1
|
Xi D, Sanbai GSD, Jiang M, Zhang Z, Sun T, Wang W, Guo Y. From Function to Mechanism: Unveiling the Role of Small Nucleolar Ribonucleic Acids in Digestive Tumours. Clin Genet 2025; 107:587-599. [PMID: 40051116 DOI: 10.1111/cge.14739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/10/2025] [Accepted: 02/24/2025] [Indexed: 05/06/2025]
Abstract
Small nucleolar ribonucleic acids (snoRNAs) have emerged as crucial regulators in various biological processes and have garnered significant attention for their potential roles in cancer. These noncoding ribonucleic acids (RNAs) primarily guide ribosomal RNA (rRNA) pseudouridylation and 2'-O-methylation modifications and exhibit stable expression in the serum, making them promising biomarkers and therapeutic targets. Digestive tract cancer poses a severe global health threat due to its high mortality rate and difficulty in early detection. Understanding the molecular mechanisms underlying tumor development is critical for improving diagnostic and therapeutic strategies. Small nucleolar RNAs, with their diverse functions and stable presence in biological fluids, offer a unique opportunity to address these challenges. Small nucleolar RNAs are a class of small noncoding RNAs mainly located in the nucleolus of eukaryotic cells. They play essential roles in the maturation and modification of rRNAs, transfer RNAs, and small nuclear RNAs. They also participate in alternative splicing regulation and exhibit microRNA-like functions, influencing various cellular processes. Abnormal expression of snoRNAs has been closely linked to the development, invasion, and metastasis of digestive system tumors. Given their stable expression in serum and the ability to function independently of host genes, snoRNAs hold great potential as biomarkers for early screening, prognosis prediction, and therapeutic targets in digestive system tumors. Their involvement in key signaling pathways and molecular mechanisms provides a foundation for developing targeted therapies and improving patient outcomes. This review highlights the significance of snoRNAs in digestive system tumors, their biological roles, connections to cancer progression, and potential clinical applications. Further exploration of snoRNAs is expected to provide new insights into the diagnosis and treatment of digestive system tumors.
Collapse
Affiliation(s)
- Dongxin Xi
- Guangzhou Medical University, Guangzhou, China
| | | | - Min Jiang
- Department of Pathology, Karamay Central Hospital, Karamay City, Xinjiang, China
| | - Zhihao Zhang
- Xinjiang Second Medical College, Karamay City, Xinjiang, China
| | - Taoran Sun
- Xinjiang Second Medical College, Karamay City, Xinjiang, China
| | - Weijia Wang
- Xinjiang Second Medical College, Karamay City, Xinjiang, China
| | - Yu Guo
- Department of Pathology, Xinjiang Second Medical College, Karamay City, Xinjiang, China
| |
Collapse
|
2
|
Arefnezhad R, Ashna S, Rezaei-Tazangi F, Arfazadeh SM, Seyedsalehie SS, Yeganeafrouz S, Aghaei M, Sanandaji M, Davoodi R, Abadi SRK, Vosough M. Noncoding RNAs and programmed cell death in hepatocellular carcinoma: Significant role of epigenetic modifications in prognosis, chemoresistance, and tumor recurrence rate. Cell Biol Int 2024; 48:556-576. [PMID: 38411312 DOI: 10.1002/cbin.12145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 01/26/2024] [Accepted: 02/09/2024] [Indexed: 02/28/2024]
Abstract
Hepatocellular carcinoma (HCC) is the most common type of liver cancer with a high death rate in the world. The molecular mechanisms related to the pathogenesis of HCC have not been precisely defined so far. Hence, this review aimed to address the potential cross-talk between noncoding RNAs (ncRNAs) and programmed cell death in HCC. All related papers in the English language up to June 2023 were collected and screened. The searched keywords in scientific databases, including Scopus, PubMed, and Google Scholar, were HCC, ncRNAs, Epigenetic, Programmed cell death, Autophagy, Apoptosis, Ferroptosis, Chemoresistance, Tumor recurrence, Prognosis, and Prediction. According to the reports, ncRNAs, comprising long ncRNAs, microRNAs, circular RNAs, and small nucleolar RNAs can affect cell proliferation, migration, invasion, and metastasis, as well as cell death-related processes, such as autophagy, ferroptosis, necroptosis, and apoptosis in HCC by regulating cancer-associated genes and signaling pathways, for example, phosphoinositide 3-kinase/Akt, extracellular signal-regulated kinase/MAPK, and Wnt/β-catenin signaling pathways. It seems that ncRNAs, as epigenetic regulators, can be utilized as biomarkers in diagnosis, prognosis, survival and recurrence rates prediction, chemoresistance, and evaluation of therapeutic response in HCC patients. However, more scientific evidence is suggested to be accomplished to confirm these results.
