1
|
Dondi F, Gazzilli M, Viganò GL, Pisani AR, Ferrari C, Rubini G, Bertagna F. The Role of 11C-Methionine PET Imaging for the Evaluation of Lymphomas: A Systematic Review. Hematol Rep 2024; 16:752-768. [PMID: 39728002 DOI: 10.3390/hematolrep16040072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 12/28/2024] Open
Abstract
Background: In the last years, different evidence has underlined a possible role for [11C]-methionine ([11C]MET) positron emission tomography (PET) imaging for the evaluation of lymphomas. The aim of this paper was, therefore, to review the available scientific literature focusing on this topic. Methods: A wide literature search of the PubMed/MEDLINE, Scopus and Cochrane Library databases was conducted in order to find relevant published articles investigating the role of [11C]MET in the assessment of lymphomas. Results: Eighteen studies were included in the systematic review and the main fields of application of this imaging modality were the evaluation of disease, therapy response assessment, prognostic evaluation and differential diagnosis with other pathological conditions. Conclusion: Even with heterogeneous evidence, a possible role for [11C]MET PET imaging in the assessment of lymphomas affecting both the whole body and the central nervous system was underlined. When compared to [18F]fluorodesoxyglucose ([18F]FDG) imaging, in general, similar results have been reported between the two modalities in these settings.
Collapse
Affiliation(s)
- Francesco Dondi
- Nuclear Medicine, Università Degli Studi di Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Maria Gazzilli
- Nuclear Medicine, ASL Bari-P.O. Di Venere, 70012 Bari, Italy
| | - Gian Luca Viganò
- Clinical Engineering, ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Antonio Rosario Pisani
- Section of Nuclear Medicine, Interdisciplinary Department of Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Cristina Ferrari
- Section of Nuclear Medicine, Interdisciplinary Department of Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Giuseppe Rubini
- Section of Nuclear Medicine, Interdisciplinary Department of Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Francesco Bertagna
- Nuclear Medicine, Università Degli Studi di Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| |
Collapse
|
2
|
Nayak L, Bettegowda C, Scherer F, Galldiks N, Ahluwalia M, Baraniskin A, von Baumgarten L, Bromberg JEC, Ferreri AJM, Grommes C, Hoang-Xuan K, Kühn J, Rubenstein JL, Rudà R, Weller M, Chang SM, van den Bent MJ, Wen PY, Soffietti R. Liquid biopsy for improving diagnosis and monitoring of CNS lymphomas: A RANO review. Neuro Oncol 2024; 26:993-1011. [PMID: 38598668 PMCID: PMC11145457 DOI: 10.1093/neuonc/noae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND The utility of liquid biopsies is well documented in several extracranial and intracranial (brain/leptomeningeal metastases, gliomas) tumors. METHODS The RANO (Response Assessment in Neuro-Oncology) group has set up a multidisciplinary Task Force to critically review the role of blood and cerebrospinal fluid (CSF)-liquid biopsy in CNS lymphomas, with a main focus on primary central nervous system lymphomas (PCNSL). RESULTS Several clinical applications are suggested: diagnosis of PCNSL in critical settings (elderly or frail patients, deep locations, and steroid responsiveness), definition of minimal residual disease, early indication of tumor response or relapse following treatments, and prediction of outcome. CONCLUSIONS Thus far, no clinically validated circulating biomarkers for managing both primary and secondary CNS lymphomas exist. There is need of standardization of biofluid collection, choice of analytes, and type of technique to perform the molecular analysis. The various assays should be evaluated through well-organized central testing within clinical trials.
