1
|
Levy I, Arvidson R. Cephalic ganglia transcriptomics of the American cockroach Periplaneta americana (Blattodea: Blattidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2024; 24:12. [PMID: 39688382 DOI: 10.1093/jisesa/ieae113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/19/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024]
Abstract
The American cockroach Periplaneta americana (L.) (Blattodea, Blattidae) has been a model organism for biochemical and physiological study for almost a century, however, its use does not benefit from the genetic tools found in key model species such as Drosophila melanogaster. To facilitate the use of the cockroach as a model system in neuroscience and to serve as a foundation for functional and translational experimentation, a transcriptome of the cephalic ganglia was assembled and annotated, and differential expression profiles between these ganglia were assessed. The transcriptome assembly yielded >400 k transcripts, with >40 k putative coding sequences. Gene ontology and protein domain searches indicate the cerebral and gnathal ganglia (GNG) have distinct genetic expression profiles. The developmental Toll signaling pathway appears to be active in the adult central nervous system (CNS), which may suggest a separate role for this pathway besides innate immune activation or embryonic development. The catabolic glycolytic and citric acid cycle enzymes are well represented in both ganglia, but key enzymes are more highly expressed in the GNG. Both ganglia express gluconeogenic and trehaloneogenic enzymes, suggesting a larger role of the CNS in regulating hemolymph sugar homeostasis than previously appreciated. The annotation and quantification of the cephalic ganglia transcriptome reveal both canonical and novel pathways in signaling and metabolism in an adult insect and lay a foundation for future functional and genetic analysis.
Collapse
Affiliation(s)
- Ilana Levy
- Undergraduate Program in Biochemistry, Department of Biochemistry, Case Western Reserve University, Cleveland, OH, USA
| | - Ryan Arvidson
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
2
|
Lagunas-Rangel FA. G protein-coupled receptors that influence lifespan of human and animal models. Biogerontology 2021; 23:1-19. [PMID: 34860303 PMCID: PMC8888397 DOI: 10.1007/s10522-021-09945-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/22/2021] [Indexed: 12/16/2022]
Abstract
Humanity has always sought to live longer and for this, multiple strategies have been tried with varying results. In this sense, G protein-coupled receptors (GPCRs) may be a good option to try to prolong our life while maintaining good health since they have a substantial participation in a wide variety of processes of human pathophysiology and are one of the main therapeutic targets. In this way, we present the analysis of a series of GPCRs whose activity has been shown to affect the lifespan of animal and human models, and in which we put a special interest in describing the molecular mechanisms involved. Our compilation of data revealed that the mechanisms most involved in the role of GPCRs in lifespan are those that mimic dietary restriction, those related to insulin signaling and the AMPK and TOR pathways, and those that alter oxidative homeostasis and severe and/or chronic inflammation. We also discuss the possibility of using agonist or antagonist drugs, depending on the beneficial or harmful effects of each GPCR, in order to prolong people's lifespan and healthspan.
Collapse
|
3
|
Cao C, Sun L, Du H, Moural TW, Bai H, Liu P, Zhu F. Physiological functions of a methuselah-like G protein coupled receptor in Lymantria dispar Linnaeus. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 160:1-10. [PMID: 31519242 DOI: 10.1016/j.pestbp.2019.07.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 06/13/2019] [Accepted: 07/03/2019] [Indexed: 06/10/2023]
Abstract
Insect G protein coupled receptors (GPCRs) have been identified as a highly attractive target for new generation insecticides discovery due to their critical physiological functions. However, few insect GPCRs have been functionally characterized. Here, we cloned the full length of a methuselah-like GPCR gene (Ldmthl1) from the Asian gypsy moth, Lymantria dispar. We then characterized the secondary and tertiary structures of Ldmthl1. We also predicted the global structure of this insect GPCR protein which is composed of three major domains. RNA interference of Ldmthl1 resulted in a reduction of gypsy moths' resistance to deltamethrin and suppressed expression of downstream stress-associated genes, such as P450s, glutathione S transferases, and heat shock proteins. The function of Ldmthl1 was further investigated using transgenic lines of Drosophila melanogaster. Drosophila with overexpression of Ldmthl1 showed significantly longer lifespan than control flies. Taken together, our studies revealed that the physiological functions of Ldmthl1 in L. dispar are associated with longevity and resistance to insecticide stresses. Potentially, Ldmthl1 can be used as a target for new insecticide discovery in order to manage this notorious forest pest.