Collapse
Affiliation(s)
- Reza Arefnezhad
- Coenzyme R Research Institute, Tehran, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sara Ashna
- Student Research Committee, Islamic Azad University Science and Research Branch, Tehran, Iran
| | - Fatemeh Rezaei-Tazangi
- Department of Anatomy, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | | | - Seyede Shabnam Seyedsalehie
- Department of Pediatrics, Faculty of Medicine, Ahvaz Jundishapur, University of Medical Sciences, Ahvaz, Iran
| | - Shaghayegh Yeganeafrouz
- Department of Medical Science, Faculty of Medicine, Islamic Azad University, Medical branch, Tehran, Iran
| | - Melika Aghaei
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mandana Sanandaji
- Department of Physical Education and Sport Sciences, Tehran University, Tehran, Iran
| | | | | | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Institution for Laboratory Medicine, Karolinska Institutet, Experimental Cancer Medicine, Huddinge, Sweden
| |
Collapse
|
3
|
Lan YZ, Wu Z, Chen WJ, Fang ZX, Yu XN, Wu HT, Liu J. Small nucleolar RNA and its potential role in the oncogenesis and development of colorectal cancer. World J Gastroenterol 2024; 30:115-127. [PMID: 38312115 PMCID: PMC10835520 DOI: 10.3748/wjg.v30.i2.115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/21/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Small nucleolar RNAs (snoRNAs) represent a class of non-coding RNAs that play pivotal roles in post-transcriptional RNA processing and modification, thereby contributing significantly to the maintenance of cellular functions related to protein synthesis. SnoRNAs have been discovered to possess the ability to influence cell fate and alter disease progression, holding immense potential in controlling human diseases. It is suggested that the dysregulation of snoRNAs in cancer exhibits differential expression across various cancer types, stages, metastasis, treatment response and/or prognosis in patients. On the other hand, colorectal cancer (CRC), a prevalent malignancy of the digestive system, is characterized by high incidence and mortality rates, ranking as the third most common cancer type. Recent research indicates that snoRNA dysregulation is associated with CRC, as snoRNA expression significantly differs between normal and cancerous conditions. Consequently, assessing snoRNA expression level and function holds promise for the prognosis and diagnosis of CRC. Nevertheless, current comprehension of the potential roles of snoRNAs in CRC remains limited. This review offers a comprehensive survey of the aberrant regulation of snoRNAs in CRC, providing valuable insights into the discovery of novel biomarkers, therapeutic targets, and potential tools for the diagnosis and treatment of CRC and furnishing critical cues for advancing research into CRC and the judicious selection of therapeutic targets.
Collapse
Affiliation(s)
- Yang-Zheng Lan
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Zheng Wu
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Wen-Jia Chen
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Ze-Xuan Fang
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Xin-Ning Yu
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Hua-Tao Wu
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Jing Liu
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| |
Collapse
|
4
|
Zhang H, Liu X, Zhang W, Deng J, Lin C, Qi Z, Li Y, Gu Y, Wang Q, Shen L, Wang Z. Oncogene SCARNA12 as a potential diagnostic biomarker for colorectal cancer. MOLECULAR BIOMEDICINE 2023; 4:37. [PMID: 37907779 PMCID: PMC10618143 DOI: 10.1186/s43556-023-00147-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/10/2023] [Indexed: 11/02/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignant tumors of the digestive system, and represents a severe threat to the life and health of individuals. Increasing evidence supports the role of small nucleolar RNAs (snoRNAs) as critical regulatory gene in cancer development. Small Cajal body-specific RNAs (scaRNAs), a subtype of snoRNAs, are named for their subcellular localization within Cajal bodies. SCARNA12, which located at the intronic region of PHB2 in chromosome 12p13.31 with 270 nucleotides (nt) in length. It has been reported function as a diagnostic marker for cervical cancer. However, its biological functions and molecular mechanisms in CRC have yet to be elucidated. In this study, bioinformatics analysis revealed that SCARNA12 was highly expressed in CRC and positively correlated with poor prognosis in CRC patients. Additionally, SCARNA12 showed upregulated expression in CRC cell lines and clinical CRC tissue samples. Moreover, SCARNA12 overexpression in SW620 cells accelerated cell proliferation, suppressed the apoptosis rate, and enhanced tumorigenesis in vivo. The knockdown of SCARNA12 expression in HCT116 and HT29 cells resulted in contrasting effects. The functioning of SCARNA12 is mechanically independent of its host gene PHB2. Notably, the overexpression of SCARNA12 activated PI3K/AKT pathway in SW620 cells, and the malignancy degree of CRC cells was attenuated after treatment with MK2206 (a specific AKT inhibitor). Our findings demonstrated that SCARNA12 plays an oncogenic role in CRC progression and can be used as a potential diagnostic biomarker for CRC.
