1
|
Iizaka Y, Yamada M, Koshino S, Takahashi S, Saito R, Sherman DH, Anzai Y. Production of hybrid macrolide antibiotics by exploiting the specific substrate recognition characteristics of multifunctional cytochrome P450 enzyme MycG. FEMS Microbiol Lett 2024; 371:fnae080. [PMID: 39341787 DOI: 10.1093/femsle/fnae080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/18/2024] [Accepted: 09/27/2024] [Indexed: 10/01/2024] Open
Abstract
Macrolide antibiotics are biosynthesized via enzymatic modifications, including glycosylation, methylation, and oxidation, after the core macro-lactone ring is generated by a polyketide synthase system. This study explored the diversification of macrolides by combining biosynthetic enzymes and reports an approach to produce unnatural hybrid macrolide antibiotics. The cytochrome (CYP) P450 monooxygenase MycG exhibits bifunctional activity, catalyzing late-stage hydroxylation at C-14 followed by epoxidation at C-12/13 during mycinamicin biosynthesis. The mycinose sugar of mycinamicin serves as a key molecular recognition element for binding to MycG. Thus, we subjected the hybrid macrolide antibiotic 23-O-mycinosyl-20-deoxo-20-dihydro-12,13-deepoxyrosamicin (IZI) to MycG, and confirmed that MycG catalyzed hydroxylation at C-22 and epoxidation at C-12/13 in IZI. In addition, the introduction of mycinose biosynthesis-related genes and mycG into rosamicin-producing Micromonospora rosaria enabled the fermentative production of 22-hydroxylated and 12,13-epoxidized forms of IZI. Interestingly, MycG catalyzed the sequential oxidation of hydroxylation and epoxidation in mycinamicin biosynthesis, but only single reactions in IZI. These findings highlight the potential for expanding the application of the multifunctional P450 monooxygenase MycG for the production of unnatural compounds.
Collapse
Affiliation(s)
- Yohei Iizaka
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Mari Yamada
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Suirei Koshino
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Sawa Takahashi
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Ryota Saito
- Department of Chemistry, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - David H Sherman
- Life Sciences Institute, Department of Medicinal Chemistry, Chemistry, and Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Yojiro Anzai
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| |
Collapse
|
2
|
Yan Y, Zheng C, Song W, Wu J, Guo L, Gao C, Liu J, Chen X, Zhu M, Liu L. Efficient Production of Epoxy-Norbornane from Norbornene by an Engineered P450 Peroxygenase. Chembiochem 2023; 24:e202200529. [PMID: 36354378 DOI: 10.1002/cbic.202200529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022]
Abstract
Epoxy-norbornane (EPO-NBE) is a crucial building block for the synthesis of various biologically active heterocyclic systems. To develop an efficient protocol for producing EPO-NBE using norbornene (NBE) as a substrate, cytochrome P450 enzyme from Pseudomonas putida (CYP238A1) was examined and its crystal structure (PDB code: 7X53) was resolved. Molecular mechanism analysis showed a high energy barrier related to iron-alkoxy radical complex formation. Therefore, a protein engineering strategy was developed and an optimal CYP238A1NPV variant containing a local hydrophobic "fence" at the active site was obtained, which increased the H2 O2 -dependent epoxidation activity by 7.5-fold compared with that of CYP238A1WT . Among the "fence", Glu255 participates in an efficient proton transfer system. Whole-cell transformation using CYP238A1NPV achieved an EPO-NBE yield of 77.6 g ⋅ L-1 in a 30-L reactor with 66.3 % conversion. These results demonstrate the potential of this system for industrial production of EPO-NBE and provides a new biocatalytic platform for epoxidation chemistry.
Collapse
Affiliation(s)
- Yu Yan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Chenni Zheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Wei Song
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Jing Wu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Liang Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Cong Gao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Jia Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Meng Zhu
- Wuxi Acryl Technology Co., Ltd., Wuxi, 214122, P. R. China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China
| |
Collapse
|
3
|
Charlton SN, Hayes MA. Oxygenating Biocatalysts for Hydroxyl Functionalisation in Drug Discovery and Development. ChemMedChem 2022; 17:e202200115. [PMID: 35385205 PMCID: PMC9323455 DOI: 10.1002/cmdc.202200115] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/05/2022] [Indexed: 11/12/2022]
Abstract
C-H oxyfunctionalisation remains a distinct challenge for synthetic organic chemists. Oxygenases and peroxygenases (grouped here as "oxygenating biocatalysts") catalyse the oxidation of a substrate with molecular oxygen or hydrogen peroxide as oxidant. The application of oxygenating biocatalysts in organic synthesis has dramatically increased over the last decade, producing complex compounds with potential uses in the pharmaceutical industry. This review will focus on hydroxyl functionalisation using oxygenating biocatalysts as a tool for drug discovery and development. Established oxygenating biocatalysts, such as cytochrome P450s and flavin-dependent monooxygenases, have widely been adopted for this purpose, but can suffer from low activity, instability or limited substrate scope. Therefore, emerging oxygenating biocatalysts which offer an alternative will also be covered, as well as considering the ways in which these hydroxylation biotransformations can be applied in drug discovery and development, such as late-stage functionalisation (LSF) and in biocatalytic cascades.
Collapse
Affiliation(s)
- Sacha N. Charlton
- School of ChemistryUniversity of Bristol, Cantock's CloseBristolBS8 1TSUK
| | - Martin A. Hayes
- Compound Synthesis and ManagementDiscovery SciencesBiopharmaceuticals R&DAstraZenecaGothenburgSweden
| |
Collapse
|
4
|
Yan Y, Wu J, Hu G, Gao C, Guo L, Chen X, Liu L, Song W. Current state and future perspectives of cytochrome P450 enzymes for C–H and C=C oxygenation. Synth Syst Biotechnol 2022; 7:887-899. [PMID: 35601824 PMCID: PMC9112060 DOI: 10.1016/j.synbio.2022.04.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 01/11/2023] Open
Abstract
Cytochrome P450 enzymes (CYPs) catalyze a series of C–H and C=C oxygenation reactions, including hydroxylation, epoxidation, and ketonization. They are attractive biocatalysts because of their ability to selectively introduce oxygen into inert molecules under mild conditions. This review provides a comprehensive overview of the C–H and C=C oxygenation reactions catalyzed by CYPs and the various strategies for achieving higher selectivity and enzymatic activity. Furthermore, we discuss the application of C–H and C=C oxygenation catalyzed by CYPs to obtain the desired chemicals or pharmaceutical intermediates in practical production. The rapid development of protein engineering for CYPs provides excellent biocatalysts for selective C–H and C=C oxygenation reactions, thereby promoting the development of environmentally friendly and sustainable production processes.
Collapse
Affiliation(s)
- Yu Yan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Jing Wu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Guipeng Hu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Cong Gao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Liang Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Wei Song
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
- Corresponding author.
| |
Collapse
|