1
|
Ferreira D, Escudeiro A, Adega F, Anjo SI, Manadas B, Chaves R. FA-SAT ncRNA interacts with PKM2 protein: depletion of this complex induces a switch from cell proliferation to apoptosis. Cell Mol Life Sci 2020; 77:1371-1386. [PMID: 31346634 PMCID: PMC11104958 DOI: 10.1007/s00018-019-03234-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/10/2019] [Accepted: 07/15/2019] [Indexed: 01/11/2023]
Abstract
FA-SAT is a highly conserved satellite DNA sequence transcribed in many Bilateria species. To disclose the cellular and functional profile of FA-SAT non-coding RNAs, a comprehensive experimental approach, including the transcripts location in the cell and in the cell cycle, the identification of its putative protein interactors, and silencing/ectopic expression phenotype analysis, was performed. FA-SAT non-coding RNAs play a nuclear function at the G1 phase of the cell cycle and the interactomic assay showed that the PKM2 protein is the main interactor. The disruption of the FA-SAT non-coding RNA/PKM2 protein complex, by the depletion of either FA-SAT or PKM2, results in the same phenotype-apoptosis, and the ectopic overexpression of FA-SAT did not affect the cell-cycle progression, but promotes the PKM2 nuclear accumulation. Overall, our data first describe the importance of this ribonucleoprotein complex in apoptosis and cell-cycle progression, what foresees a promising novel candidate molecular target for cancer therapy and diagnosis.
Collapse
Affiliation(s)
- Daniela Ferreira
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Lisbon, Portugal
| | - Ana Escudeiro
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Lisbon, Portugal
| | - Filomena Adega
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Lisbon, Portugal
| | - Sandra I Anjo
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
| | - Bruno Manadas
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Raquel Chaves
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal.
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Lisbon, Portugal.
| |
Collapse
|
2
|
Ferreira D, Escudeiro A, Adega F, Chaves R. DNA Methylation Patterns of a Satellite Non-coding Sequence - FA-SAT in Cancer Cells: Its Expression Cannot Be Explained Solely by DNA Methylation. Front Genet 2019; 10:101. [PMID: 30809250 PMCID: PMC6379292 DOI: 10.3389/fgene.2019.00101] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 01/29/2019] [Indexed: 02/05/2023] Open
Abstract
Satellite ncRNAs are emerging as key players in cell and cancer pathways. Cancer-linked satellite DNA hypomethylation seems to be responsible for the overexpression of satellite non-coding DNAs in several tumors. FA-SAT is the major satellite DNA of Felis catus and recently, its presence and transcription was described across Bilateria genomes. This satellite DNA is GC-rich and includes a CpG island, what is suggestive of transcription regulation via DNA methylation. In this work, it was studied for the first time the FA-SAT methylation profile in cat primary cells, in four passages of the cat tumor cell line FkMTp and in eight feline mammary tumors and the respective disease-free tissues. Contrary to what was expected, we found that in most of the tumor samples analyzed, FA-SAT DNA was not hypomethylated. Furthermore, in these samples the transcription of FA-SAT does not correlate with the methylation status. The use of a global demethylating agent, 5-Azacytidine, in cat primary cells caused an increase in the FA-SAT non-coding RNA levels. However, global demethylation in the tumor FkMTp cells only resulted in the increased levels of the FA-SAT small RNA fraction. Our data suggests that DNA methylation of FA-SAT is involved in the regulation of this satellite DNA, however, other mechanisms are certainly contributing to the transcriptional status of the sequence, specifically in cancer.
Collapse
Affiliation(s)
- Daniela Ferreira
- Laboratory of Cytogenomics and Animal Genomics, Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisbon, Portugal
| | - Ana Escudeiro
- Laboratory of Cytogenomics and Animal Genomics, Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisbon, Portugal
| | - Filomena Adega
- Laboratory of Cytogenomics and Animal Genomics, Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisbon, Portugal
| | - Raquel Chaves
- Laboratory of Cytogenomics and Animal Genomics, Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisbon, Portugal
| |
Collapse
|
3
|
Chaves R, Ferreira D, Mendes-da-Silva A, Meles S, Adega F. FA-SAT Is an Old Satellite DNA Frozen in Several Bilateria Genomes. Genome Biol Evol 2018; 9:3073-3087. [PMID: 29608678 PMCID: PMC5714208 DOI: 10.1093/gbe/evx212] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2017] [Indexed: 12/17/2022] Open
Abstract
In recent years, a growing body of evidence has recognized the tandem repeat sequences, and specifically satellite DNA, as a functional class of sequences in the genomic “dark matter.” Using an original, complementary, and thus an eclectic experimental design, we show that the cat archetypal satellite DNA sequence, FA-SAT, is “frozen” conservatively in several Bilateria genomes. We found different genomic FA-SAT architectures, and the interspersion pattern was conserved. In Carnivora genomes, the FA-SAT-related sequences are also amplified, with the predominance of a specific FA-SAT variant, at the heterochromatic regions. We inspected the cat genome project to locate FA-SAT array flanking regions and revealed an intensive intermingling with transposable elements. Our results also show that FA-SAT-related sequences are transcribed and that the most abundant FA-SAT variant is not always the most transcribed. We thus conclude that the DNA sequences of FA-SAT and their transcripts are “frozen” in these genomes. Future work is needed to disclose any putative function that these sequences may play in these genomes.