Collapse
Affiliation(s)
- Chuanwang Cao
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin 150040, People's Republic of China
| | - Lili Sun
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin 150040, People's Republic of China
| | - Hui Du
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin 150040, People's Republic of China
| | - Timothy W Moural
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
| | - Hua Bai
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Peng Liu
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin 150040, People's Republic of China
| | - Fang Zhu
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
4
|
Santana RAG, Oliveira MC, Cabral I, Junior RCAS, de Sousa DRT, Ferreira L, Lacerda MVG, Monteiro WM, Abrantes P, Guerra MDGVB, Silveira H. Anopheles aquasalis transcriptome reveals autophagic responses to Plasmodium vivax midgut invasion. Parasit Vectors 2019; 12:261. [PMID: 31126324 PMCID: PMC6534896 DOI: 10.1186/s13071-019-3506-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 05/14/2019] [Indexed: 01/23/2023] Open
Abstract
Background Elimination of malaria depends on mastering transmission and understanding the biological basis of Plasmodium infection in the vector. The first mosquito organ to interact with the parasite is the midgut and its transcriptomic characterization during infection can reveal effective antiplasmodial responses able to limit the survival of the parasite. The vector response to Plasmodium vivax is not fully characterized, and its specificities when compared with other malaria parasites can be of fundamental interest for specific control measures. Methods Experimental infections were performed using a membrane-feeding device. Three groups were used: P. vivax-blood-fed, blood-fed on inactivated gametocytes, and unfed mosquitoes. Twenty-four hours after feeding, the mosquitoes were dissected and the midgut collected for transcriptomic analysis using RNAseq. Nine cDNA libraries were generated and sequenced on an Illumina HiSeq2500. Readings were checked for quality control and analysed using the Trinity platform for de novo transcriptome assembly. Transcript quantification was performed and the transcriptome was functionally annotated. Differential expression gene analysis was carried out. The role of the identified mechanisms was further explored using functional approaches. Results Forty-nine genes were identified as being differentially expressed with P. vivax infection: 34 were upregulated and 15 were downregulated. Half of the P. vivax-related differentially expressed genes could be related to autophagy; therefore, the effect of the known inhibitor (wortmannin) and activator (spermidine) was tested on the infection outcome. Autophagic activation significantly reduced the intensity and prevalence of infection. This was associated with transcription alterations of the autophagy regulating genes Beclin, DRAM and Apg8. Conclusions Our data indicate that P. vivax invasion of An. aquasalis midgut epithelium triggers an autophagic response and its activation reduces infection. This suggests a novel mechanism that mosquitoes can use to fight Plasmodium infection. Electronic supplementary material The online version of this article (10.1186/s13071-019-3506-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rosa Amélia Gonçalves Santana
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas/Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
| | - Maurício Costa Oliveira
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas/Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
| | - Iria Cabral
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas/Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
| | - Rubens Celso Andrade Silva Junior
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas/Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
| | - Débora Raysa Teixeira de Sousa
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas/Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
| | - Lucas Ferreira
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas/Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
| | - Marcus Vinícius Guimarães Lacerda
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas/Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil.,Instituto Leônidas & Maria Deane, Fundação Oswaldo Cruz, Manaus, Brazil
| | - Wuelton Marcelo Monteiro
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas/Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
| | - Patrícia Abrantes
- Instituto de Higiene e Medicina Tropical, Global Health and Tropical Medicine, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Maria das Graças Vale Barbosa Guerra
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas/Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
| | - Henrique Silveira
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas/Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil. .,Instituto de Higiene e Medicina Tropical, Global Health and Tropical Medicine, Universidade Nova de Lisboa, Lisboa, Portugal.
| |
Collapse
|
5
|
Friedrich M, Chahine H, Al-Jageta C, Badreddine H. Massive parallel expansions of Methuselah/Methuselah-like receptors in schizophoran Diptera. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2018; 330:384-389. [PMID: 30058118 DOI: 10.1002/jez.b.22813] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/14/2018] [Accepted: 06/11/2018] [Indexed: 01/16/2023]
Abstract
The Methuselah/Methuselah-like (Mth/Mthl) family of G-protein coupled receptors (GPCRs) is represented by 16 homologs in the fruit fly Drosophila melanogaster. Three of them have thus far been functionally characterized and found to play critical roles in cell adhesion, immunity, lifespan, and oxidative stress regulation. Evolutionary studies have shown that the large number of D. melanogaster Mth/Mthl GPCRs arose by at least two rounds of gene duplications. The first produced the "mth superclade" subfamily and was followed by the expansion of the "melanogaster subgroup" cluster within the "mth superclade" of Mth/Mthl GPCRs. The adaptive significance of the Mth/Mthl receptor repertoire expansion in Drosophila remains elusive. Studying the Mth/Mthl gene family content in newly available dipteran genomes, we find that the first expansion of the mthl superclade predates the diversification of schizophoran Diptera approximately 65 million years ago. Unexpectedly, we further find that the subsequent expansion of the melanogaster subgroup cluster was paralleled by independent mth superclade Mth/Mthl GPCR expansions in other schizophoran clades (Muscidae and Tephritidae). Our study thus reveals an even more dynamic diversification of mth superclade GPCRs than previously appreciated and linked to the emergence of schizophoran flies, the most dramatic radiation in the dipteran tree of life.
