1
|
Milioto V, Arizza V, Vizzini A, Perelman PL, Roelke-Parker ME, Dumas F. Comparative Genomic Hybridization (CGH) in New World Monkeys (Primates) Reveals the Distribution of Repetitive Sequences in Cebinae and Callitrichinae. BIOLOGY 2024; 14:22. [PMID: 39857253 PMCID: PMC11763236 DOI: 10.3390/biology14010022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/20/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025]
Abstract
The intraspecies and interspecies Comparative Genomic Hybridization (CGH) between the closely related Cebidae species, capuchin monkeys (Cebus capucinus, Sapajus apella), and the tamarins (Saguinus mystax, Leontocebus fuscicollis) was performed to analyze their genomes. In particular, this approach determines balanced and unbalanced repetitive DNA sequence distribution and reveals dynamics during evolution. Capuchin monkeys are considered the most ancestral group with conserved syntenies compared to the hypothetical ancestral New World monkeys' karyotype. Also, more derived karyotypes of phylogenetically distant species from the Saguinus and Leontocebus genera are analyzed here. The distribution of repetitive sequences has been traditionally studied through classical staining methods of cytogenetics. It has been hypothesized that repeats are species-specific and their conservation across closely related species are also common; their role in the genome has been extensively studied even though its role in speciation is not well studied and understood. The CGH shows bright signals with balanced and imbalanced DNA involving different genome regions: such as predominantly repetitive DNA at centromeric positions, and interstitial distribution with extended blocks. Cross-species CGH demonstrated the origin of some heterochromatic regions and identified apomorphic heterochromatin expansion events. The uncovered distribution of repetitive sequences is analyzed from an evolutionary perspective to elucidate the genomic dynamics of the repetitive sequences at the level of chromosomal organization.
Collapse
Affiliation(s)
- Vanessa Milioto
- Department of “Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF)”, University of Palermo, 90123 Palermo, Italy; (V.M.); (V.A.); (A.V.)
- Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk 630090, Russia;
| | - Vincenzo Arizza
- Department of “Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF)”, University of Palermo, 90123 Palermo, Italy; (V.M.); (V.A.); (A.V.)
| | - Aiti Vizzini
- Department of “Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF)”, University of Palermo, 90123 Palermo, Italy; (V.M.); (V.A.); (A.V.)
| | - Polina L. Perelman
- Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk 630090, Russia;
| | - Melody E. Roelke-Parker
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA;
| | - Francesca Dumas
- Department of “Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF)”, University of Palermo, 90123 Palermo, Italy; (V.M.); (V.A.); (A.V.)
| |
Collapse
|
2
|
Kowalski S, Haerter CAG, Perin DP, Takagui FH, Viana PF, Feldberg E, Blanco DR, Traldi JB, Giuliano-Caetano L, Lui RL. Karyotypic characterization of Centromochlus schultzi Rössel 1962 (Auchenipteridae, Centromochlinae) from the Xingu River basin: New inferences on chromosomal evolution in Centromochlus. Genet Mol Biol 2024; 47:e20230105. [PMID: 38530404 PMCID: PMC10993310 DOI: 10.1590/1678-4685-gmb-2023-0105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/20/2023] [Indexed: 03/28/2024] Open
Abstract
Centromochlinae is a widely diverse subfamily with more than 50 species and several taxonomic conflicts due to morphological similarity between Tatia and Centromochlus species. However, cytogenetic studies on this group have been limited to only four species so far. Therefore, here we present the karyotype of Centromochlus schultzi from the Xingu River in Brazil using classic cytogenetic techniques, physical mapping of the 5S and 18S rDNAs, and telomeric sequences (TTAGGG)n. The species had 58 chromosomes, simple NORs and 18S rDNA sites. Heterochromatic regions were detected on the terminal position of most chromosomes, including pericentromeric and centromeric blocks that correspond to interstitial telomeric sites. The 5S rDNA had multiple sites, including a synteny with the 18S rDNA in the pair 24st, which is an ancestral feature for Doradidae, sister group of Auchenipteridae, but appears to be a homoplastic trait in this species. So far, C. schultzi is only the second species within Centromochlus to be karyotyped, but it has already presented characteristics with great potential to assist in future discussions on taxonomic issues in the subfamily Centromochlinae, including the first synteny between rDNAs in Auchenipteridae and also the presence of heterochromatic ITSs that could represent remnants of ancient chromosomal fusions.