Collapse
Affiliation(s)
- Raquel Chaves
- CAG-Laboratory of Cytogenomics and Animal Genomics, Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.,BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Portugal
| | - Daniela Ferreira
- CAG-Laboratory of Cytogenomics and Animal Genomics, Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.,BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Portugal
| | - Ana Mendes-da-Silva
- CAG-Laboratory of Cytogenomics and Animal Genomics, Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.,BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Portugal
| | - Susana Meles
- CAG-Laboratory of Cytogenomics and Animal Genomics, Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.,BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Portugal
| | - Filomena Adega
- CAG-Laboratory of Cytogenomics and Animal Genomics, Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.,BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Portugal
| |
Collapse
|
4
|
Cai Z, Petersen B, Sahana G, Madsen LB, Larsen K, Thomsen B, Bendixen C, Lund MS, Guldbrandtsen B, Panitz F. The first draft reference genome of the American mink (Neovison vison). Sci Rep 2017; 7:14564. [PMID: 29109430 PMCID: PMC5674041 DOI: 10.1038/s41598-017-15169-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 10/23/2017] [Indexed: 01/28/2023] Open
Abstract
The American mink (Neovison vison) is a semiaquatic species of mustelid native to North America. It's an important animal for the fur industry. Many efforts have been made to locate genes influencing fur quality and color, but this search has been impeded by the lack of a reference genome. Here we present the first draft genome of mink. In our study, two mink individuals were sequenced by Illumina sequencing with 797 Gb sequence generated. Assembly yielded 7,175 scaffolds with an N50 of 6.3 Mb and length of 2.4 Gb including gaps. Repeat sequences constitute around 31% of the genome, which is lower than for dog and cat genomes. The alignments of mink, ferret and dog genomes help to illustrate the chromosomes rearrangement. Gene annotation identified 21,053 protein-coding sequences present in mink genome. The reference genome's structure is consistent with the microsatellite-based genetic map. Mapping of well-studied genes known to be involved in coat quality and coat color, and previously located fur quality QTL provide new knowledge about putative candidate genes for fur traits. The draft genome shows great potential to facilitate genomic research towards improved breeding for high fur quality animals and strengthen our understanding on evolution of Carnivora.
Collapse
Affiliation(s)
- Zexi Cai
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, DK-8830, Tjele, Denmark.
| | - Bent Petersen
- DTU Bioinformatics, Department of Bio and Health Informatics, Technical University of Denmark, 2800 Kgs, Lyngby, Denmark
- Centre of Excellence for Omics-Driven Computational Biodiscovery (COMBio), Faculty of Applied Sciences, AIMST University, Kedah, Malaysia
| | - Goutam Sahana
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, DK-8830, Tjele, Denmark
| | - Lone B Madsen
- Section for Molecular Genetics and Systems Biology, Department of Molecular Biology and Genetics, Aarhus University, DK-8830, Tjele, Denmark
| | - Knud Larsen
- Section for Molecular Genetics and Systems Biology, Department of Molecular Biology and Genetics, Aarhus University, DK-8830, Tjele, Denmark
| | - Bo Thomsen
- Section for Molecular Genetics and Systems Biology, Department of Molecular Biology and Genetics, Aarhus University, DK-8830, Tjele, Denmark
| | - Christian Bendixen
- Section for Molecular Genetics and Systems Biology, Department of Molecular Biology and Genetics, Aarhus University, DK-8830, Tjele, Denmark
| | - Mogens Sandø Lund
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, DK-8830, Tjele, Denmark
| | - Bernt Guldbrandtsen
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, DK-8830, Tjele, Denmark
| | - Frank Panitz
- Section for Molecular Genetics and Systems Biology, Department of Molecular Biology and Genetics, Aarhus University, DK-8830, Tjele, Denmark
| |
Collapse
|