1
|
Marsh JW, Kirk C, Ley RE. Toward Microbiome Engineering: Expanding the Repertoire of Genetically Tractable Members of the Human Gut Microbiome. Annu Rev Microbiol 2023; 77:427-449. [PMID: 37339736 DOI: 10.1146/annurev-micro-032421-112304] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Genetic manipulation is necessary to interrogate the functions of microbes in their environments, such as the human gut microbiome. Yet, the vast majority of human gut microbiome species are not genetically tractable. Here, we review the hurdles to seizing genetic control of more species. We address the barriers preventing the application of genetic techniques to gut microbes and report on genetic systems currently under development. While methods aimed at genetically transforming many species simultaneously in situ show promise, they are unable to overcome many of the same challenges that exist for individual microbes. Unless a major conceptual breakthrough emerges, the genetic tractability of the microbiome will remain an arduous task. Increasing the list of genetically tractable organisms from the human gut remains one of the highest priorities for microbiome research and will provide the foundation for microbiome engineering.
Collapse
Affiliation(s)
- James W Marsh
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen, Germany;
| | - Christian Kirk
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen, Germany;
| | - Ruth E Ley
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen, Germany;
| |
Collapse
|
2
|
Vallecillo-Viejo IC, Voss G, Albertin CB, Liscovitch-Brauer N, Eisenberg E, Rosenthal JJC. Squid express conserved ADAR orthologs that possess novel features. Front Genome Ed 2023; 5:1181713. [PMID: 37342458 PMCID: PMC10278661 DOI: 10.3389/fgeed.2023.1181713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/15/2023] [Indexed: 06/23/2023] Open
Abstract
The coleoid cephalopods display unusually extensive mRNA recoding by adenosine deamination, yet the underlying mechanisms are not well understood. Because the adenosine deaminases that act on RNA (ADAR) enzymes catalyze this form of RNA editing, the structure and function of the cephalopod orthologs may provide clues. Recent genome sequencing projects have provided blueprints for the full complement of coleoid cephalopod ADARs. Previous results from our laboratory have shown that squid express an ADAR2 homolog, with two splice variants named sqADAR2a and sqADAR2b and that these messages are extensively edited. Based on octopus and squid genomes, transcriptomes, and cDNA cloning, we discovered that two additional ADAR homologs are expressed in coleoids. The first is orthologous to vertebrate ADAR1. Unlike other ADAR1s, however, it contains a novel N-terminal domain of 641 aa that is predicted to be disordered, contains 67 phosphorylation motifs, and has an amino acid composition that is unusually high in serines and basic amino acids. mRNAs encoding sqADAR1 are themselves extensively edited. A third ADAR-like enzyme, sqADAR/D-like, which is not orthologous to any of the vertebrate isoforms, is also present. Messages encoding sqADAR/D-like are not edited. Studies using recombinant sqADARs suggest that only sqADAR1 and sqADAR2 are active adenosine deaminases, both on perfect duplex dsRNA and on a squid potassium channel mRNA substrate known to be edited in vivo. sqADAR/D-like shows no activity on these substrates. Overall, these results reveal some unique features in sqADARs that may contribute to the high-level RNA recoding observed in cephalopods.