Collapse
Affiliation(s)
- Hong Zhang
- Graduate Collaborative Training Base of Academy of Military Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100039, China
| | - Xin Liu
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100039, China
| | - Wencheng Zhang
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100039, China
| | - Jiarong Deng
- Graduate Collaborative Training Base of Academy of Military Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100039, China
| | - Chuxian Lin
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100039, China
| | - Zhenhua Qi
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100039, China
| | - Yaqiong Li
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100039, China
| | - Yongqing Gu
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100039, China
| | - Qi Wang
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100039, China.
| | - Liping Shen
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100039, China.
| | - Zhidong Wang
- Graduate Collaborative Training Base of Academy of Military Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100039, China.
| |
Collapse
|
5
|
Wang Z, Li N, Cai P, Zhang C, Cao G, Yin J. Mechanism of HBx carcinogenesis interaction with non-coding RNA in hepatocellular carcinoma. Front Oncol 2023; 13:1249198. [PMID: 37746253 PMCID: PMC10517716 DOI: 10.3389/fonc.2023.1249198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/24/2023] [Indexed: 09/26/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is an extremely malignant tumor that affects individuals throughout the world. One of the main causes of HCC is hepatitis B virus (HBV). Therefore, it is crucial to understand the mechanisms underlying HBV carcinogenesis. Increasing evidence suggests that the HBV X protein (HBx), which is encoded by HBV, plays a significant role in cell apoptosis, DNA damage repair, and cell cycle regulation. This ultimately leads to the development of HCC. Additionally, recent studies have shown that non-coding RNA (ncRNA) also contributes to the carcinogenesis and pathogenesis of different of tumors. ncRNA plays a significant role in the formation of HCC by regulating the inflammatory signaling pathway, activating immune cells, and modifying epigenetics. However, it remains unclear whether ncRNA is involved in the regulation of the carcinogenic mechanisms of HBx. This article reviews the carcinogenic mechanism of HBx and its interaction with ncRNA, providing a novel strategy for the clinical diagnosis and treatment of HCC.
Collapse
Affiliation(s)
- Zhuoran Wang
- Department of Hepatic Surgery I (Ward I), Shanghai Eastern Hepatobiliary Surgery Hospital, Navy Medical University, Shanghai, China
| | - Nan Li
- Department of Hepatic Surgery I (Ward I), Shanghai Eastern Hepatobiliary Surgery Hospital, Navy Medical University, Shanghai, China
| | - Peng Cai
- Department of Epidemiology, Faculty of Navy Medicine, Navy Medical University, Shanghai, China
| | - Cunzhen Zhang
- Department of Hepatic Surgery I (Ward I), Shanghai Eastern Hepatobiliary Surgery Hospital, Navy Medical University, Shanghai, China
| | - Guangwen Cao
- Department of Epidemiology, Faculty of Navy Medicine, Navy Medical University, Shanghai, China
| | - Jianhua Yin
- Department of Epidemiology, Faculty of Navy Medicine, Navy Medical University, Shanghai, China
| |
Collapse
|
6
|
Kapinova A, Mazurakova A, Halasova E, Dankova Z, Büsselberg D, Costigliola V, Golubnitschaja O, Kubatka P. Underexplored reciprocity between genome-wide methylation status and long non-coding RNA expression reflected in breast cancer research: potential impacts for the disease management in the framework of 3P medicine. EPMA J 2023; 14:249-273. [PMID: 37275549 PMCID: PMC10236066 DOI: 10.1007/s13167-023-00323-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/04/2023] [Indexed: 06/07/2023]
Abstract
Breast cancer (BC) is the most common female malignancy reaching a pandemic scale worldwide. A comprehensive interplay between genetic alterations and shifted epigenetic regions synergistically leads to disease development and progression into metastatic BC. DNA and histones methylations, as the most studied epigenetic modifications, represent frequent and early events in the process of carcinogenesis. To this end, long non-coding RNAs (lncRNAs) are recognized as potent epigenetic modulators in pathomechanisms of BC by contributing to the regulation of DNA, RNA, and histones' methylation. In turn, the methylation status of DNA, RNA, and histones can affect the level of lncRNAs expression demonstrating the reciprocity of mechanisms involved. Furthermore, lncRNAs might undergo methylation in response to actual medical conditions such as tumor development and treated malignancies. The reciprocity between genome-wide methylation status and long non-coding RNA expression levels in BC remains largely unexplored. Since the bio/medical research in the area is, per evidence, strongly fragmented, the relevance of this reciprocity for BC development and progression has not yet been systematically analyzed. Contextually, the article aims at:consolidating the accumulated knowledge on both-the genome-wide methylation status and corresponding lncRNA expression patterns in BC andhighlighting the potential benefits of this consolidated multi-professional approach for advanced BC management. Based on a big data analysis and machine learning for individualized data interpretation, the proposed approach demonstrates a great potential to promote predictive diagnostics and targeted prevention in the cost-effective primary healthcare (sub-optimal health conditions and protection against the health-to-disease transition) as well as advanced treatment algorithms tailored to the individualized patient profiles in secondary BC care (effective protection against metastatic disease). Clinically relevant examples are provided, including mitochondrial health control and epigenetic regulatory mechanisms involved.
