1
|
Alaraby M, Abass D, Velázquez A, Hernández A, Marcos R. New insights into the reproductive hazards posed by polystyrene nanoplastics. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138210. [PMID: 40215930 DOI: 10.1016/j.jhazmat.2025.138210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/12/2024] [Accepted: 04/06/2025] [Indexed: 05/15/2025]
Abstract
Reproductive toxicity from micro/nanoplastics (MNPLs) is an emerging concern requiring further investigation to close existing knowledge gaps. This study explores the reproductive toxicity of polystyrene nanoplastics (PSNPLs) using Drosophila as an in vivo model. Males and females were exposed to PSNPLs (100 and 500 µg/mL) for one/two weeks. Confocal and transmission electron microscopy revealed widespread distribution of PSNPLs across various tissues, including ovaries, testes, and gametes (ova and sperm). Structural damage, such as hole formation in the seminiferous tubules and ovarian atrophy, was observed following exposure. The physical presence of PSNPLs in reproductive organs disrupted reproductive outcomes, particularly in matings between exposed males and females. Key impairments included reduced fecundity, lower fertility, and a skewed sex ratio, especially after one week of exposure, with minimal effects after two weeks. Significant disruptions in the expression of reproductive and developmental genes were observed in both sexes, with males exhibiting greater sensitivity to PSNPLs, regardless of exposure concentration or duration. These findings provide critical insights into the reproductive toxicity of PSNPLs, underscoring both physical disruptions in reproductive tissues and molecular alterations. This highlights the potential for MNPLs to cause hidden reproductive damage and emphasizes the sex-dependent nature of these toxic effects.
Collapse
Affiliation(s)
- Mohamed Alaraby
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain; Zoology Department, Faculty of Science, Sohag University, Sohag 82524, Egypt.
| | - Doaa Abass
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain; Zoology Department, Faculty of Science, Sohag University, Sohag 82524, Egypt
| | - Antonia Velázquez
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Alba Hernández
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Ricard Marcos
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.
| |
Collapse
|
2
|
Sanghvi K, Pizzari T, Sepil I. What does not kill you makes you stronger? Effects of paternal age at conception on fathers and sons. Evolution 2024; 78:1619-1632. [PMID: 38912848 PMCID: PMC7617388 DOI: 10.1093/evolut/qpae097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 06/25/2024]
Abstract
Advancing male age is often hypothesized to reduce both male fertility and offspring quality due to reproductive senescence. However, the effects of advancing male age on reproductive output and offspring quality are not always deleterious. For example, older fathers might buffer the effects of reproductive senescence by terminally investing in reproduction. Similarly, males that survive to reproduce at an old age might carry alleles that confer high viability (viability selection), which are then inherited by offspring, or might have high reproductive potential (selective disappearance). Differentiating these mechanisms requires an integrated experimental study of paternal survival and reproductive performance, as well as offspring quality, which is currently lacking. Using a cross-sectional study in Drosophila melanogaster, we test the effects of paternal age at conception (PAC) on paternal survival and reproductive success, and on the lifespans of sons. We discover that mating at an old age is linked with decreased future male survival, suggesting that mating-induced mortality is possibly due to old fathers being frail. We find no evidence for terminal investment and show that reproductive senescence in fathers does not onset until their late-adult life. Additionally, we find that as a father's lifespan increases, his probability of siring offspring increases for older PAC treatments only. Lastly, we show that sons born to older fathers live longer than those born to younger fathers due to viability selection. Collectively, our results suggest that advancing paternal age is not necessarily associated with deleterious effects for offspring and may even lead to older fathers producing longer-lived offspring.