Collapse
Affiliation(s)
- Lakshmi Nayak
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Chetan Bettegowda
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Florian Scherer
- Department of Medicine I, Faculty of Medicine, Medical Center—University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Norbert Galldiks
- Department of Neurology, University of Cologne, Medical Faculty and University Hospital Cologne, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), and Institute of Neuroscience and Medicine (INM-3), Research Center Juelich, Juelich, Germany
| | - Manmeet Ahluwalia
- Rose and Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland OH and Miami Cancer Institute, Baptist Health South Florida, International University, Miami, Florida, USA
| | - Alexander Baraniskin
- Department of Hematology, Oncology and Palliative Care, Evangelisches Krankenhaus Hamm, Hamm, Germany
| | - Louisa von Baumgarten
- Department of Neurosurgery, Ludwig-Maximilians—University of Munich, Munich, Germany
- German Cancer Consortium, Partner Site Munich, Munich, Germany
| | | | - Andrés J M Ferreri
- Università Vita-Salute San Raffaele and IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Christian Grommes
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Neurology, Weill Cornell Medical College, New York, New York, USA
| | - Khê Hoang-Xuan
- APHP, Department of Neuro-oncology, Groupe Hospitalier Pitié-Salpêtrière; Sorbonne Université, Paris Brain Institute ICM, Paris, France
| | - Julia Kühn
- Department of Medicine I, Faculty of Medicine, Medical Center University of Freiburg, University of Freiburg, Freiburg, Germany
| | - James L Rubenstein
- UCSF Hematology/Oncology, Helen Diller Family Comprehensive Cancer Center, San Francisco, California, USA
| | - Roberta Rudà
- Division of Neuro-Oncology, Department of Neuroscience “Rita Levi Montalcini,” University of Turin, Turin, Italy
| | - Michael Weller
- Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Susan M Chang
- Department of Neurosurgery and Division of Neuro-Oncology, University of California, San Francisco, California, USA
| | | | - Patrick Y Wen
- Department of Neuroscience “Rita Levi Montalcini,” University of Turin, Turin, Italy
| | - Riccardo Soffietti
- Department of Neuroscience “Rita Levi Montalcini,” University of Turin, Turin, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy
| |
Collapse
|
3
|
Nagamatsu Y, Isoda T, Inaji M, Oyama J, Niizato D, Tomomasa D, Mitsuiki N, Yamashita M, Kamiya T, Imai K, Kanegane H, Morio T, Takagi M. Intracranial residual lesions following early intensification in a patient with T-cell acute lymphoblastic leukemia: a case report. BMC Pediatr 2024; 24:304. [PMID: 38704558 PMCID: PMC11069157 DOI: 10.1186/s12887-024-04790-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/25/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND T-cell acute lymphoblastic leukemia (T-ALL) tends to involve central nervous system (CNS) infiltration at diagnosis. However, cases of residual CNS lesions detected at the end of induction and post early intensification have not been recorded in patients with T-ALL. Also, the ratio and prognosis of patients with residual intracranial lesions have not been defined. CASE PRESENTATION A 9-year-old boy with T-ALL had multiple intracranial tumors, which were still detected post early intensification. To investigate residual CNS lesions, we used 11C-methionine (MET)-positron emission tomography. Negative MET uptake in CNS lesions and excellent MRD status in bone marrow allowed continuing therapies without hematopoietic cell transplantation. CONCLUSIONS In cases with residual lesions on imaging studies, treatment strategies should be considered by the systemic response, direct assessment of spinal fluid, along with further development of noninvasive imaging methods in CNS. Further retrospective or prospective studies are required to determine the prognosis and frequency of cases with residual intracranial lesions after induction therapy.
Collapse
Affiliation(s)
- Yuichi Nagamatsu
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takeshi Isoda
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan.
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan.
| | - Motoki Inaji
- Department of Neurosurgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Jun Oyama
- Department of Diagnostic Radiology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Daiki Niizato
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Dan Tomomasa
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Noriko Mitsuiki
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Motoi Yamashita
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takahiro Kamiya
- Department of Clinical Research Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kohsuke Imai
- Department of Community Pediatrics, Perinatal and Maternal Medicine, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Pediatrics, National Defense Medical College, Tokorozawa, Japan
| | - Hirokazu Kanegane
- Department of Child Health and Development, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masatoshi Takagi
- Department of Community Pediatrics, Perinatal and Maternal Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
4
|
Park SY, Lee MK, Han EJ, Jeon YW. Cerebrovascular Malformation Mimicking Recurrent Lymphoma on Dual Time-Point 18F-FDOPA PET. Clin Nucl Med 2024; 49:232-233. [PMID: 38306374 DOI: 10.1097/rlu.0000000000005023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
ABSTRACT Although 18F-FDG is the dominant radiotracer for PET imaging of hematological malignancies, radiolabeled amino acids have also been investigated to improve image quality in areas of high 18F-FDG uptake such as the central nervous system. We present a case of a 57-year-old woman who underwent an 18F-FDOPA scan for primary CNS lymphoma, which demonstrated an unexpected false-positive uptake in the right frontal lobe, due to a developmental venous anomaly.