Collapse
Affiliation(s)
- Andrea Kapinova
- Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Alena Mazurakova
- Department of Anatomy, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Erika Halasova
- Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Zuzana Dankova
- Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Dietrich Büsselberg
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, 24144 Doha, Qatar
| | | | - Olga Golubnitschaja
- Predictive, Preventive, and Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| |
Collapse
|
7
|
Wang W, Zhang R, Feng N, Zhang L, Liu N. Overexpression of RBM34 Promotes Tumor Progression and Correlates with Poor Prognosis of Hepatocellular Carcinoma. J Clin Transl Hepatol 2023; 11:369-381. [PMID: 36643033 PMCID: PMC9817046 DOI: 10.14218/jcth.2022.00166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/07/2022] [Accepted: 06/16/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND AND AIMS Emerging evidence suggests that RNA-binding motif (RBM) proteins are involved in hepatocarcinogenesis and act either as oncogenes or tumor suppressors. The objective of this study was to investigate the role of RBM34, an RBM protein, in hepatocellular carcinoma (HCC). METHODS We first examined the expression of RBM34 across cancers. The correlation of RBM34 with clinicopathological features and the prognostic value of RBM34 for HCC was then investigated. Functional enrichment analysis of RBM34-related differentially expressed genes (DEGs) was performed to explore its biological function. RNA sequencing (RNA-seq) was applied to identify downstream genes and pathways affected upon RBM34 knockout. The correlation of RBM34 with immune characteristics was also analyzed. The oncogenic function of RBM34 was examined in in vitro and in vivo experiments. RESULTS RBM34 was highly expressed in hepatocellular carcinoma and correlated with poor clinicopathological features and prognosis. RBM34 was positively associated with tumor immune cell infiltration, biomarkers of immune cells, and immune checkpoint expression. A positive correlation was also observed between RBM34, T cell exhaustion, and regulatory T cell marker genes. Knockout of RBM34 significantly inhibited cell proliferation, migration, and xenograft tumor growth, and sensitized HCC cells to sorafenib treatment. RBM34 inhibition reduced FGFR2 expression and affected PI3K-AKT pathway activation in HCC cells. CONCLUSIONS Our study suggests that RBM34 may serve as a new prognostic marker and therapeutic target of HCC.
Collapse
Affiliation(s)
- Wei Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Rui Zhang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ning Feng
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Longzhen Zhang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Correspondence to: Nianli Liu and Longzhen Zhang, Cancer Institute of Xuzhou Medical University, No.84 West Huaihai Road, Xuzhou, Jiangsu 221000, China. ORCID: https://orcid.org/0000-0002-0602-6709 (NL). Tel/Fax: +86-516-5582530, E-mail: (NL), (LZ)
| | - Nianli Liu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Correspondence to: Nianli Liu and Longzhen Zhang, Cancer Institute of Xuzhou Medical University, No.84 West Huaihai Road, Xuzhou, Jiangsu 221000, China. ORCID: https://orcid.org/0000-0002-0602-6709 (NL). Tel/Fax: +86-516-5582530, E-mail: (NL), (LZ)
| |
Collapse
|
8
|
Radhakrishnan S, Martin CA, Rammohan A, Vij M, Chandrasekar M, Rela M. Significance of nucleologenesis, ribogenesis, and nucleolar proteome in the pathogenesis and recurrence of hepatocellular carcinoma. Expert Rev Gastroenterol Hepatol 2023; 17:363-378. [PMID: 36919496 DOI: 10.1080/17474124.2023.2191189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 03/11/2023] [Indexed: 03/16/2023]
Abstract
INTRODUCTION Emerging evidence suggests that enhanced ribosome biogenesis, increased size, and quantitative distribution of nucleoli are associated with dysregulated transcription, which in turn drives a cell into aberrant cellular proliferation and malignancy. Nucleolar alterations have been considered a prognostic histological marker for aggressive tumors. More recently, advancements in the understanding of chromatin network (nucleoplasm viscosity) regulated liquid-liquid phase separation mechanism of nucleolus formation and their multifunctional role shed light on other regulatory processes, apart from ribosomal biogenesis of the nucleolus. AREAS COVERED Using hepatocellular carcinoma as a model to study the role of nucleoli in tumor progression, we review the potential of nucleolus coalescence in the onset and development of tumors through non-ribosomal biogenesis pathways, thereby providing new avenues for early diagnosis and cancer therapy. EXPERT OPINION Molecular-based classifications have failed to identify the nucleolar-based molecular targets that facilitate cell-cycle progression. However, the algorithm-based tumor risk identification with high-resolution medical images suggests prominent nucleoli, karyotheca, and increased nucleus/cytoplasm ratio as largely associated with tumor recurrence. Nonetheless, the role of the non-ribosomal functions of nucleoli in tumorigenesis remains elusive. This clearly indicates the lacunae in the study of the nucleolar proteins pertaining to cancer. [Figure: see text].