Collapse
Affiliation(s)
- Samantha Kowalski
- Universidade Estadual de Londrina, Centro de Ciências Biológicas,
Londrina, PR, Brazil
- Universidade Estadual do Oeste do Paraná, Centro de Ciências
Biológicas e da Saúde, Cascavel, PR, Brazil
| | - Chrystian Aparecido Grillo Haerter
- Universidade Estadual do Oeste do Paraná, Centro de Ciências
Biológicas e da Saúde, Cascavel, PR, Brazil
- Instituto Nacional de Pesquisas da Amazônia, Coordenação de
Biodiversidade, Manaus, AM, Brazil
| | - Diana Paula Perin
- Universidade Estadual do Oeste do Paraná, Centro de Ciências
Biológicas e da Saúde, Cascavel, PR, Brazil
| | - Fábio Hiroshi Takagui
- Instituto Nacional de Pesquisas da Amazônia, Coordenação de
Biodiversidade, Manaus, AM, Brazil
| | - Patrik Ferreira Viana
- Instituto Nacional de Pesquisas da Amazônia, Coordenação de
Biodiversidade, Manaus, AM, Brazil
| | - Eliana Feldberg
- Instituto Nacional de Pesquisas da Amazônia, Coordenação de
Biodiversidade, Manaus, AM, Brazil
| | | | | | | | - Roberto Laridondo Lui
- Universidade Estadual do Oeste do Paraná, Centro de Ciências
Biológicas e da Saúde, Cascavel, PR, Brazil
| |
Collapse
|
3
|
Vicari MR, Bruschi DP, Cabral-de-Mello DC, Nogaroto V. Telomere organization and the interstitial telomeric sites involvement in insects and vertebrates chromosome evolution. Genet Mol Biol 2022; 45:e20220071. [DOI: 10.1590/1678-4685-gmb-2022-0071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 09/24/2022] [Indexed: 11/16/2022] Open
|
4
|
Ceraulo S, Perelman PL, Mazzoleni S, Rovatsos M, Dumas F. Repetitive Sequence Distribution on Saguinus, Leontocebus and Leontopithecus Tamarins (Platyrrhine, Primates) by Mapping Telomeric (TTAGGG) Motifs and rDNA Loci. BIOLOGY 2021; 10:biology10090844. [PMID: 34571721 PMCID: PMC8470041 DOI: 10.3390/biology10090844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Telomeric and rDNA sequence distribution on tamarins (New world monkeys, Primates) was analysed through molecular cytogenetics by fluorescence in situ hybridization. The mapping of Telomeric and rDNA probes on chromosomes was performed in order to clarify their localization and role in genome evolution. We found rDNA loci on the same homologs 19–22 on the analysed species with a different position in one of them named Leontopithecus rosalia, presumably as result of inversions. Other rDNA signals could be present on chromosome 16 and 17. On the last species, we found the classic telomeric sequence with exceptions while on the other species analysed, we found very amplified telomeric signals at the edge of chromosomes and some centromeric signals as exceptions, especially on chromosome pairs 16 and 17 as result of inversions of telomeric sequences or the presence of new acquired rDNA loci above them. The results obtained enable us to underline that the different chromosomal morphology between the species analysed could be due to inversions which dislocate the rDNA loci, the presence of new rDNA loci or the amplification of telomeric sequences. A comparative perspective with other data results obtained could be useful in order to better understand genome evolution. Abstract Tamarins are a distinct group of small sized New World monkeys with complex phylogenetic relationships and poorly studied cytogenetic traits. In this study, we applied molecular cytogenetic analyses by fluorescence in situ hybridization with probes specific for telomeric sequences and ribosomal DNA loci after DAPI/CMA3 staining on metaphases from five tamarin species, namely Leontocebus fuscicollis, Leontopithecus rosalia, Saguinus geoffroyi, Saguinus mystax and Saguinus oedipus, with the aim to investigate the distribution of repetitive sequences and their possible role in genome evolution. Our analyses revealed that all five examined species show similar karyotypes, 2n = 46, which differ mainly in the morphology of chromosome pairs 16–17 and 19–22, due to the diverse distribution of rDNA loci, the amplification of telomeric-like sequences, the presence of heterochromatic blocks and/or putative chromosomal rearrangements, such as inversions. The differences in cytogenetic traits between species of tamarins are discussed in a comparative phylogenetic framework, and in addition to data from previous studies, we underline synapomorphies and apomorphisms that appeared during the diversification of this group of New World monkeys.