Collapse
Affiliation(s)
| | - Gjendine Voss
- The Eugene Bell Center, Marine Biological Laboratory, Woods Hole, MA, United States
| | - Caroline B. Albertin
- The Eugene Bell Center, Marine Biological Laboratory, Woods Hole, MA, United States
| | - Noa Liscovitch-Brauer
- Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
| | - Eli Eisenberg
- Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
| | | |
Collapse
|
3
|
Wang YM, Ye LQ, Wang MS, Zhang JJ, Khederzadeh S, Irwin DM, Ren XD, Zhang YP, Wu DD. Unveiling the functional and evolutionary landscape of RNA editing in chicken using genomics and transcriptomics. Zool Res 2022; 43:1011-1022. [PMID: 36266925 PMCID: PMC9700494 DOI: 10.24272/j.issn.2095-8137.2022.331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/17/2022] [Indexed: 09/10/2024] Open
Abstract
The evolutionary and functional features of RNA editing are well studied in mammals, cephalopods, and insects, but not in birds. Here, we integrated transcriptomic and whole-genomic analyses to exhaustively characterize the expansive repertoire of adenosine-to-inosine (A-to-I) RNA editing sites (RESs) in the chicken. In addition, we investigated the evolutionary status of the chicken editome as a potential mechanism of domestication. We detected the lowest editing level in the liver of chickens, compared to muscles in humans, and found higher editing activity and specificity in the brain than in non-neural tissues, consistent with the brain's functional complexity. To a certain extent, specific editing activity may account for the specific functions of tissues. Our results also revealed that sequences critical to RES secondary structures remained conserved within avian evolution. Furthermore, the RNA editome was shaped by purifying selection during chicken domestication and most RESs may have served as a selection pool for a few functional RESs involved in chicken domestication, including evolution of nervous and immune systems. Regulation of RNA editing in chickens by adenosine deaminase acting on RNA (ADAR) enzymes may be affected by non-ADAR factors whose expression levels changed widely after ADAR knockdown. Collectively, we provide comprehensive lists of candidate RESs and non-ADAR-editing regulators in the chicken, thus contributing to our current understanding of the functions and evolution of RNA editing in animals.
Collapse
Affiliation(s)
- Yun-Mei Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Ling-Qun Ye
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Ming-Shan Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- Department of Ecology and Evolutionary Biology, Howard Hughes Medical Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Jin-Jin Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Saber Khederzadeh
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - David M Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Xiao-Die Ren
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China. E-mail:
| | - Dong-Dong Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China. E-mail:
| |
Collapse
|
4
|
Zhang W, Wang W, Zhao M, Turck CW, Zhu Y, Wang GZ. Rapid Body-Wide Transcriptomic Turnover During Rhesus Macaque Perinatal Development. Front Physiol 2021; 12:690540. [PMID: 34177627 PMCID: PMC8223001 DOI: 10.3389/fphys.2021.690540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 05/17/2021] [Indexed: 11/13/2022] Open
Abstract
An hourglass cup-shape pattern of regulation at the molecular level was detected during the development of the primate brain. Specifically, a peak of temporally differentially expressed genes around the time of birth has been observed in the human brain. However, to what extend this peak of regulation exists among species has not been investigated in great detail. Here, by integrating multiple large-scale transcriptome data from rhesus macaques, we confirmed that a similar differential expression peak exists during the development of the macaque brain. We also found that a similar peak exists during the development of other organs, such as liver, testis, kidney and heart. Furthermore, we found that distinct pathways are regulated in the peak period of those organs. Our results highlight the importance of co-evolution of diverse organs during critical periods of perinatal development in primates.
Collapse
Affiliation(s)
- Wenqian Zhang
- School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Wei Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Manman Zhao
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Christoph W Turck
- Max Planck Institute of Psychiatry, Proteomics and Biomarkers, Munich, Germany
| | - Ying Zhu
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Guang-Zhong Wang
- School of Life Sciences, Guizhou Normal University, Guiyang, China.,CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
5
|
Herbrechter R, Hube N, Buchholz R, Reiner A. Splicing and editing of ionotropic glutamate receptors: a comprehensive analysis based on human RNA-Seq data. Cell Mol Life Sci 2021; 78:5605-5630. [PMID: 34100982 PMCID: PMC8257547 DOI: 10.1007/s00018-021-03865-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/12/2021] [Accepted: 05/22/2021] [Indexed: 12/11/2022]
Abstract
Ionotropic glutamate receptors (iGluRs) play key roles for signaling in the central nervous system. Alternative splicing and RNA editing are well-known mechanisms to increase iGluR diversity and to provide context-dependent regulation. Earlier work on isoform identification has focused on the analysis of cloned transcripts, mostly from rodents. We here set out to obtain a systematic overview of iGluR splicing and editing in human brain based on RNA-Seq data. Using data from two large-scale transcriptome studies, we established a workflow for the de novo identification and quantification of alternative splice and editing events. We detected all canonical iGluR splice junctions, assessed the abundance of alternative events described in the literature, and identified new splice events in AMPA, kainate, delta, and NMDA receptor subunits. Notable events include an abundant transcript encoding the GluA4 amino-terminal domain, GluA4-ATD, a novel C-terminal GluD1 (delta receptor 1) isoform, GluD1-b, and potentially new GluK4 and GluN2C isoforms. C-terminal GluN1 splicing may be controlled by inclusion of a cassette exon, which shows preference for one of the two acceptor sites in the last exon. Moreover, we identified alternative untranslated regions (UTRs) and species-specific differences in splicing. In contrast, editing in exonic iGluR regions appears to be mostly limited to ten previously described sites, two of which result in silent amino acid changes. Coupling of proximal editing/editing and editing/splice events occurs to variable degree. Overall, this analysis provides the first inventory of alternative splicing and editing in human brain iGluRs and provides the impetus for further transcriptome-based and functional investigations.