Collapse
Affiliation(s)
| | | | - Ashwin Rammohan
- The Institute of Liver Disease & Transplantation, Dr. Rela Institute & Medical Centre, Chennai, India
| | - Mukul Vij
- Department of Pathology, Dr. Rela Institute & Medical Centre, Chennai, India
| | - Mani Chandrasekar
- Department of Oncology, Dr. Rela Institute & Medical Centre, Chennai, India
| | - Mohamed Rela
- Cell Laboratory, National Foundation for Liver Research, Chennai, India
- The Institute of Liver Disease & Transplantation, Dr. Rela Institute & Medical Centre, Chennai, India
| |
Collapse
|
9
|
Xiao H, Feng X, Liu M, Gong H, Zhou X. SnoRNA and lncSNHG: Advances of nucleolar small RNA host gene transcripts in anti-tumor immunity. Front Immunol 2023; 14:1143980. [PMID: 37006268 PMCID: PMC10050728 DOI: 10.3389/fimmu.2023.1143980] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/03/2023] [Indexed: 03/17/2023] Open
Abstract
The small nucleolar RNA host genes (SNHGs) are a group of genes that can be transcript into long non-coding RNA SNHG (lncSNHG) and further processed into small nucleolar RNAs (snoRNAs). Although lncSNHGs and snoRNAs are well established to play pivotal roles in tumorigenesis, how lncSNHGs and snoRNAs regulate the immune cell behavior and function to mediate anti-tumor immunity remains further illustrated. Certain immune cell types carry out distinct roles to participate in each step of tumorigenesis. It is particularly important to understand how lncSNHGs and snoRNAs regulate the immune cell function to manipulate anti-tumor immunity. Here, we discuss the expression, mechanism of action, and potential clinical relevance of lncSNHGs and snoRNAs in regulating different types of immune cells that are closely related to anti-tumor immunity. By uncovering the changes and roles of lncSNHGs and snoRNAs in different immune cells, we aim to provide a better understanding of how the transcripts of SNHGs participate in tumorigenesis from an immune perspective.
Collapse
Affiliation(s)
- Hao Xiao
- Department of Clinical Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Clinical Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Xin Feng
- Department of Clinical Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Clinical Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Mengjun Liu
- Department of Clinical Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Clinical Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Hanwen Gong
- Department of Clinical Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Clinical Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Xiao Zhou
- Department of Clinical Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Clinical Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- *Correspondence: Xiao Zhou,
| |
Collapse
|
10
|
Zhang Y, Pan Q, Shao Z. Extracellular vesicles derived from cancer-associated fibroblasts carry tumor-promotive microRNA-1228-3p to enhance the resistance of hepatocellular carcinoma cells to sorafenib. Hum Cell 2023; 36:296-311. [PMID: 36424471 DOI: 10.1007/s13577-022-00800-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/27/2022] [Indexed: 11/27/2022]
Abstract
Cancer-associated fibroblasts (CAFs)-derived extracellular vesicles (EVs) can promote tumor progression by delivering microRNA (miRNA). Whether EVs could transfer miR-1228-3p into hepatocellular carcinoma (HCC) cells to affect chemoresistance was discussed in this study. Normal fibroblasts (NFs) and CAFs were isolated from tissue samples of HCC patients. We assessed the functions of HCC cells after co-culturing with NFs and CAFs. miR-1228-3p gain-of-function experiments were conducted. Next, functional assays were carried out to determine the binding of miR-1228-3p to placenta associated 8 (PLAC8). In vivo models were constructed for validation. CAFs-derived EVs exerted promoting effect on proliferative, migrating, invading potential of HCC cells and their resistance to sorafenib. PLAC8 was demonstrated as a direct target of miR-1228-3p. By targeting PLAC8, miR-1228-3p activated the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) pathway. In addition, the transfer of miR-1228-3p from CAFs-derived EVs into HCC cells boosted chemoresistance of HCC cells, which was reversed by restoring PLAC8. All in all, CAF-EV-carried miR-1228-3p strengthens the chemoresistance of HCC through activating PLAC8-mediated PI3K/AKT pathway. This finding contributes to the development of EV-based therapies overcoming the chemoresistance of HCC.
