1
|
Goyal M, Tomar A, Madhwal S, Mukherjee T. Blood progenitor redox homeostasis through olfaction-derived systemic GABA in hematopoietic growth control in Drosophila. Development 2022; 149:273541. [PMID: 34850846 PMCID: PMC8733872 DOI: 10.1242/dev.199550] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 09/24/2021] [Indexed: 12/20/2022]
Abstract
The role of reactive oxygen species (ROS) in myeloid development is well established. However, its aberrant generation alters hematopoiesis. Thus, a comprehensive understanding of events controlling ROS homeostasis forms the central focus of this study. We show that, in homeostasis, myeloid-like blood progenitor cells of the Drosophila larvae, which reside in a specialized hematopoietic organ termed the lymph gland, use TCA to generate ROS. However, excessive ROS production leads to lymph gland growth retardation. Therefore, to moderate blood progenitor ROS, Drosophila larvae rely on olfaction and its downstream systemic GABA. GABA internalization and its breakdown into succinate by progenitor cells activates pyruvate dehydrogenase kinase (PDK), which controls inhibitory phosphorylation of pyruvate dehydrogenase (PDH). PDH is the rate-limiting enzyme that connects pyruvate to the TCA cycle and to oxidative phosphorylation. Thus, GABA metabolism via PDK activation maintains TCA activity and blood progenitor ROS homeostasis, and supports normal lymph gland growth. Consequently, animals that fail to smell also fail to sustain TCA activity and ROS homeostasis, which leads to lymph gland growth retardation. Overall, this study describes the requirement of animal odor-sensing and GABA in myeloid ROS regulation and hematopoietic growth control. Summary: Ablation of olfactory receptor neurons reveals that odor-sensing and GABA are involved in myeloid reactive oxygen species regulation and hematopoietic growth control.
Collapse
Affiliation(s)
- Manisha Goyal
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK, Bellary Road, Bangalore 560065, India.,The University of Trans-Disciplinary Health Sciences and Technology (TDU), Bengaluru, Karnataka 560064, India
| | - Ajay Tomar
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK, Bellary Road, Bangalore 560065, India.,The University of Trans-Disciplinary Health Sciences and Technology (TDU), Bengaluru, Karnataka 560064, India
| | - Sukanya Madhwal
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK, Bellary Road, Bangalore 560065, India.,Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Tina Mukherjee
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK, Bellary Road, Bangalore 560065, India
| |
Collapse
|
2
|
Zhang Y, Yang Y, Xu M, Zheng J, Xu Y, Chen G, Guo Q, Tian W, Guo W. The Dual Effects of Reactive Oxygen Species on the Mandibular Alveolar Bone Formation in SOD1 Knockout Mice: Promotion or Inhibition. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8847140. [PMID: 33613826 PMCID: PMC7878083 DOI: 10.1155/2021/8847140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 12/14/2020] [Accepted: 01/15/2021] [Indexed: 02/05/2023]
Abstract
The status of reactive oxygen species (ROS) correlates closely with the normal development of the oral and maxillofacial tissues. Oxidative stress caused by ROS accumulation not only affects the development of enamel and dentin but also causes pathological changes in periodontal tissues (periodontal ligament and alveolar bone) that surround the root of the tooth. Although previous studies have shown that ROS accumulation plays a pathologic role in some oral and maxillofacial tissues, the effects of ROS on alveolar bone development remain unclear. In this study, we focused on mandibular alveolar bone development of mice deficient in superoxide dismutase1 (SOD1). Analyses were performed using microcomputerized tomography (micro-CT), TRAP staining, immunohistochemical (IHC) staining, and enzyme-linked immunosorbent assay (ELISA). We found for the first time that slightly higher ROS in mandibular alveolar bone of SOD1(-/-) mice at early ages (2-4 months) caused a distinct enlargement in bone size and increased bone volume fraction (BV/TV), trabecular thickness (Tb.Th), and expression of alkaline phosphatase (ALP), Runt-related transcription factor 2 (Runx2), and osteopontin (OPN). With ROS accumulation to oxidative stress level, increased trabecular bone separation (Tb.Sp) and decreased expression of ALP, Runx2, and OPN were found in SOD1(-/-) mice at 6 months. Additionally, dosing with N-acetylcysteine (NAC) effectively mitigated bone loss and normalized expression of ALP, Runx2, and OPN. These results indicate that redox imbalance caused by SOD1 deficiency has dual effects (promotion or inhibition) on mandibular alveolar bone development, which is closely related to the concentration of ROS and the stage of growth. We present a valuable model here for investigating the effects of ROS on mandibular alveolar bone formation and highlight important roles of ROS in regulating tissue development and pathological states, illustrating the complexity of the redox signal.