Collapse
Affiliation(s)
- Robin Herbrechter
- Department of Biology and Biotechnology, Ruhr University Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| | - Nadine Hube
- Department of Biology and Biotechnology, Ruhr University Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| | - Raoul Buchholz
- Department of Biology and Biotechnology, Ruhr University Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| | - Andreas Reiner
- Department of Biology and Biotechnology, Ruhr University Bochum, Universitätsstrasse 150, 44801, Bochum, Germany.
| |
Collapse
|
6
|
Xu HB, Li YX, Li Y, Otecko NO, Zhang YP, Mao B, Wu DD. Origin of new genes after zygotic genome activation in vertebrate. J Mol Cell Biol 2019; 10:139-146. [PMID: 29281098 DOI: 10.1093/jmcb/mjx057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 12/19/2017] [Indexed: 12/12/2022] Open
Abstract
New genes are drivers of evolutionary innovation and phenotypic evolution. Expression of new genes in early development raises the possibility that new genes could originate and be recruited for functions in embryonic development, but this remains undocumented. Here, based on temporal gene expression at different developmental stages in Xenopus tropicalis, we found that young protein-coding genes were significantly enriched for expression in developmental stages occurring after the midblastula transition (MBT), and displayed a decreasing trend in abundance in the subsequent stages after MBT. To complement the finding, we demonstrate essential functional attributes of a young orphan gene, named as Fog2, in morphological development. Our data indicate that new genes could originate after MBT and be recruited for functions in embryonic development, and thus provide insights for better understanding of the origin, evolution, and function of new genes.
Collapse
Affiliation(s)
- Hai-Bo Xu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,College of Life Science, Anhui University, Hefei, China
| | - Yong-Xin Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Yan Li
- State Key Laboratory for Conservation and Utilization of Bio-resource, Yunnan University, Kunming, China
| | - Newton O Otecko
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China.,State Key Laboratory for Conservation and Utilization of Bio-resource, Yunnan University, Kunming, China
| | - Bingyu Mao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Dong-Dong Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
7
|
Bitar M, Barry G. Multiple Innovations in Genetic and Epigenetic Mechanisms Cooperate to Underpin Human Brain Evolution. Mol Biol Evol 2019; 35:263-268. [PMID: 29177456 DOI: 10.1093/molbev/msx303] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Our knowledge of how the human brain differs from those of other species in terms of evolutionary adaptations and functionality is limited. Comparative genomics reveal valuable insight, especially the expansion of human-specific noncoding regulatory and repeat-containing regions. Recent studies add to our knowledge of evolving brain function by investigating cellular mechanisms such as protein emergence, extensive sequence editing, retrotransposon activity, dynamic epigenetic modifications, and multiple noncoding RNA functions. These findings present an opportunity to combine newly discovered genetic and epigenetic mechanisms with more established concepts into a more comprehensive picture to better understand the uniquely evolved human brain.
Collapse
Affiliation(s)
- Mainá Bitar
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Guy Barry
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| |
Collapse
|
8
|
Marsh JW, Hayward RJ, Shetty A, Mahurkar A, Humphrys MS, Myers GSA. Dual RNA-Seq of Chlamydia and Host Cells. Methods Mol Biol 2019; 2042:123-135. [PMID: 31385273 DOI: 10.1007/978-1-4939-9694-0_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
During the infection of a host cell by a bacterial pathogen, a cascading series of gene expression changes occurs as each organism manipulates or responds to the other via defense or survival strategies. Unraveling this complex interplay is key for our understanding of bacterial virulence and host response pathways for the development of novel therapeutics. Dual RNA sequencing (dual RNA-Seq) has recently been developed to simultaneously capture host and bacterial transcriptomes from an infected cell. Leveraging the sensitivity and resolution allowed by RNA-seq, dual RNA-Seq can be applied to any bacteria-eukaryotic host interaction. We pioneered dual RNA-Seq to simultaneously capture Chlamydia and host expression profiles during an in vitro infection as proof of principle. Here we provide a detailed laboratory protocol and bioinformatics analysis guidelines for dual RNA-seq experiments focusing on Chlamydia as the organism of interest.