Collapse
Affiliation(s)
- Yijie Zhang
- Department of Organ Transplantation and Hepatobiliary, The First Affiliated Hospital of China Medical University, No. 155, Nanjing Street, Shenyang, 110000, Liaoning Province, People's Republic of China
- The Key Laboratory of Organ Transplantation of Liaoning Province, Shenyang, 110000, Liaoning Province, People's Republic of China
| | - Qi Pan
- Department of Organ Transplantation and Hepatobiliary, The First Affiliated Hospital of China Medical University, No. 155, Nanjing Street, Shenyang, 110000, Liaoning Province, People's Republic of China
- The Key Laboratory of Organ Transplantation of Liaoning Province, Shenyang, 110000, Liaoning Province, People's Republic of China
| | - Zigong Shao
- Department of Organ Transplantation and Hepatobiliary, The First Affiliated Hospital of China Medical University, No. 155, Nanjing Street, Shenyang, 110000, Liaoning Province, People's Republic of China.
- The Key Laboratory of Organ Transplantation of Liaoning Province, Shenyang, 110000, Liaoning Province, People's Republic of China.
| |
Collapse
|
11
|
Non-Coding RNAs in Hepatocellular Carcinoma. LIVERS 2022. [DOI: 10.3390/livers2030017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Liver cancer ranks as the fourth leading cause of cancer-related deaths. Despite extensive research efforts aiming to evaluate the biological mechanisms underlying hepatocellular carcinoma (HCC) development, little has been translated towards new diagnostic and treatment options for HCC patients. Historically, the focus has been centered on coding RNAs and their respective proteins. However, significant advances in sequencing and RNA detection technologies have shifted the research focus towards non-coding RNAs (ncRNA), as well as their impact on HCC development and progression. A number of studies reported complex post-transcriptional interactions between various ncRNA and coding RNA molecules. These interactions offer insights into the role of ncRNAs in both the known pathways leading to oncogenesis, such as dysregulation of p53, and lesser-known mechanisms, such as small nucleolar RNA methylation. Studies investigating these mechanisms have identified prevalent ncRNA changes in microRNAs, snoRNAs, and long non-coding RNAs that can both pre- and post-translationally regulate key factors in HCC progression. In this review, we present relevant publications describing ncRNAs to summarize the impact of different ncRNA species on liver cancer development and progression and to evaluate recent attempts at clinical translation.
Collapse
|
12
|
Small Nucleolar RNAs and Their Comprehensive Biological Functions in Hepatocellular Carcinoma. Cells 2022; 11:cells11172654. [PMID: 36078062 PMCID: PMC9454744 DOI: 10.3390/cells11172654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/12/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
Small nucleolar RNAs (snoRNAs) are a class of highly conserved, stable non-coding RNAs involved in both post-transcriptional modification of RNA and in ribosome biogenesis. Recent research shows that the dysfunction of snoRNAs plays a pivotal role in hepatocellular carcinoma (HCC) and related etiologies, such as hepatitis B virus (HBV), hepatitis C virus (HCV), and non-alcoholic fatty liver disease (NAFLD). Growing evidence suggests that snoRNAs act as oncogenes or tumor suppressors in hepatocellular carcinoma (HCC) through multiple mechanisms. Furthermore, snoRNAs are characterized by their stability in body fluids and their clinical relevance and represent promising tools as diagnostic and prognostic biomarkers. SnoRNAs represent an emerging area of cancer research. In this review, we summarize the classification, biogenesis, activity, and functions of snoRNAs, as well as highlight the mechanism and roles of snoRNAs in HCC and related diseases. Our findings will aid in the understanding of complex processes of tumor occurrence and development, as well as suggest potential diagnostic markers and treatment targets. Furthermore, we discuss several limitations and suggest future research and application directions.
