1
|
Djihinto OY, Medjigbodo AA, Gangbadja ARA, Saizonou HM, Lagnika HO, Nanmede D, Djossou L, Bohounton R, Sovegnon PM, Fanou MJ, Agonhossou R, Akoton R, Mousse W, Djogbénou LS. Malaria-Transmitting Vectors Microbiota: Overview and Interactions With Anopheles Mosquito Biology. Front Microbiol 2022; 13:891573. [PMID: 35668761 PMCID: PMC9164165 DOI: 10.3389/fmicb.2022.891573] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/04/2022] [Indexed: 11/20/2022] Open
Abstract
Malaria remains a vector-borne infectious disease that is still a major public health concern worldwide, especially in tropical regions. Malaria is caused by a protozoan parasite of the genus Plasmodium and transmitted through the bite of infected female Anopheles mosquitoes. The control interventions targeting mosquito vectors have achieved significant success during the last two decades and rely mainly on the use of chemical insecticides through the insecticide-treated nets (ITNs) and indoor residual spraying (IRS). Unfortunately, resistance to conventional insecticides currently being used in public health is spreading in the natural mosquito populations, hampering the long-term success of the current vector control strategies. Thus, to achieve the goal of malaria elimination, it appears necessary to improve vector control approaches through the development of novel environment-friendly tools. Mosquito microbiota has by now given rise to the expansion of innovative control tools, such as the use of endosymbionts to target insect vectors, known as "symbiotic control." In this review, we will present the viral, fungal and bacterial diversity of Anopheles mosquitoes, including the bacteriophages. This review discusses the likely interactions between the vector microbiota and its fitness and resistance to insecticides.
Collapse
Affiliation(s)
- Oswald Y. Djihinto
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, Cotonou, Benin
| | - Adandé A. Medjigbodo
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, Cotonou, Benin
| | - Albert R. A. Gangbadja
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, Cotonou, Benin
| | - Helga M. Saizonou
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, Cotonou, Benin
| | - Hamirath O. Lagnika
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, Cotonou, Benin
| | - Dyane Nanmede
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, Cotonou, Benin
| | - Laurette Djossou
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, Cotonou, Benin
| | - Roméo Bohounton
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, Cotonou, Benin
| | - Pierre Marie Sovegnon
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, Cotonou, Benin
| | - Marie-Joel Fanou
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, Cotonou, Benin
| | - Romuald Agonhossou
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, Cotonou, Benin
| | - Romaric Akoton
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, Cotonou, Benin
| | - Wassiyath Mousse
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, Cotonou, Benin
| | - Luc S. Djogbénou
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, Cotonou, Benin
- Regional Institute of Public Health, University of Abomey-Calavi, Ouidah, Benin
| |
Collapse
|