Collapse
Affiliation(s)
- Simona Ceraulo
- Department of “Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF)”, University of Palermo, 90100 Palermo, Italy;
| | - Polina L. Perelman
- Institute of Molecular and Cellular Biology, SB RAS, 630090 Novosibirsk, Russia;
| | - Sofia Mazzoleni
- Department of Ecology, Faculty of Science, Charles University, 12844 Prague, Czech Republic; (S.M.); (M.R.)
| | - Michail Rovatsos
- Department of Ecology, Faculty of Science, Charles University, 12844 Prague, Czech Republic; (S.M.); (M.R.)
| | - Francesca Dumas
- Department of “Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF)”, University of Palermo, 90100 Palermo, Italy;
- Correspondence:
| |
Collapse
|
5
|
Clemente L, Mazzoleni S, Pensabene Bellavia E, Augstenová B, Auer M, Praschag P, Protiva T, Velenský P, Wagner P, Fritz U, Kratochvíl L, Rovatsos M. Interstitial Telomeric Repeats Are Rare in Turtles. Genes (Basel) 2020; 11:genes11060657. [PMID: 32560114 PMCID: PMC7348932 DOI: 10.3390/genes11060657] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 01/18/2023] Open
Abstract
Telomeres are nucleoprotein complexes protecting chromosome ends in most eukaryotic organisms. In addition to chromosome ends, telomeric-like motifs can be accumulated in centromeric, pericentromeric and intermediate (i.e., between centromeres and telomeres) positions as so-called interstitial telomeric repeats (ITRs). We mapped the distribution of (TTAGGG)n repeats in the karyotypes of 30 species from nine families of turtles using fluorescence in situ hybridization. All examined species showed the expected terminal topology of telomeric motifs at the edges of chromosomes. We detected ITRs in only five species from three families. Combining our and literature data, we inferred seven independent origins of ITRs among turtles. ITRs occurred in turtles in centromeric positions, often in several chromosomal pairs, in a given species. Their distribution does not correspond directly to interchromosomal rearrangements. Our findings support that centromeres and non-recombining parts of sex chromosomes are very dynamic genomic regions, even in turtles, a group generally thought to be slowly evolving. However, in contrast to squamate reptiles (lizards and snakes), where ITRs were found in more than half of the examined species, and birds, the presence of ITRs is generally rare in turtles, which agrees with the expected low rates of chromosomal rearrangements and rather slow karyotype evolution in this group.
Collapse
Affiliation(s)
- Lorenzo Clemente
- Department of Ecology, Faculty of Science, Charles University, 12844 Prague, Czech Republic; (L.C.); (S.M.); (E.P.B.); (B.A.); (L.K.)
| | - Sofia Mazzoleni
- Department of Ecology, Faculty of Science, Charles University, 12844 Prague, Czech Republic; (L.C.); (S.M.); (E.P.B.); (B.A.); (L.K.)
| | - Eleonora Pensabene Bellavia
- Department of Ecology, Faculty of Science, Charles University, 12844 Prague, Czech Republic; (L.C.); (S.M.); (E.P.B.); (B.A.); (L.K.)
| | - Barbora Augstenová
- Department of Ecology, Faculty of Science, Charles University, 12844 Prague, Czech Republic; (L.C.); (S.M.); (E.P.B.); (B.A.); (L.K.)
| | - Markus Auer
- Museum of Zoology, Senckenberg Dresden, 01109 Dresden, Germany; (M.A.); (U.F.)
| | | | | | - Petr Velenský
- Prague Zoological Garden, 17100 Prague, Czech Republic;
| | | | - Uwe Fritz
- Museum of Zoology, Senckenberg Dresden, 01109 Dresden, Germany; (M.A.); (U.F.)
| | - Lukáš Kratochvíl
- Department of Ecology, Faculty of Science, Charles University, 12844 Prague, Czech Republic; (L.C.); (S.M.); (E.P.B.); (B.A.); (L.K.)
| | - Michail Rovatsos
- Department of Ecology, Faculty of Science, Charles University, 12844 Prague, Czech Republic; (L.C.); (S.M.); (E.P.B.); (B.A.); (L.K.)