Collapse
|
13
|
snoRNAs: functions and mechanisms in biological processes, and roles in tumor pathophysiology. Cell Death Dis 2022; 8:259. [PMID: 35552378 PMCID: PMC9098889 DOI: 10.1038/s41420-022-01056-8] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/28/2022] [Accepted: 05/03/2022] [Indexed: 12/12/2022]
Abstract
Small nucleolar RNAs (snoRNAs), a type of non-coding RNA, are widely present in the nucleoli of eukaryotic cells and play an important role in rRNA modification. With the recent increase in research on snoRNAs, new evidence has emerged indicating that snoRNAs also participate in tRNA and mRNA modification. Studies suggest that numerous snoRNAs, including tumor-promoting and tumor-suppressing snoRNAs, are not only dysregulated in tumors but also show associations with clinical prognosis. In this review, we summarize the reported functions of snoRNAs and the possible mechanisms underlying their role in tumorigenesis and cancer development to guide the snoRNA-based clinical diagnosis and treatment of cancer in the future.
Collapse
|
14
|
Jia Z, An J, Liu Z, Zhang F. Non-Coding RNAs in Colorectal Cancer: Their Functions and Mechanisms. Front Oncol 2022; 12:783079. [PMID: 35186731 PMCID: PMC8847166 DOI: 10.3389/fonc.2022.783079] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 01/12/2022] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is a common malignancy with high mortality. However, the molecular mechanisms underlying CRC remain unclear. Controversies over the exact functions of non-coding RNAs (ncRNAs) in the progression of CRC have been prevailing for multiple years. Recently, accumulating evidence has demonstrated the regulatory roles of ncRNAs in various human cancers, including CRC. The intracellular signaling pathways by which ncRNAs act on tumor cells have been explored, and in CRC, various studies have identified numerous dysregulated ncRNAs that serve as oncogenes or tumor suppressors in the process of tumorigenesis through diverse mechanisms. In this review, we have summarized the functions and mechanisms of ncRNAs (mainly lncRNAs, miRNAs, and circRNAs) in the tumorigenesis of CRC. We also discuss the potential applications of ncRNAs as diagnostic and prognostic tools, as well as therapeutic targets in CRC. This review details strategies that trigger the recognition of CRC-related ncRNAs, as well as the methodologies and challenges of studying these molecules, and the forthcoming clinical applications of these findings.
Collapse
Affiliation(s)
- Zimo Jia
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, China
| | - Jiaqi An
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, China
| | - Ziyuan Liu
- School of Medicine, Shihezi University, Shihezi, China
| | - Fan Zhang
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, China.,The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China
| |
Collapse
|
15
|
Talross GJS, Deryusheva S, Gall JG. Stable lariats bearing a snoRNA (slb-snoRNA) in eukaryotic cells: A level of regulation for guide RNAs. Proc Natl Acad Sci U S A 2021; 118:e2114156118. [PMID: 34725166 PMCID: PMC8609340 DOI: 10.1073/pnas.2114156118] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2021] [Indexed: 12/31/2022] Open
Abstract
Small nucleolar (sno)RNAs guide posttranscriptional modifications essential for the biogenesis and function of their target. The majority of snoRNAs in higher eukaryotes are encoded within introns. They are first released from nascent transcripts in the form of a lariat and rapidly targeted by the debranching enzyme and nuclear exonucleases for linearization and further trimming. In this study, we report that some snoRNAs are encoded within unusually stable intronic RNAs. These intronic sequences can escape the debranching enzyme and accumulate as lariats. Stable lariats bearing a snoRNA, or slb-snoRNA, are associated with snoRNA binding proteins but do not guide posttranscriptional modification. While most slb-snoRNAs accumulate in the nucleus, some can be exported to the cytoplasm. We find that this export competes with snoRNA maturation. Slb-snoRNAs provide a previously unknown layer of regulation to snoRNA and snoRNA binding proteins.
Collapse
Affiliation(s)
- Gaëlle J S Talross
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218
| | - Svetlana Deryusheva
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218
| | - Joseph G Gall
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218
| |
Collapse
|
16
|
Emerging Functions for snoRNAs and snoRNA-Derived Fragments. Int J Mol Sci 2021; 22:ijms221910193. [PMID: 34638533 PMCID: PMC8508363 DOI: 10.3390/ijms221910193] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/16/2021] [Accepted: 09/16/2021] [Indexed: 12/11/2022] Open
Abstract
The widespread implementation of mass sequencing has revealed a diverse landscape of small RNAs derived from larger precursors. Whilst many of these are likely to be byproducts of degradation, there are nevertheless metabolically stable fragments derived from tRNAs, rRNAs, snoRNAs, and other non-coding RNA, with a number of examples of the production of such fragments being conserved across species. Coupled with specific interactions to RNA-binding proteins and a growing number of experimentally reported examples suggesting function, a case is emerging whereby the biological significance of small non-coding RNAs extends far beyond miRNAs and piRNAs. Related to this, a similarly complex picture is emerging of non-canonical roles for the non-coding precursors, such as for snoRNAs that are also implicated in such areas as the silencing of gene expression and the regulation of alternative splicing. This is in addition to a body of literature describing snoRNAs as an additional source of miRNA-like regulators. This review seeks to highlight emerging roles for such non-coding RNA, focusing specifically on “new” roles for snoRNAs and the small fragments derived from them.