Collapse
Affiliation(s)
- Krish Sanghvi
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Tommaso Pizzari
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Irem Sepil
- Department of Biology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
3
|
Dickerson AJ, Lemke NB, Li C, Tomberlin JK. Impact of age on the reproductive output of Hermetia illucens (Diptera: Stratiomyidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2024; 117:1225-1234. [PMID: 38775295 DOI: 10.1093/jee/toae107] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/08/2024] [Accepted: 05/09/2024] [Indexed: 03/12/2025]
Abstract
The current study examined the impact of adult black soldier fly (Hermetia illucens (L.)), age on reproductive output. Four treatments consisting of an equal sex ratio of the following combinations were used: 2-day-old males with 2-day-old females (YMYF); 6-day-old males with 2-day-old females (OMYF); 2-day-old males with 6-day-old females (YMOF); 6-day-old males with 6-day-old females (OMOF). Adult age was a significant factor for the overall number of mating events observed, with YMYF having 2.2× more than YMOF and 2.7× more than OMOF. Time was a significant factor in the number of mating events observed, with 97.8% observed on days 2-6. Age was not a significant factor for the total number of oviposition events, but the inclusion of time as a factor was significant, with 91.5% of all events occurring on days 2-6. Treatment and trial significantly interacted with egg production. This response can be attributed to treatments containing old females, which had a 50% variation in egg output across trials. Treatments containing young females were consistent in terms of egg production. As anticipated, due to oviposition events, 94.8% of total eggs were oviposited on days 2-6. Fecundity and egg hatch were also significantly impacted by female age, with a 50% reduction in both cases across trials occurring in old females. Young females paired with old males had a 20% reduction in egg hatch, but this difference was not statistically significant.
Collapse
Affiliation(s)
- Amy J Dickerson
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - Noah B Lemke
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - Chujun Li
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | | |
Collapse
|
4
|
Landis GN, Bell HS, Peng OK, Fan Y, Yan K, Baybutt B, Tower J. Conditional Inhibition of Eip75B Eliminates the Effects of Mating and Mifepristone on Lifespan in Female Drosophila. Cells 2024; 13:1123. [PMID: 38994975 PMCID: PMC11240670 DOI: 10.3390/cells13131123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 07/13/2024] Open
Abstract
Mating in female Drosophila melanogaster causes midgut hypertrophy and reduced lifespan, and these effects are blocked by the drug mifepristone. Eip75B is a transcription factor previously reported to have pleiotropic effects on Drosophila lifespan. Because Eip75B null mutations are lethal, conditional systems and/or partial knock-down are needed to study Eip75B effects in adults. Previous studies showed that Eip75B is required for adult midgut cell proliferation in response to mating. To test the possible role of Eip75B in mediating the lifespan effects of mating and mifepristone, a tripartite FLP-recombinase-based conditional system was employed that provides controls for genetic background. Expression of a Hsp70-FLP transgene was induced in third instar larvae by a brief heat pulse. The FLP recombinase catalyzed the recombination and activation of an Actin5C-GAL4 transgene. The GAL4 transcription factor in turn activated expression of a UAS-Eip75B-RNAi transgene. Inhibition of Eip75B activity was confirmed by loss of midgut hypertrophy upon mating, and the lifespan effects of both mating and mifepristone were eliminated. In addition, the negative effects of mifepristone on egg production were eliminated. The data indicate that Eip75B mediates the effects of mating and mifepristone on female midgut hypertrophy, egg production, and lifespan.
Collapse
Affiliation(s)
| | | | | | | | | | | | - John Tower
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-2910, USA
| |
Collapse
|
5
|
Ostberg H, Boehm Vock L, Bloch-Qazi MC. Advanced maternal age has negative multigenerational impacts during Drosophila melanogaster embryogenesis. CURRENT RESEARCH IN INSECT SCIENCE 2023; 4:100068. [PMID: 38161993 PMCID: PMC10757284 DOI: 10.1016/j.cris.2023.100068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 01/03/2024]
Abstract
Increasing maternal age is commonly accompanied by decreased fitness in offspring. In Drosophila melanogaster, maternal senescence negatively affects multiple facets of offspring phenotype and fitness. These maternal effects are particularly large on embryonic viability. Identifying which embryonic stages are disrupted can indicate mechanisms of maternal effect senescence. Some maternal effects can also carry-over to subsequent generations. We examined potential multi- and transgenerational effects maternal senescence on embryonic development in two laboratory strains of D. melanogaster. We categorized the developmental stages of embryos from every combination of old and young mother, grandmother and great grandmother. We then modelled embryonic survival across the stages and compared these models among the multigenerational maternal age groups in order to identify which developmental processes were most sensitive to the effects of maternal effect senescence. Maternal effect senescence has negative multigenerational effects on multiple embryonic stages, indicating that maternal provisioning and, possibly epigenetics, but not mutation accumulation, contribute to decreased offspring survival. This study shows the large, early and multi-faceted nature of maternal effects senescence in an insect population.