Collapse
Affiliation(s)
| | | | - Eun Ji Han
- From the Division of Nuclear Medicine, Department of Radiology
| | - Young-Woo Jeon
- Department of Hematology, Yeouido St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
5
|
Husby T, Johannessen K, Berntsen EM, Johansen H, Giskeødegård GF, Karlberg A, Fagerli UM, Eikenes L. 18F-FACBC and 18F-FDG PET/MRI in the evaluation of 3 patients with primary central nervous system lymphoma: a pilot study. EJNMMI REPORTS 2024; 8:2. [PMID: 38748286 PMCID: PMC10962628 DOI: 10.1186/s41824-024-00189-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 12/06/2023] [Indexed: 05/19/2024]
Abstract
BACKGROUND This PET/MRI study compared contrast-enhanced MRI, 18F-FACBC-, and 18F-FDG-PET in the detection of primary central nervous system lymphomas (PCNSL) in patients before and after high-dose methotrexate chemotherapy. Three immunocompetent PCNSL patients with diffuse large B-cell lymphoma received dynamic 18F-FACBC- and 18F-FDG-PET/MRI at baseline and response assessment. Lesion detection was defined by clinical evaluation of contrast enhanced T1 MRI (ce-MRI) and visual PET tracer uptake. SUVs and tumor-to-background ratios (TBRs) (for 18F-FACBC and 18F-FDG) and time-activity curves (for 18F-FACBC) were assessed. RESULTS At baseline, seven ce-MRI detected lesions were also detected with 18F-FACBC with high SUVs and TBRs (SUVmax:mean, 4.73, TBRmax: mean, 9.32, SUVpeak: mean, 3.21, TBRpeak:mean: 6.30). High TBR values of 18F-FACBC detected lesions were attributed to low SUVbackground. Baseline 18F-FDG detected six lesions with high SUVs (SUVmax: mean, 13.88). In response scans, two lesions were detected with ce-MRI, while only one was detected with 18F-FACBC. The lesion not detected with 18F-FACBC was a small atypical MRI detected lesion, which may indicate no residual disease, as this patient was still in complete remission 12 months after initial diagnosis. No lesions were detected with 18F-FDG in the response scans. CONCLUSIONS 18F-FACBC provided high tumor contrast, outperforming 18F-FDG in lesion detection at both baseline and in response assessment. 18F-FACBC may be a useful supplement to ce-MRI in PCNSL detection and response assessment, but further studies are required to validate these findings. Trial registration ClinicalTrials.gov. Registered 15th of June 2017 (Identifier: NCT03188354, https://clinicaltrials.gov/study/NCT03188354 ).
Collapse
Affiliation(s)
- Trine Husby
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Postboks 8905, Trondheim, Norway
- Department of Oncology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Knut Johannessen
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Postboks 8905, Trondheim, Norway
| | - Erik Magnus Berntsen
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Postboks 8905, Trondheim, Norway
- Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Håkon Johansen
- Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Guro Fanneløb Giskeødegård
- Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Anna Karlberg
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Postboks 8905, Trondheim, Norway
- Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Unn-Merete Fagerli
- Department of Oncology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Live Eikenes
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Postboks 8905, Trondheim, Norway.