- Correspondence:
| |
Collapse
|
6
|
Aksenova AY, Mirkin SM. At the Beginning of the End and in the Middle of the Beginning: Structure and Maintenance of Telomeric DNA Repeats and Interstitial Telomeric Sequences. Genes (Basel) 2019; 10:genes10020118. [PMID: 30764567 PMCID: PMC6410037 DOI: 10.3390/genes10020118] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 01/30/2019] [Accepted: 01/30/2019] [Indexed: 02/07/2023] Open
Abstract
Tandem DNA repeats derived from the ancestral (TTAGGG)n run were first detected at chromosome ends of the majority of living organisms, hence the name telomeric DNA repeats. Subsequently, it has become clear that telomeric motifs are also present within chromosomes, and they were suitably called interstitial telomeric sequences (ITSs). It is well known that telomeric DNA repeats play a key role in chromosome stability, preventing end-to-end fusions and precluding the recurrent DNA loss during replication. Recent data suggest that ITSs are also important genomic elements as they confer its karyotype plasticity. In fact, ITSs appeared to be among the most unstable microsatellite sequences as they are highly length polymorphic and can trigger chromosomal fragility and gross chromosomal rearrangements. Importantly, mechanisms responsible for their instability appear to be similar to the mechanisms that maintain the length of genuine telomeres. This review compares the mechanisms of maintenance and dynamic properties of telomeric repeats and ITSs and discusses the implications of these dynamics on genome stability.
Collapse
Affiliation(s)
- Anna Y Aksenova
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia.
| | - Sergei M Mirkin
- Department of Biology, Tufts University, Medford, MA 02421, USA.
| |
Collapse
|
7
|
Bolzán AD. Interstitial telomeric sequences in vertebrate chromosomes: Origin, function, instability and evolution. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 773:51-65. [PMID: 28927537 DOI: 10.1016/j.mrrev.2017.04.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 03/13/2017] [Accepted: 04/17/2017] [Indexed: 12/21/2022]
Abstract
By definition, telomeric sequences are located at the very ends or terminal regions of chromosomes. However, several vertebrate species show blocks of (TTAGGG)n repeats present in non-terminal regions of chromosomes, the so-called interstitial telomeric sequences (ITSs), interstitial telomeric repeats or interstitial telomeric bands, which include those intrachromosomal telomeric-like repeats located near (pericentromeric ITSs) or within the centromere (centromeric ITSs) and those telomeric repeats located between the centromere and the telomere (i.e., truly interstitial telomeric sequences) of eukaryotic chromosomes. According with their sequence organization, localization and flanking sequences, ITSs can be classified into four types: 1) short ITSs, 2) subtelomeric ITSs, 3) fusion ITSs, and 4) heterochromatic ITSs. The first three types have been described mainly in the human genome, whereas heterochromatic ITSs have been found in several vertebrate species but not in humans. Several lines of evidence suggest that ITSs play a significant role in genome instability and evolution. This review aims to summarize our current knowledge about the origin, function, instability and evolution of these telomeric-like repeats in vertebrate chromosomes.
Collapse
Affiliation(s)
- Alejandro D Bolzán
- Laboratorio de Citogenética y Mutagénesis, Instituto Multidisciplinario de Biología Celular (IMBICE, CICPBA-UNLP-CONICET La Plata), C.C. 403, 1900 La Plata, Argentina; Facultad de Ciencias Naturales y Museo, UNLP, Calle 60 y 122, 1900 La Plata, Argentina.
