1
|
Zhou J, Long H, Guo Y, Lu J, Wang N, Liu H, Zhou X, Cai M. Glutamate-related nitrogen metabolism regulates cold-adaptive synthesis of red pigment in polar fungus Geomyces sp. WNF-15A. J Biotechnol 2025; 404:121-131. [PMID: 40252734 DOI: 10.1016/j.jbiotec.2025.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Accepted: 04/15/2025] [Indexed: 04/21/2025]
Abstract
The polar fungus Geomyces sp. WNF-15A produces high-quality red pigment (AGRP), but the cold-dependent characteristic of AGRP synthesis restricts its industrialization. This study employed transcriptome analysis to compare gene expression profiles of the wild-type strain with cold-independent mutants of scaffold1.t692 (Δ1-692) and scaffold2.t704 (Δ2-704). From the analysis, 23 candidate genes were identified and functionally characterized among 22,600 differentially expressed genes. Knockout and recovery of scaffold5.t61, scaffold7.t586, or scaffold7.t712 proved their regulatory functions in AGRP synthesis, among which scaffold5.t61 functioned as a transcription factor, while scaffold7.t586 and scaffold7.t712 were involved in the glutamate-related nitrogen metabolism. Exogenous addition of nitrate, glutamine, and glutamate, combined with transcriptional regulation studies, revealed the importance of glutamate metabolism for cold-adaptive synthesis of AGRP. Scaffold5.t61 responded to the cold environment and regulated the transcription of scaffold2.t704 and scaffold1.t692. It subsequently increased glutamate synthesis by regulating the key nitrogen metabolism genes of scaffold7.t586 and scaffold7.t712, ultimately resulting in cold-dependent synthesis of AGRP in Geomyces sp. WNF-15A. This study offers new insights into the mechanisms of cold adaptation in polar fungi and serves as a reference for the development of psychrophilic fungal resources.
Collapse
Affiliation(s)
- Jiawei Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Haoyu Long
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yan Guo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jian Lu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Nengfei Wang
- School of Chemistry & Chemical Engineering, Linyi University, Linyi 276005, China.
| | - Haifeng Liu
- China Resources Angde Biotech Pharma Co., Ltd., 78 E-jiao Street, Liaocheng, China
| | - Xiangshan Zhou
- China Resources Biopharmaceutical Co., Ltd., Sightseeing Road, Shenzhen 1301-84, China
| | - Menghao Cai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing, Shanghai 200237, China.
| |
Collapse
|
2
|
Long H, Zhou J, Ren Y, Lu J, Wang N, Liu H, Zhou X, Cai M. Comparative omics directed gene discovery and rewiring for normal temperature-adaptive red pigment synthesis by polar psychrotrophic fungus Geomyces sp. WNF-15A. Synth Syst Biotechnol 2024; 9:842-852. [PMID: 39149535 PMCID: PMC11326490 DOI: 10.1016/j.synbio.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 08/17/2024] Open
Abstract
The Antarctic fungus Geomyces sp. WNF-15A can produce high-quality red pigments (AGRP) with good prospects for the use in food and cosmetic area. However, efficient AGRP synthesis relies on low-temperature and thus limits its industrial development. Here genome sequencing and comparative analysis were performed on the wild-type versus to four mutants derived from natural mutagenesis and transposon insertion mutation. Eleven mutated genes were identified from 2309 SNPs and 256 Indels. A CRISPR-Cas9 gene-editing system was established for functional analysis of these genes. Deficiency of scaffold1.t692 and scaffold2.t704 with unknown functions highly improved AGRP synthesis at all tested temperatures. Of note, the two mutants produced comparable levels of AGRP at 20 °C to the wild-type at 14 °C. They also broke the normal-temperature limitation and effectively synthesized AGRP at 25 °C. Comparative metabolomic analysis revealed that deficiency of scaffold1.t692 improved AGRP synthesis by regulation of global metabolic pathways especially downregulation of the competitive pathways. Knockout of key genes responsible for the differential metabolites confirmed the metabolomic results. This study shows new clues for cold-adaptive regulatory mechanism of polar fungi. It also provides references for exploitation and utilization of psychrotrophic fungal resources.