| |
Collapse
|
6
|
Norikane T, Mitamura K, Yamamoto Y, Manabe Y, Murao M, Arai-Okuda H, Hatakeyama T, Miyake K, Nishiyama Y. Comparative evaluation of 11C-methionine and 18F-fluorodeoxyglucose positron emission tomography for distinguishing between primary central nervous system lymphoma and isocitrate dehydrogenase-wildtype glioblastoma. J Neurooncol 2024; 166:195-201. [PMID: 38160415 DOI: 10.1007/s11060-023-04534-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 12/07/2023] [Indexed: 01/03/2024]
Abstract
PURPOSE Distinguishing between primary central nervous system lymphoma (PCNSL) and isocitrate dehydrogenase (IDH)-wildtype glioblastoma is important for therapeutic decision-making. This study aimed to compare the performance of 11C-methionine (MET) and 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) for distinguishing between these two major malignant brain tumors. METHODS We retrospectively conducted qualitative and semiquantitative analyses of pre-treatment MET and FDG PET/computed tomography (CT) images of 22 patients with PCNSL and 64 patients with IDH-wildtype glioblastoma. For semiquantitative analysis, we calculated the tumor-to-normal tissue (T/N) ratio by dividing the maximum standardized uptake value (SUV) for the tumor (T) by the average SUV for the normal tissue (N). For performance evaluation, we employed receiver operating characteristic curve analysis and calculated the areas under the curve (AUC) values. RESULTS In the qualitative analysis, all PCNSLs and IDH-wildtype glioblastomas were MET-positive, while 95% and 84% of PCNSLs and IDH-wildtype glioblastomas, respectively, were FDG-positive. Eleven patients were excluded from the FDG PET/CT semiquantitative analysis because of hyperglycemia. There was no difference in MET T/N ratio between PCNSL and IDH-wildtype glioblastoma (p = 0.37). FDG T/N ratio was significantly higher in PCNSL than in IDH-wildtype glioblastoma (p < 0.001). The AUC value for distinguishing PCNSL from IDH-wildtype glioblastoma was significantly higher for the FDG T/N ratio (0.871) than for the MET T/N ratio (0.565) (p = 0.0027). CONCLUSION MET PET could detect both PCNSL and IDH-wildtype glioblastoma, but unlike FDG PET, it could not distinguish between these two major malignant brain tumors.
Collapse
Affiliation(s)
- Takashi Norikane
- Department of Radiology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Katsuya Mitamura
- Department of Radiology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Yuka Yamamoto
- Department of Radiology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan.
| | - Yuri Manabe
- Department of Radiology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Mitsumasa Murao
- Department of Radiology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Hanae Arai-Okuda
- Department of Radiology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Tetsuhiro Hatakeyama
- Department of Neurological Surgery, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa, Japan
| | - Keisuke Miyake
- Department of Neurological Surgery, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa, Japan
| | - Yoshihiro Nishiyama
- Department of Radiology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| |
Collapse
|
7
|
Morales-Martinez A, Nichelli L, Hernandez-Verdin I, Houillier C, Alentorn A, Hoang-Xuan K. Prognostic factors in primary central nervous system lymphoma. Curr Opin Oncol 2022; 34:676-684. [PMID: 36093869 DOI: 10.1097/cco.0000000000000896] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Primary central nervous system lymphoma (PCNSL) is a rare and aggressive extranodal diffuse large B cell lymphoma. Despite its apparent immunopathological homogeneity, PCNSL displays a wide variability in outcome. Identifying prognostic factors is of importance for patient stratification and clinical decision-making. The purpose of this review is to focus on the clinical, neuroradiological and biological variables correlated with the prognosis at the time of diagnosis in immunocompetent patients. RECENT FINDINGS Age and performance status remain the most consistent clinical prognostic factors. The current literature suggests that neurocognitive dysfunction is an independent predictor of poor outcome. Cumulating data support the prognostic value of increased interleukin-10 level in the cerebrospinal fluid (CSF), in addition to its interest as a diagnostic biomarker. Advances in neuroimaging and in omics have identified several semi-quantitative radiological features (apparent diffusion restriction measures, dynamic contrast-enhanced perfusion MRI (pMRI) pattern and 18F-fluorodeoxyglucose metabolism) and molecular genetic alterations with prognostic impact in PCNSL. SUMMARY Validation of new biologic and neuroimaging markers in prospective studies is required before integrating future prognostic scoring systems. In the era of radiomic, large clinicoradiological and molecular databases are needed to develop multimodal artificial intelligence algorithms for the prediction of accurate outcome.