| |
Collapse
|
8
|
Matoso Silva R, Adega F, Kjöllerström HJ, Labuschagne K, Kotze A, Fernandes C, Chaves R, do Mar Oom M. Classical and Molecular Cytogenetics of the Panther Genet Genetta maculata (Mammalia, Carnivora, Viverridae). Cytogenet Genome Res 2016; 149:274-281. [DOI: 10.1159/000450627] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2016] [Indexed: 11/19/2022] Open
Abstract
Genets (Genetta) are a genus of African mammalian carnivorans with 14 currently recognized species, although taxonomic uncertainties remain, particularly regarding the number of species within the large-spotted genet complex. This study presents the first banded karyotype and molecular cytogenetic analysis of a genetically identified panther genet, Genetta maculata, the most common and widespread taxon of the large-spotted genet complex, with a wide distribution in sub-Saharan Africa. Sampled in Gauteng Province, South Africa, it could be assigned to the subspecies G. m. letabae on geographic grounds and had a similar karyotype (2n = 52, FNa = 96) to those published for a panther genet from Ethiopia and for the West African large-spotted genet G. pardina. Notably, the specimen had a different autosomal morphology (2 acrocentric chromosomes) from that previously attributed to letabae (a single acrocentric chromosome), but the latter assignment was uncertain because the studied individuals were captive born and assigned based solely on a presumed origin in the former Transvaal Province of South Africa. Fluorescence in situ hybridization with a telomere repeat probe revealed the presence of telomeric sequences in the centromeres of most chromosomes, the so-called interstitial telomeric sites (ITSs). Since genets seem to have a unique, highly rearranged karyotype among feliforms and relatively low interspecific karyotypic variation, and considering the known instability of ITSs, we suggest that the large amount of ITSs found here might be due to evolutionarily recent extensive genomic rearrangements. This study provides cytogenetic information that contributes to our understanding of chromosomal variation and genomic rearrangements in genets, and valuable baseline data for future studies of karyotype evolution in carnivores in general and viverrids in particular.
Collapse
|
9
|
Schmid M, Steinlein C. Chromosome Banding in Amphibia. XXXIV. Intrachromosomal Telomeric DNA Sequences in Anura. Cytogenet Genome Res 2016; 148:211-26. [PMID: 27233250 DOI: 10.1159/000446298] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2016] [Indexed: 11/19/2022] Open
Abstract
The mitotic chromosomes of 4 anuran species were examined by various classical banding techniques and by fluorescence in situ hybridization using a (TTAGGG)n repeat. Large intrachromosomal telomeric sequences (ITSs) were demonstrated in differing numbers and chromosome locations. A detailed comparison of the present results with numerous published and unpublished data allowed a consistent classification of the various categories of large ITSs present in the genomes of anurans and other vertebrates. The classification takes into consideration the total numbers of large ITSs in the karyotypes, their chromosomal locations and their specific distribution patterns. A new category of large ITSs was recognized to exist in anuran species. It consists of large clusters of ITSs located in euchromatic chromosome segments, which is in clear contrast to the large ITSs in heterochromatic chromosome regions known in vertebrates. The origin of the different categories of large ITSs in heterochromatic and euchromatic chromosome regions, their mode of distribution in the karyotypes and evolutionary fixation in the genomes, as well as their cytological detection are discussed.
Collapse
Affiliation(s)
- Michael Schmid
- Department of Human Genetics, University of Wx00FC;rzburg, Wx00FC;rzburg, Germany
| | | |
Collapse
|
10
|
da Silva WO, Pieczarka JC, Rossi RV, Schneider H, Sampaio I, Miranda CL, da Silva CR, Cardoso EM, Nagamachi CY. Diversity and Karyotypic Evolution in the Genus Neacomys (Rodentia, Sigmodontinae). Cytogenet Genome Res 2015; 146:296-305. [PMID: 26587770 DOI: 10.1159/000441173] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Indexed: 11/19/2022] Open
Abstract
Neacomys (Sigmodontinae) comprises 8 species mainly found in the Amazonian region. We describe 5 new karyotypes from Brazilian Amazonia: 2 cytotypes for N. paracou (2n = 56/FNa = 62-66), 1 for N. dubosti (2n = 64/FNa = 68), and 2 for Neacomys sp. (2n = 58/FNa = 64-70), with differences in the 18S rDNA. Telomeric probes did not show ITS. We provide a phylogeny using Cytb, and the analysis suggests that 2n = 56 with a high FNa is ancestral for the genus, as found in N. paracou, being retained by the ancestral forms of the other species, with an increase in 2n occurring independently in N. spinosus and N. dubosti. Alternatively, an increase in 2n may have occurred in the ancestral taxon of the other species, followed by independent 2n-reduction events in Neacomys sp. and in the ancestral species of N. tenuipes, N. guianae, N. musseri, and N. minutus. Finally, a drastic reduction event in the diploid number occurred in the ancestral species of N. musseri and N. minutus which exhibit the lowest 2n of the genus. The karyotypic variations found in both intra- and interspecific samples, associated with the molecular phylogeny, suggest a chromosomal evolution with amplification/deletion of constitutive heterochromatin and rearrangements including fusions, fissions, and pericentric inversions.