Collapse
Affiliation(s)
- Markus Friedrich
- Department of Biological Sciences, Wayne State University, Detroit, Michigan.,Department of Anatomy and Cell Biology, School of Medicine, Wayne State University, Detroit, Michigan
| | - Hanady Chahine
- Department of Biological Sciences, Wayne State University, Detroit, Michigan
| | - Cristina Al-Jageta
- Department of Biological Sciences, Wayne State University, Detroit, Michigan
| | - Hamzah Badreddine
- Department of Biological Sciences, Wayne State University, Detroit, Michigan
| |
Collapse
|
6
|
Zhao XM, Li S. HISP: a hybrid intelligent approach for identifying directed signaling pathways. J Mol Cell Biol 2018; 9:453-462. [DOI: 10.1093/jmcb/mjx054] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 12/20/2017] [Indexed: 01/15/2023] Open
Affiliation(s)
- Xing-Ming Zhao
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
| | - Shan Li
- Department of Mathematics, Shanghai University, Shanghai 200444, China
| |
Collapse
|
7
|
Friedrich M, Jones JW. Gene Ages, Nomenclatures, and Functional Diversification of the Methuselah/Methuselah-Like GPCR Family in Drosophila and Tribolium. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2017; 326:453-463. [PMID: 28074535 DOI: 10.1002/jez.b.22721] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 11/14/2016] [Accepted: 12/02/2016] [Indexed: 12/31/2022]
Abstract
Affecting lifespan regulation and oxidative stress resistance, the G-protein coupled receptor (GPCR) gene methuselah (mth) plays important roles in the life history of Drosophila melanogaster. Substantial progress has been made in elucidating the molecular pathways by which mth affects these traits, yet conflicting ideas exist as to how old these genetic interactions are as well as how old the mth gene itself is. Root to these issues is the complex gene family history of the Mth/Mthl GPCR family, which experienced independent expansions in a variety of animal clades, leading to at least six subfamilies in insects. Within insects, drosophilid flies stand out by possessing up to three times more Mth/Mthl receptors due to the expansion of a single subfamily, the mth superclade subfamily, which contains an even younger subfamily introduced here as the melanogaster subgroup subfamily. As a result, most of the 16 Mth/Mthl receptors of D. melanogaster are characterized by n:1 orthology relationships to singleton mth superclade homologs in nondrosophilid species. This challenge is exacerbated by the inconsistent naming of Mth/Mthl orthologs across species. To consolidate this situation, we review established ortholog relationships among insect Mth/Mthl receptors, clarify the gene nomenclatures in two important satellite model species, the fruit fly relative D. virilis and the red flour beetle Tribolium castaneum, and discuss the genetic and functional evolution of the D. melanogaster Mth GPCR.
Collapse
Affiliation(s)
- Markus Friedrich
- Department of Biological Sciences, Wayne State University, Detroit, Michigan.,Department of Anatomy and Cell Biology, School of Medicine, Wayne State University, Detroit, Michigan
| | | |
Collapse
|
8
|
Methuselah/Methuselah-like G protein-coupled receptors constitute an ancient metazoan gene family. Sci Rep 2016; 6:21801. [PMID: 26915348 PMCID: PMC4768249 DOI: 10.1038/srep21801] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 02/01/2016] [Indexed: 01/09/2023] Open
Abstract
Inconsistent conclusions have been drawn regarding the phylogenetic age of the Methuselah/Methuselah-like (Mth/Mthl) gene family of G protein-coupled receptors, the founding member of which regulates development and lifespan in Drosophila. Here we report the results from a targeted homolog search of 39 holozoan genomes and phylogenetic analysis of the conserved seven transmembrane domain. Our findings reveal that the Mth/Mthl gene family is ancient, has experienced numerous extinction and expansion events during metazoan evolution, and acquired the current definition of the Methuselah ectodomain during its exceptional expansion in arthropods. In addition, our findings identify Mthl1, Mthl5, Mthl14, and Mthl15 as the oldest Mth/Mthl gene family paralogs in Drosophila. Future studies of these genes have the potential to define ancestral functions of the Mth/Mthl gene family.
Collapse
|