PTS, QDPR, CSFIR1, SLC2A11, SCARB1, DGAT2, PNPLA2, APOD, and BCO2. Interestingly, many DEGs enriched in melanin synthesis pathways were also significantly upregulated, including melanogenesis (MITF, MC1R, SLC45A2, OCA2, and GPR143), tyrosine metabolism (TYR, TYRP1, and DCT), and MAPK signaling (KITA) pathways. Using short time-series expression miner, we identified eight differential gene expression pattern profiles, and DEGs in profile 7 were associated with skin pigmentation. Protein–protein interaction network analysis showed that two modules were related to xanthophores and melanophores. In addition, 1,812,329 simple sequence repeats and 2,011,334 single-nucleotide polymorphisms were discovered. The results enhance our understanding of the molecular mechanism underlying skin pigmentation in YR, and could accelerate the molecular breeding of fish species with valuable skin color traits and will likely be highly informative for developing new therapeutic approaches to treat pigmentation disorders and melanoma.
Collapse
Affiliation(s)
- Shenji Wu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jinqiang Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Yongjuan Li
- College of Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Lu Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Zhe Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| |
Collapse
|
14
|
vonHoldt BM, Bailey E, Eizirik E. Animal Pigmentation Genetics in Ecology, Evolution, and Domestication. J Hered 2021; 112:393-394. [PMID: 36883600 DOI: 10.1093/jhered/esab040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
| | - Ernest Bailey
- MH Gluck Equine Research Center, University of Kentucky, Lexington, KY, USA
| | - Eduardo Eizirik
- School of Health and Life Sciences, PUCRS, Porto Alegre, RS, Brazil
| |
Collapse
|