Collapse
Affiliation(s)
- Willam O da Silva
- Centro de Estudos Avanx00E7;ados da Biodiversidade, Instituto de Cix00EA;ncias Biolx00F3;gicas, Universidade Federal do Parx00E1; (UFPA), Belx00E9;m, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Bruschi DP, Rivera M, Lima AP, Zúñiga AB, Recco-Pimentel SM. Interstitial Telomeric Sequences (ITS) and major rDNA mapping reveal insights into the karyotypical evolution of Neotropical leaf frogs species (Phyllomedusa, Hylidae, Anura). Mol Cytogenet 2014; 7:22. [PMID: 24602295 PMCID: PMC3975639 DOI: 10.1186/1755-8166-7-22] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 02/26/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The combination of classical cytogenetics with molecular techniques represents a powerful approach for the comparative analysis of the genome, providing data for the systematic identification of chromosomal homologies among species and insights into patterns of chromosomal evolution within phylogenetically related groups. Here, we present cytogenetic data on four species of Neotropical treefrogs of the genus Phyllomedusa (P. vaillantii, P. tarsius, P. distincta, and P. bahiana), collected in Brazil and Ecuador, with the aim of contributing to the understanding of the chromosomal diversification of this genus. RESULTS With the exception of P. tarsius, which presented three telocentric pairs, all the species analyzed had conservative karyotypic features. Heterochromatic patterns in the genomes of these species revealed by C-banding and fluorochrome staining indicated the presence of a large number of non-centromeric blocks. Using the Ag-NOR method and FISH with an rDNA 28S probe, we detected NOR in the pericentromeric region of the short arm of pair 7 in P. vaillantii, pair 1 in P. tarsius, chromosomes 1 and 9 in P. distincta, and in chromosome 9 in P. bahiana, in addition to the presence of NOR in one homologue of chromosome pair 10 in some individuals of this species. As expected, the telomeric probe detected the terminal regions of the chromosomes of these four species, although it also detected Interstitial Telomeric Sequences (ITS) in some chromosomes of the P. vaillantii, P. distincta and P. bahiana karyotypes. CONCLUSION A number of conservative chromosomal structures permitted the recognition of karyotypic homologies. The data indicate that the presence of a NOR-bearing chromosome in pair 9 is the plesiomorphic condition in the P. burmeisteri group. The interspecific and intraspecific variation in the number and location of rDNA sites reflects the rapid rate of evolution of this character in Phyllomedusa. The ITS detected in this study does not appear to be a remnant of structural chromosome rearrangements. Telomeric repeats were frequently found in association with heterochromatin regions, primarily in the centromeres, which suggests that (TTAGGG)n repeats might be an important component of this heterochromatin. We propose that the ITSs originated independently during the chromosomal evolution of these species and may provide important insights into the role of these repeats in vertebrate karyotype diversification.
Collapse
Affiliation(s)
- Daniel Pacheco Bruschi
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), 13083-863 Campinas, São Paulo, Brazil
| | - Miryan Rivera
- Escuela de Ciencias Biológicas, Pontifícia Universidad Católica Del Ecuador, Quito, Ecuador
| | | | - Ailín Blasco Zúñiga
- Escuela de Ciencias Biológicas, Pontifícia Universidad Católica Del Ecuador, Quito, Ecuador
| | - Shirlei Maria Recco-Pimentel
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), 13083-863 Campinas, São Paulo, Brazil
| |
Collapse
|