Collapse
Affiliation(s)
- Yunyan Zhang
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuzhi Yang
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mingxue Xu
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jingwen Zheng
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuchan Xu
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Guoqing Chen
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qiang Guo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Weidong Tian
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Weihua Guo
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Obradovic M, Essack M, Zafirovic S, Sudar‐Milovanovic E, Bajic VP, Van Neste C, Trpkovic A, Stanimirovic J, Bajic VB, Isenovic ER. Redox control of vascular biology. Biofactors 2020; 46:246-262. [PMID: 31483915 PMCID: PMC7187163 DOI: 10.1002/biof.1559] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 08/14/2019] [Indexed: 12/12/2022]
Abstract
Redox control is lost when the antioxidant defense system cannot remove abnormally high concentrations of signaling molecules, such as reactive oxygen species (ROS). Chronically elevated levels of ROS cause oxidative stress that may eventually lead to cancer and cardiovascular and neurodegenerative diseases. In this review, we focus on redox effects in the vascular system. We pay close attention to the subcompartments of the vascular system (endothelium, smooth muscle cell layer) and give an overview of how redox changes influence those different compartments. We also review the core aspects of redox biology, cardiovascular physiology, and pathophysiology. Moreover, the topic-specific knowledgebase DES-RedoxVasc was used to develop two case studies, one focused on endothelial cells and the other on the vascular smooth muscle cells, as a starting point to possibly extend our knowledge of redox control in vascular biology.
Collapse
Affiliation(s)
- Milan Obradovic
- Laboratory of Radiobiology and Molecular GeneticsVinca Institute of Nuclear Sciences, University of BelgradeBelgradeSerbia
| | - Magbubah Essack
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE)ThuwalKingdom of Saudi Arabia
| | - Sonja Zafirovic
- Laboratory of Radiobiology and Molecular GeneticsVinca Institute of Nuclear Sciences, University of BelgradeBelgradeSerbia
| | - Emina Sudar‐Milovanovic
- Laboratory of Radiobiology and Molecular GeneticsVinca Institute of Nuclear Sciences, University of BelgradeBelgradeSerbia
| | - Vladan P. Bajic
- Laboratory of Radiobiology and Molecular GeneticsVinca Institute of Nuclear Sciences, University of BelgradeBelgradeSerbia
| | - Christophe Van Neste
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE)ThuwalKingdom of Saudi Arabia
| | - Andreja Trpkovic
- Laboratory of Radiobiology and Molecular GeneticsVinca Institute of Nuclear Sciences, University of BelgradeBelgradeSerbia
| | - Julijana Stanimirovic
- Laboratory of Radiobiology and Molecular GeneticsVinca Institute of Nuclear Sciences, University of BelgradeBelgradeSerbia
| | - Vladimir B. Bajic
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE)ThuwalKingdom of Saudi Arabia
| | - Esma R. Isenovic
- Laboratory of Radiobiology and Molecular GeneticsVinca Institute of Nuclear Sciences, University of BelgradeBelgradeSerbia
| |
Collapse
|
5
|
Vecchio G, Galeone A, Brunetti V, Maiorano G, Sabella S, Cingolani R, Pompa PP. Concentration-dependent, size-independent toxicity of citrate capped AuNPs in Drosophila melanogaster. PLoS One 2012; 7:e29980. [PMID: 22238688 PMCID: PMC3251612 DOI: 10.1371/journal.pone.0029980] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 12/08/2011] [Indexed: 02/06/2023] Open
Abstract
The expected potential benefits promised by nanotechnology in various fields have led to a rapid increase of the presence of engineered nanomaterials in a high number of commercial goods. This is generating increasing questions about possible risks for human health and environment, due to the lack of an in-depth assessment of the physical/chemical factors responsible for their toxic effects. In this work, we evaluated the toxicity of monodisperse citrate-capped gold nanoparticles (AuNPs) of different sizes (5, 15, 40, and 80 nm) in the model organism Drosophila melanogaster, upon ingestion. To properly evaluate and distinguish the possible dose- and/or size-dependent toxicity of the AuNPs, we performed a thorough assessment of their biological effects, using two different dose-metrics. In the first approach, we kept constant the total surface area of the differently sized AuNPs (Total Exposed Surface area approach, TES), while, in the second approach, we used the same number concentration of the four different sizes of AuNPs (Total Number of Nanoparticles approach, TNN). We observed a significant AuNPs-induced toxicity in vivo, namely a strong reduction of Drosophila lifespan and fertility performance, presence of DNA fragmentation, as well as a significant modification in the expression levels of genes involved in stress responses, DNA damage recognition and apoptosis pathway. Interestingly, we found that, within the investigated experimental conditions, the toxic effects in the exposed organisms were directly related to the concentration of the AuNPs administered, irrespective of their size.
Collapse
Affiliation(s)
- Giuseppe Vecchio
- Italian Institute of Technology, Center for Bio-Molecular , Arnesano (Lecce), ItalyNanotechnologies@UniLe
- * E-mail: (PPP); (GV)
| | - Antonio Galeone
- Italian Institute of Technology, Center for Bio-Molecular , Arnesano (Lecce), ItalyNanotechnologies@UniLe
| | - Virgilio Brunetti
- Italian Institute of Technology, Center for Bio-Molecular , Arnesano (Lecce), ItalyNanotechnologies@UniLe
| | - Gabriele Maiorano
- Italian Institute of Technology, Center for Bio-Molecular , Arnesano (Lecce), ItalyNanotechnologies@UniLe
| | - Stefania Sabella
- Italian Institute of Technology, Center for Bio-Molecular , Arnesano (Lecce), ItalyNanotechnologies@UniLe
| | - Roberto Cingolani
- Italian Institute of Technology, Central Research Laboratories, Genova, Italy
| | - Pier Paolo Pompa
- Italian Institute of Technology, Center for Bio-Molecular , Arnesano (Lecce), ItalyNanotechnologies@UniLe
- * E-mail: (PPP); (GV)
| |
Collapse
|