Collapse
Affiliation(s)
- Halie Ostberg
- Department of Biology, Gustavus Adolphus College, 800 West College Avenue, Saint Peter, MN 56082, USA
| | - Laura Boehm Vock
- Department of Mathematics and Computer Science, Gustavus Adolphus College, 800 West College Avenue, Saint Peter, MN 56082, USA
- Department of Mathematics, Statistics, and Computer Science, Saint Olaf College, 1520 St. Olaf Avenue, Northfield, MN 55057, USA
| | - Margaret C. Bloch-Qazi
- Department of Biology, Gustavus Adolphus College, 800 West College Avenue, Saint Peter, MN 56082, USA
| |
Collapse
|
6
|
Kara E, McCambridge A, Proffer M, Dilts C, Pumnea B, Eshak J, Smith KA, Fielder I, Doyle DA, Ortega BM, Mukatash Y, Malik N, Mohammed AR, Govani D, Niepielko MG, Gao M. Mutational analysis of the functional motifs of the DEAD-box RNA helicase Me31B/DDX6 in Drosophila germline development. FEBS Lett 2023; 597:1848-1867. [PMID: 37235728 PMCID: PMC10389067 DOI: 10.1002/1873-3468.14668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/24/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023]
Abstract
Me31B/DDX6 is a DEAD-box family RNA helicase playing roles in post-transcriptional RNA regulation in different cell types and species. Despite the known motifs/domains of Me31B, the in vivo functions of the motifs remain unclear. Here, we used the Drosophila germline as a model and used CRISPR to mutate the key Me31B motifs/domains: helicase domain, N-terminal domain, C-terminal domain and FDF-binding motif. Then, we performed screening characterization on the mutants and report the effects of the mutations on the Drosophila germline, on processes such as fertility, oogenesis, embryo patterning, germline mRNA regulation and Me31B protein expression. The study indicates that the Me31B motifs contribute different functions to the protein and are needed for proper germline development, providing insights into the in vivo working mechanism of the helicase.
Collapse
Affiliation(s)
- Evan Kara
- Biology Department, Indiana University Northwest, Gary, IN, USA
| | | | - Megan Proffer
- Biology Department, Indiana University Northwest, Gary, IN, USA
| | - Carol Dilts
- Biology Department, Indiana University Northwest, Gary, IN, USA
| | - Brooke Pumnea
- Biology Department, Indiana University Northwest, Gary, IN, USA
| | - John Eshak
- Biology Department, Indiana University Northwest, Gary, IN, USA
| | - Korey A. Smith
- Biology Department, Indiana University Northwest, Gary, IN, USA
| | - Isaac Fielder
- Biology Department, Indiana University Northwest, Gary, IN, USA
| | - Dominique A. Doyle
- School of Integrative Science and Technology, Kean University, Union, NJ, USA
| | - Bianca M. Ortega
- School of Integrative Science and Technology, Kean University, Union, NJ, USA
| | - Yousif Mukatash
- Biology Department, Indiana University Northwest, Gary, IN, USA
| | - Noor Malik
- Biology Department, Indiana University Northwest, Gary, IN, USA
| | | | - Deep Govani
- Biology Department, Indiana University Northwest, Gary, IN, USA
| | - Matthew G. Niepielko
- School of Integrative Science and Technology, Kean University, Union, NJ, USA
- Biology Department, Kean University, Union, NJ, USA
| | - Ming Gao
- Biology Department, Indiana University Northwest, Gary, IN, USA
| |
Collapse
|
7
|
Steenwinkel TE, Hamre KK, Werner T. The use of non-model Drosophila species to study natural variation in TOR pathway signaling. PLoS One 2022; 17:e0270436. [PMID: 36137094 PMCID: PMC9499319 DOI: 10.1371/journal.pone.0270436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/06/2022] [Indexed: 11/25/2022] Open
Abstract
Nutrition and growth are strongly linked, but not much is known about how nutrition leads to growth. To understand the connection between nutrition through the diet, growth, and proliferation, we need to study the phenotypes resulting from the activation and inhibition of central metabolic pathways. One of the most highly conserved metabolic pathways across eukaryotes is the Target of Rapamycin (TOR) pathway, whose primary role is to detect the availability of nutrients and to either induce or halt cellular growth. Here we used the model organism Drosophila melanogaster (D. mel.) and three non-model Drosophila species with different dietary needs, Drosophila guttifera (D. gut.), Drosophila deflecta (D. def.), and Drosophila tripunctata (D. tri.), to study the effects of dietary amino acid availability on fecundity and longevity. In addition, we inhibited the Target of Rapamycin (TOR) pathway, using rapamycin, to test how the inhibition interplays with the nutritional stimuli in these four fruit fly species. We hypothesized that the inhibition of the TOR pathway would reverse the phenotypes observed under conditions of overfeeding. Our results show that female fecundity increased with higher yeast availability in all four species but decreased in response to TOR inhibition. The longevity data were more varied: most species experienced an increase in median lifespan in both genders with an increase in yeast availability, while the lifespan of D. mel. females decreased. When exposed to the TOR inhibitor rapamycin, the life spans of most species decreased, except for D. tri, while we observed a major reduction in fecundity across all species. The obtained data can benefit future studies on the evolution of metabolism by showing the potential of using non-model species to track changes in metabolism. Particularly, our data show the possibility to use relatively closely related Drosophila species to gain insight on the evolution of TOR signaling.