Collapse
Affiliation(s)
- Haoyu Long
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jiawei Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yanna Ren
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jian Lu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Nengfei Wang
- School of Chemistry & Chemical Engineering, Linyi University, Linyi, 276005, China
| | - Haifeng Liu
- China Resources Angde Biotech Pharma Co., Ltd., 78 E-jiao Street, Liaocheng, China
| | - Xiangshan Zhou
- China Resources Biopharmaceutical Co., Ltd., 1301-84 Sightseeing Road, Shenzhen, China
| | - Menghao Cai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Shanghai Collaborative Innovation Center for Biomanufacturing, Shanghai, 200237, China
| |
Collapse
|
3
|
Lu F, Ren Y, Ding L, Lu J, Zhou X, Liu H, Wang N, Cai M. Minos and Restless transposon insertion mutagenesis of psychrotrophic fungus for red pigment synthesis adaptive to normal temperature. BIORESOUR BIOPROCESS 2022; 9:118. [PMID: 38647871 PMCID: PMC10992017 DOI: 10.1186/s40643-022-00604-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
The polar psychrotrophic fungus Geomyces sp. WNF-15A can produce high-quality natural red pigment for the potential use as edible pigment. However, it shows low-temperature-dependent synthesis of red pigment, which limits its large-scale industrial applications due to the difficult and high-cost bioprocess control. This study aims to develop transposon-mediated mutagenesis methods to generate mutants that are able to synthesize red pigment at normal temperature. Four transposable systems, including single and dual transposable systems, were established in this fungus based on the Minos from Drosophila hydei and the Restless from Tolypocladium inflatum. A total of 23 production-dominant mutants and 12 growth-dominant mutants were thus obtained by constructed transposable systems. At 14 °C and 20 °C, the MPS1 mutant strain achieved the highest level of red pigment (OD520 of 43.3 and 29.7, respectively), which was increased by 78.4% and 128.7% compared to the wild-type, respectively. Of note, 4 mutants (MPS1, MPS3, MPS4 and MPD1) successfully synthesized red pigment (OD520 of 5.0, 5.3, 4.7 and 4.9, respectively) at 25 °C, which broke the limit of the wild-type production under normal temperature. Generally, the dual transposable systems of Minos and Restless were more efficient than their single transposable systems for mutagenesis in this fungus. However, the positive mutation ratios were similar between the dual and single transposable systems for either Minos or Restless. This study provides alternative tools for genetic mutagenesis breeding of fungi from extreme environments.
Collapse
Affiliation(s)
- Fengning Lu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yanna Ren
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Lulu Ding
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jian Lu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xiangshan Zhou
- China Resources Biopharmaceutical Co., Ltd, Unit 601, Building No. 2, YESUN Intelligent Community III, Guanlan Street, Shenzhen, China
| | - Haifeng Liu
- China Resources Angde Biotech Pharma Co., Ltd, 78 E-Jiao Street, Liaocheng, 252201, Shandong, China
| | - Nengfei Wang
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Menghao Cai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
4
|
Liu L, Wang Z. Azaphilone alkaloids: prospective source of natural food pigments. Appl Microbiol Biotechnol 2021; 106:469-484. [PMID: 34921328 DOI: 10.1007/s00253-021-11729-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 01/19/2023]
Abstract
Azaphilone, biosynthesized by polyketide synthase, is a class of fungal metabolites. In this review, after brief introduction of the natural azaphilone diversity, we in detail discussed azaphilic addition reaction involving conversion of natural azaphilone into the corresponding azaphilone alkaloid. Then, setting red Monascus pigments (a traditional food colorant in China) as example, we presented a new strategy, i.e., interfacing azaphilic addition reaction with living microbial metabolism in a one-pot process, to produce azaphilone alkaloid with a specified amine residue (red Monascus pigments) during submerged culture. Benefit from the red Monascus pigments with a specified amine residue, the influence of primary amine on characteristics of the food colorant was highlighted. Finally, the progress for screening of alternative azaphilone alkaloids (production from interfacing azaphilic addition reaction with submerged culture of Talaromyces sp. or Penicillium sp.) as natural food colorant was reviewed. KEY POINTS: • Azaphilic addition reaction of natural azaphilone is biocompatible • Red Monascus pigment is a classic example of azaphilone alkaloids • Azaphilone alkaloids are alterative natural food colorant.
Collapse
Affiliation(s)
- Lujie Liu
- State Key Laboratory of Microbial Metabolism, and Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China.,State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhilong Wang
- State Key Laboratory of Microbial Metabolism, and Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|