Collapse
Affiliation(s)
| | - Lucia Nichelli
- APHP, Sorbonne Université, IHU, ICM, Service de Neuroradiologie, Groupe Hospitalier Salpêtrière
| | - Isaias Hernandez-Verdin
- Laboratoire de Génétique et developpement des tumeurs cérébrales, Inserm, CNRS, UMR S 1127, ICM Institut du cerveau, Paris, France
| | | | - Agustí Alentorn
- APHP, Sorbonne Université, IHU, Service de Neurologie 2-Mazarin
- Laboratoire de Génétique et developpement des tumeurs cérébrales, Inserm, CNRS, UMR S 1127, ICM Institut du cerveau, Paris, France
| | - Khê Hoang-Xuan
- APHP, Sorbonne Université, IHU, Service de Neurologie 2-Mazarin
- Laboratoire de Génétique et developpement des tumeurs cérébrales, Inserm, CNRS, UMR S 1127, ICM Institut du cerveau, Paris, France
| |
Collapse
|
8
|
Krebs S, Barasch JG, Young RJ, Grommes C, Schöder H. Positron emission tomography and magnetic resonance imaging in primary central nervous system lymphoma-a narrative review. ANNALS OF LYMPHOMA 2021; 5. [PMID: 34223561 PMCID: PMC8248935 DOI: 10.21037/aol-20-52] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review addresses the challenges of primary central nervous system (CNS) lymphoma diagnosis, assessment of treatment response, and detection of recurrence. Primary CNS lymphoma is a rare form of extra-nodal non-Hodgkin lymphoma that can involve brain, spinal cord, leptomeninges, and eyes. Primary CNS lymphoma lesions are most commonly confined to the white matter or deep cerebral structures such as basal ganglia and deep periventricular regions. Contrast-enhanced magnetic resonance imaging (MRI) is the standard diagnostic modality employed by neuro-oncologists. MRI often shows common morphological features such as a single or multiple uniformly well-enhancing lesions without necrosis but with moderate surrounding edema. Other brain tumors or inflammatory processes can show similar radiological patterns, making differential diagnosis difficult. [18F]-fluorodeoxyglucose (FDG) positron emission tomography (PET) has selected utility in cerebral lymphoma, especially in diagnosis. Primary CNS lymphoma can sometimes present with atypical findings on MRI and FDG PET, such as disseminated disease, non-enhancing or ring-like enhancing lesions. The complementary strengths of PET and MRI have led to the development of combined PET-MR systems, which in some cases may improve lesion characterization and detection. By highlighting active developments in this field, including advanced MRI sequences, novel radiotracers, and potential imaging biomarkers, we aim to spur interest in sophisticated imaging approaches.
Collapse
Affiliation(s)
- Simone Krebs
- Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Julia G Barasch
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Robert J Young
- Neuroradiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Christian Grommes
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Heiko Schöder
- Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
9
|
Bairey O, Shargian-Alon L, Siegal T. Consolidation Treatment for Primary Central Nervous System Lymphoma: Which Modality for Whom? Acta Haematol 2020; 144:389-402. [PMID: 33242855 DOI: 10.1159/000511208] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/30/2020] [Indexed: 01/04/2023]
Abstract
Primary central nervous system lymphoma is a rare aggressive disease that largely affects elderly patients and is associated with poor prognosis. The optimal treatment approach is not yet defined and it consists of induction and consolidation phases. The combination of high-dose (HD) methotrexate-based chemotherapy followed by whole-brain radiotherapy (WBRT) prolongs the median progression-free survival (PFS) and overall survival 2- to 3-fold as compared to WBRT alone but is associated with significant delayed neurotoxicity. Alternative strategies are being investigated in order to improve disease outcomes and spare patients the neurocognitive side effects. These include reduced-dose WBRT, non-myeloablative HD chemotherapy, or HD chemotherapy with autologous stem cell transplantation (HDC/ASCT). There are no randomized studies that compare all these consolidation regimens head to head but recently HDC/ASCT has been evaluated versus WBRT in prospective randomized studies. These studies proved that WBRT and HDC/ASCT yield similar 2-year PFS with preserved or improved cognitive function after HDC/ASCT. Yet, the proportion of patients treated with such intensive consolidation is low, both in real life and in specialized centers, leaving many unsettled issues. This review is appraising current dilemmas related to the choice of consolidating therapeutic modalities, their associated acute and delayed toxicity, and future prospects for alternative approaches in the elderly.
Collapse
Affiliation(s)
- Osnat Bairey
- Institute of Hematology, Davidoff Cancer Center, Rabin Medical Center, Petach Tikva and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel,
| | - Liat Shargian-Alon
- Institute of Hematology, Davidoff Cancer Center, Rabin Medical Center, Petach Tikva and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tali Siegal
- Neuro-Oncology, Davidoff Cancer Center, Rabin Medical Center, Petah Tiqva, Israel
| |
Collapse
|