Collapse
Affiliation(s)
- Tessa E. Steenwinkel
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan, United States of America
| | - Kailee K. Hamre
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan, United States of America
| | - Thomas Werner
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan, United States of America
- * E-mail:
| |
Collapse
|
8
|
Promislow DEL, Flatt T, Bonduriansky R. The Biology of Aging in Insects: From Drosophila to Other Insects and Back. ANNUAL REVIEW OF ENTOMOLOGY 2022; 67:83-103. [PMID: 34590891 PMCID: PMC8940561 DOI: 10.1146/annurev-ento-061621-064341] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
An enormous amount of work has been done on aging in Drosophila melanogaster, a classical genetic and molecular model system, but also in numerous other insects. However, these two extensive bodies of work remain poorly integrated to date. Studies in Drosophila often explore genetic, developmental, physiological, and nutrition-related aspects of aging in the lab, while studies in other insects often explore ecological, social, and somatic aspects of aging in both lab and natural populations. Alongside exciting genomic and molecular research advances in aging in Drosophila, many new studies have also been published on aging in various other insects, including studies on aging in natural populations of diverse species. However, no broad synthesis of these largely separate bodies of work has been attempted. In this review, we endeavor to synthesize these two semi-independent literatures to facilitate collaboration and foster the exchange of ideas and research tools. While lab studies of Drosophila have illuminated many fundamental aspects of senescence, the stunning diversity of aging patterns among insects, especially in the context of their rich ecology, remains vastlyunderstudied. Coupled with field studies and novel, more easily applicable molecular methods, this represents a major opportunity for deepening our understanding of the biology of aging in insects and beyond.
Collapse
Affiliation(s)
- Daniel E L Promislow
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington 98195, USA;
- Department of Biology, University of Washington, Seattle, Washington 98195, USA
| | - Thomas Flatt
- Department of Biology, University of Fribourg, CH-1700 Fribourg, Switzerland;
| | - Russell Bonduriansky
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales Sydney, New South Wales 2052, Australia;
| |
Collapse
|
9
|
Sabet S, Najafi MH, Tavalaee M, Sadeghi N, Nasr-Esfahani MH. Single-blind clinical trial: Sperm selection based on capacity to pass through cumulus oophorous column improves ICSI outcomes. Andrology 2021; 9:1560-1570. [PMID: 34019729 DOI: 10.1111/andr.13043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/22/2021] [Accepted: 05/18/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Sperm selection procedures for future strategies that aim to select normal spermatozoa with intact DNA to improve intracytoplasmic sperm injection (ICSI) outcomes are in early developing stage. OBJECTIVES The objective is to find out whether the sperm selection procedure based on the ability of spermatozoa to traverse the cumulus cells could improve clinical outcomes of ICSI technique in infertile couples with male factor etiology. MATERIALS AND METHODS For this single-blind clinical trial, mature metaphase II oocytes were retrieved from 150 couples with male factor infertility, male age lower than 45 years and female age under 38 years. These couples were divided into two groups. In control group (n = 75), spermatozoa processed by density gradient centrifugation (DGC) were used to inject the oocytes. In the study group (n = 75), the oocytes were divided into sibling groups. In one sibling group (DGC), the oocytes were inseminated with DGC-processed spermatozoa while in the other group (DGC-CC), they were inseminated with DGC-processed spermatozoa that passed cumulus oophorous column. RESULTS Mean fertilization and embryo quality were significantly higher in DGC-CC group compared to DGC and control group. In addition, mean of chemical pregnancy (52.27% vs. 34.14%; p = 0.05), clinical pregnancy based on sac (52.27% vs. 32.92%; p = 0.03), clinical pregnancy with heart beat (52.27% vs. 25.60%; p = 0.003) and ongoing pregnancy (43.18% vs. 21.95%; p = 0.02) rates were significantly higher in DGC-CC group compared to control group. CONCLUSION Sperm selection based on integrated systems such as DGC and ability to pass through cumulus oophorous column could improve clinical outcomes of ICSI in couples with male factor infertility.