Collapse
Affiliation(s)
- James W Marsh
- The iThree Institute, University of Technology Sydney, Ultimo, NSW, Australia
- Department of Microbiome Science, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Regan J Hayward
- The iThree Institute, University of Technology Sydney, Ultimo, NSW, Australia
| | - Amol Shetty
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MA, USA
| | - Anup Mahurkar
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MA, USA
| | - Michael S Humphrys
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MA, USA
| | - Garry S A Myers
- The iThree Institute, University of Technology Sydney, Ultimo, NSW, Australia.
| |
Collapse
|
9
|
Neueder A. RNA-Mediated Disease Mechanisms in Neurodegenerative Disorders. J Mol Biol 2018; 431:1780-1791. [PMID: 30597161 DOI: 10.1016/j.jmb.2018.12.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/14/2018] [Accepted: 12/16/2018] [Indexed: 12/16/2022]
Abstract
RNA is accurately entangled in virtually all pathways that maintain cellular homeostasis. To name but a few, RNA is the "messenger" between DNA encoded information and the resulting proteins. Furthermore, RNAs regulate diverse processes by forming DNA::RNA or RNA::RNA interactions. Finally, RNA itself can be the scaffold for ribonucleoprotein complexes, for example, ribosomes or cellular bodies. Consequently, disruption of any of these processes can lead to disease. This review describes known and emerging RNA-based disease mechanisms like interference with regular splicing, the anomalous appearance of RNA-protein complexes and uncommon RNA species, as well as non-canonical translation. Due to the complexity and entanglement of the above-mentioned pathways, only few drugs are available that target RNA-based disease mechanisms. However, advances in our understanding how RNA is involved in and modulates cellular homeostasis might pave the way to novel treatments.
Collapse
Affiliation(s)
- Andreas Neueder
- Experimental Neurology, Department of Neurology, Ulm University, 89081 Ulm, Germany.
| |
Collapse
|
10
|
Zhang XH, Lian XD, Dai ZX, Zheng HY, Chen X, Zheng YT. α3-Deletion Isoform of HLA-A11 Modulates Cytotoxicity of NK Cells: Correlations with HIV-1 Infection of Cells. THE JOURNAL OF IMMUNOLOGY 2017; 199:2030-2042. [PMID: 28784847 DOI: 10.4049/jimmunol.1602183] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 07/14/2017] [Indexed: 01/16/2023]
Abstract
Alternative splicing occurs frequently in many genes, especially those involved in immunity. Unfortunately, the functions of many alternatively spliced molecules from immunologically relevant genes remain unknown. Classical HLA-I molecules are expressed on almost all nucleated cells and play a pivotal role in both innate and adaptive immunity. Although splice variants of HLA-I genes have been reported, the details of their functions have not been reported. In the current study, we determined the characteristics, expression, and function of a novel splice variant of HLA-A11 named HLA-A11svE4 HLA-A11svE4 is located on the cell surface without β2-microglobulin (β2m). Additionally, HLA-A11svE4 forms homodimers as well as heterodimers with HLA-A open conformers, instead of combining with β2m. Moreover, HLA-A11svE4 inhibits the activation of NK cells to protect target cells. Compared with β2m and HLA-A11, the heterodimer of HLA-A11svE4 and HLA-A11 protected target cells from lysis by NK cells more effectively. Furthermore, HLA-AsvE4 expression was upregulated by HIV-1 in vivo and by HSV, CMV, and hepatitis B virus in vitro. In addition, our findings indicated that HLA-A11svE4 molecules were functional in activating CD8+ T cells through Ag presentation. Taken together, these results suggested that HLA-A11svE4 can homodimerize and form a novel heterodimeric complex with HLA-A11 open conformers. Furthermore, the data are consistent with HLA-A11svE4 playing a role in the immune escape of HIV-1.