Collapse
Affiliation(s)
- Sara Sabet
- ACECR Institute of Higher Education (Isfahan Branch), Isfahan, Iran.,Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | | | - Marziyeh Tavalaee
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Niloofar Sadeghi
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad H Nasr-Esfahani
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.,Isfahan Fertility and Infertility Center, Isfahan, Iran
| |
Collapse
|
10
|
Archer CR, Carey MR, Noda T, Store SJ, Hosken DJ. Offspring sex ratios are stable across the life course in Drosophila simulans. J Evol Biol 2020; 33:1606-1613. [PMID: 32896904 DOI: 10.1111/jeb.13696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 08/02/2020] [Accepted: 08/27/2020] [Indexed: 11/28/2022]
Abstract
Within populations, adult sex ratios influence population growth and extinction risk, mating behaviours and parental care. Sex ratio adjustment can also have pronounced effects on individual fitness. Accordingly, it is important that we understand how often, and why, offspring sex ratios deviate from parity. In Drosophila melanogaster, females appear to improve their fitness by producing fewer sons when paired with older males. However, facultative sex ratio adjustment in D. melanogaster is controversial, and our understanding of how sex ratio skew affects fitness is hampered by pronounced sexual conflict in this species. Additionally, it is unclear whether maternal age or quality interacts with paternal age to influence offspring sex ratios. Here, we test whether offspring sex ratios vary as a function of maternal quality, and maternal and paternal age in Drosophila simulans, a sister species of D. melanogaster that lacks overt sexual conflict. We find that offspring sex ratios are slightly male-biased overall, but constant across the female life course, and independent of female quality, or paternal age. To really understand if, how and when females skew offspring sex ratios, we need studies linking offspring sex ratios to paternal and maternal phenotypes that are predicted to shift optimal investment in sons and daughters.
Collapse
Affiliation(s)
- C Ruth Archer
- Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany.,Centre for Ecology and Conservation, University of Exeter in Cornwall, Penryn, UK
| | - Matthew Robert Carey
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Tomohito Noda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Stefan J Store
- Centre for Ecology and Conservation, University of Exeter in Cornwall, Penryn, UK
| | - David J Hosken
- Centre for Ecology and Conservation, University of Exeter in Cornwall, Penryn, UK
| |
Collapse
|
11
|
Depeux C, Lemaître JF, Moreau J, Dechaume-Moncharmont FX, Laverre T, Pauhlac H, Gaillard JM, Beltran-Bech S. Reproductive senescence and parental effects in an indeterminate grower. J Evol Biol 2020; 33:1256-1264. [PMID: 32574391 DOI: 10.1111/jeb.13667] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 06/12/2020] [Indexed: 12/19/2022]
Abstract
Reproductive senescence is the decrease of reproductive performance with increasing age and can potentially include trans-generational effects as the offspring produced by old parents might have a lower fitness than those produced by young parents. This negative effect may be caused either by the age of the father, mother or the interaction between the ages of both parents. Using the common woodlouse Armadillidium vulgare, an indeterminate grower, as a biological model, we tested for the existence of a deleterious effect of parental age on fitness components. Contrary to previous findings reported from vertebrate studies, old parents produced both a higher number and larger offspring than young parents. However, their offspring had lower fitness components (by surviving less, producing a smaller number of clutches or not reproducing at all) than offspring born to young parents. Our findings strongly support the existence of trans-generational senescence in woodlice and contradict the belief that old individuals in indeterminate growers contribute the most to recruitment and correspond thereby to the key life stage for population dynamics. Our work also provides rare evidence that the trans-generational effect of senescence can be stronger than direct reproductive senescence in indeterminate growers.
Collapse
Affiliation(s)
- Charlotte Depeux
- Laboratoire Ecologie et Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, Poitiers Cedex 9, France.,Laboratoire de Biométrie et Biologie Evolutive, UMR CNRS 558, Université Lyon 1, Villeurbanne cedex, France
| | - Jean-François Lemaître
- Laboratoire de Biométrie et Biologie Evolutive, UMR CNRS 558, Université Lyon 1, Villeurbanne cedex, France
| | - Jérôme Moreau
- UMR CNRS 6282 Biogéosciences, Université Bourgogne Franche-Comté, Dijon, France.,Centre d'Études Biologiques de Chizé, UMR 7372, CNRS & La Rochelle Université, Villiers-en-bois, France
| | | | - Tiffany Laverre
- Laboratoire Ecologie et Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, Poitiers Cedex 9, France
| | - Hélène Pauhlac
- Laboratoire Ecologie et Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, Poitiers Cedex 9, France
| | - Jean-Michel Gaillard
- Laboratoire de Biométrie et Biologie Evolutive, UMR CNRS 558, Université Lyon 1, Villeurbanne cedex, France
| | - Sophie Beltran-Bech
- Laboratoire Ecologie et Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, Poitiers Cedex 9, France
| |
Collapse
|
12
|
Mossman JA, Ge JY, Navarro F, Rand DM. Mitochondrial DNA Fitness Depends on Nuclear Genetic Background in Drosophila. G3 (BETHESDA, MD.) 2019; 9:1175-1188. [PMID: 30745378 PMCID: PMC6469417 DOI: 10.1534/g3.119.400067] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 02/08/2019] [Indexed: 01/06/2023]
Abstract
Mitochondrial DNA (mtDNA) has been one of the most extensively studied molecules in ecological, evolutionary and clinical genetics. In its early application in evolutionary genetics, mtDNA was assumed to be a selectively neutral marker conferring negligible fitness consequences for its host. However, this dogma has been overturned in recent years due to now extensive evidence for non-neutral evolutionary dynamics. Since mtDNA proteins physically interact with nuclear proteins to provide the mitochondrial machinery for aerobic ATP production, among other cell functions, co-variation of the respective genes is predicted to affect organismal fitness. To test this hypothesis we used an mtDNA-nuclear DNA introgression model in Drosophila melanogaster to test the fitness of genotypes in perturbation-reperturbation population cages and in a non-competitive assay for female fecundity. Genotypes consisted of both conspecific and heterospecific mtDNA-nDNA constructs, with either D. melanogaster or D. simulans mtDNAs on two alternative D. melanogaster nuclear backgrounds, to investigate mitonuclear genetic interactions (G x G effects). We found considerable variation between nuclear genetic backgrounds on the selection of mtDNA haplotypes. In addition, there was variation in the selection on mtDNAs pre- and post- reperturbation, demonstrating overall poor repeatability of selection. There was a strong influence of nuclear background on non-competitive fecundity across all the mtDNA species types. In only one of the four cage types did we see a significant fecundity effect between genotypes that could help explain the respective change in genotype frequency over generational time. We discuss these results in the context of G x G interactions and the possible influence of stochastic environments on mtDNA-nDNA selection.
Collapse
Affiliation(s)
- Jim A Mossman
- Department of Ecology and Evolutionary Biology, 80 Waterman Street, Box G, Brown University, Providence, Rhode Island 02912
| | - Jennifer Y Ge
- Department of Ecology and Evolutionary Biology, 80 Waterman Street, Box G, Brown University, Providence, Rhode Island 02912
- Department of Medical Oncology
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA 02215
- Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, 25 Shattuck St, Boston, MA 02115
| | - Freddy Navarro
- Department of Ecology and Evolutionary Biology, 80 Waterman Street, Box G, Brown University, Providence, Rhode Island 02912
| | - David M Rand
- Department of Ecology and Evolutionary Biology, 80 Waterman Street, Box G, Brown University, Providence, Rhode Island 02912
| |
Collapse
|