Collapse
Affiliation(s)
- Xi-He Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China; and
| | - Xiao-Dong Lian
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China; and
| | - Zheng-Xi Dai
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Hong-Yi Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Xin Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China; and
| | - Yong-Tang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China;
| |
Collapse
|
11
|
Ye LQ, Zhao H, Zhou HJ, Ren XD, Liu LL, Otecko NO, Wang ZB, Yang MM, Zeng L, Hu XT, Yao YG, Zhang YP, Wu DD. The RNA editome of Macaca mulatta and functional characterization of RNA editing in mitochondria. Sci Bull (Beijing) 2017; 62:820-830. [PMID: 36659315 DOI: 10.1016/j.scib.2017.05.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 05/09/2017] [Accepted: 05/16/2017] [Indexed: 01/21/2023]
Abstract
RNA editing was first discovered in mitochondrial RNA molecular. However, whether adenosine-to-inosine (A-to-I) RNA editing has functions in nuclear genes involved in mitochondria remains elusive. Here, we retrieved 707,246 A-to-I RNA editing sites in Macaca mulatta leveraging massive transcriptomes of 30 different tissues and genomes of nine tissues, together with the reported data, and found that A-to-I RNA editing occurred frequently in nuclear genes that have functions in mitochondria. The mitochondrial structure, the level of ATP production, and the expression of some key genes involved in mitochondrial function were dysregulated after knocking down the expression of ADAR1 and ADAR2, the key genes encoding the enzyme responsible for RNA editing. When investigating dynamic changes of RNA editing during brain development, an amino-acid-changing RNA editing site (I234/V) in MFN1, a mediator of mitochondrial fusion, was identified to be significantly correlated with age, and could influence the function of MFN1. When studying transcriptomes of brain disorder, we found that dysregulated RNA editing sites in autism were also enriched within genes having mitochondrial functions. These data indicated that RNA editing had a significant function in mitochondria via their influence on nuclear genes.
Collapse
Affiliation(s)
- Ling-Qun Ye
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Hui Zhao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China
| | - He-Jiang Zhou
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiao-Die Ren
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Lin-Lin Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China
| | - Newton O Otecko
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Zheng-Bo Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Min-Min Yang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Lin Zeng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Xin-Tian Hu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Kunming Primate Research Center of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China; Kunming Primate Research Center of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China.
| | - Dong-Dong Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China; Kunming Primate Research Center of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.
| |
Collapse
|
12
|
Dillman AA, Cookson MR, Galter D. ADAR2 affects mRNA coding sequence edits with only modest effects on gene expression or splicing in vivo. RNA Biol 2016; 13:15-24. [PMID: 26669816 DOI: 10.1080/15476286.2015.1110675] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Adenosine deaminases bind double stranded RNA and convert adenosine to inosine. Editing creates multiple isoforms of neurotransmitter receptors, such as with Gria2. Adar2 KO mice die of seizures shortly after birth, but if the Gria2 Q/R editing site is mutated to mimic the edited version then the animals are viable. We performed RNA-Seq on frontal cortices of Adar2(-/-) Gria2(R/R) mice and littermates. We found 56 editing sites with significantly diminished editing levels in Adar2 deficient animals with the majority in coding regions. Only two genes and 3 exons showed statistically significant differences in expression levels. This work illustrates that ADAR2 is important in site-specific changes of protein coding sequences but has relatively modest effects on gene expression and splicing in the adult mouse frontal cortex.
Collapse
Affiliation(s)
- Allissa A Dillman
- a Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health , Bethesda , MD , USA.,b Department of Neuroscience , Karolinska Institute , 171 77 Stockholm , Sweden.,c Center for Cancer Research, Laboratory of Receptor Biology and Gene Expression, National Cancer Institute , Bethesda , MD , USA
| | - Mark R Cookson
- a Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health , Bethesda , MD , USA
| | - Dagmar Galter
- b Department of Neuroscience , Karolinska Institute , 171 77 Stockholm , Sweden
| |
Collapse
|