Collapse
|
17
|
Downregulation of snoRNA SNORA52 and Its Clinical Significance in Hepatocellular Carcinoma. BIOMED RESEARCH INTERNATIONAL 2021; 2021:7020637. [PMID: 34195281 PMCID: PMC8203349 DOI: 10.1155/2021/7020637] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 05/02/2021] [Accepted: 05/15/2021] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common and aggressive tumors in the world while the accuracy of the present tests for detecting HCC is poor. A novel diagnostic and prognostic biomarker for HCC is urgently needed. Overwhelming evidence has demonstrated the regulatory roles of small nucleolar RNA (snoRNA) in carcinogenesis. This study is aimed at analyzing the expression of a snoRNA, SNORA52, in HCC and exploring the correlation between its expression and various clinical characteristics of HCC patients. By using quantitative real-time PCR, we found that SNORA52 was downregulated in HCC cell lines (P < 0.05) and HCC tissues (P < 0.001). Correlation analysis showed that the expression of SNORA52 was obviously associated with tumor size (P = 0.011), lesion number (P = 0.007), capsular invasion (P = 0.011), tumor differentiation degree (P = 0.046), and TNM stage (P = 0.004). The disease-free survival (DFS) and overall survival (OS) analysis showed that patients with lower SNORA52 expression had a worse prognosis (P < 0.001). Univariate and multivariate Cox regression analysis showed that SNORA52 expression was a completely independent prognostic factor to predict DFS (P = 0.009) and OS (P = 0.012) of HCC patients. Overall, our findings showed SNORA52 expression levels were downregulated in HCC tissues and correlated with multiple clinical variables, and SNORA52 was an independent prognostic factor for HCC patients, which suggested that SNORA52 could function as a potential diagnostic and prognostic biomarker for HCC patients.
Collapse
|
18
|
Xu R, Zhang Y, Li A, Ma Y, Cai W, Song L, Xie Y, Zhou S, Cao W, Tang X. LY‑294002 enhances the chemosensitivity of liver cancer to oxaliplatin by blocking the PI3K/AKT/HIF‑1α pathway. Mol Med Rep 2021; 24:508. [PMID: 33982772 PMCID: PMC8134878 DOI: 10.3892/mmr.2021.12147] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 04/12/2021] [Indexed: 02/07/2023] Open
Abstract
Liver cancer remains one of the leading causes of cancer deaths worldwide. The therapeutic effect of oxaliplatin on liver cancer is often limited by acquired resistance of the cancer cells. Abnormal activation of the PI3K/AKT pathway plays an important role in the acquired resistance of oxaliplatin. The present study investigated the effects of the PI3K inhibitor LY-294002 and AKT inhibitor MK2206 on the chemosensitivity of oxaliplatin-resistant liver cancer cells and the molecular mechanism involved. An oxaliplatin-resistant liver cancer cell line HepG2R was developed. MTT assay, clone formation experiments, flow cytometry and Annexin V-FITC/PI staining were used to determine the proliferation, cycle and apoptosis of HepG2R cells when oxaliplatin was combined with LY-294002 or MK2206 treatment. The effects of LY-294002 and MK-2206 on the abnormal activation of PI3K/AKT pathway and hypoxia inducible factor (HIF)-1α protein level in HepG2R cells were detected using western blotting. The results indicated that the PI3K/AKT pathway is stably activated in HepG2R cells. Compared with the AKT inhibitor MK2206, the PI3K inhibitor LY-294002 more effectively downregulated the phosphorylation levels of p85, p110α, p110β, p110γ and AKT in the PI3K/AKT pathway in HepG2R cells, and more effectively inhibited the proliferation of the cells. LY-294002 enhanced the chemotherapy sensitivity of HepG2R cells to oxaliplatin by inducing G0/G1 phase arrest and increasing the proportion of apoptotic cells. In addition, LY-294002 reduced the level of HIF-1α, which is highly expressed in HepG2R cells. It was concluded that LY-294002 enhanced the chemosensitivity of liver cancer cells to oxaliplatin by inhibiting the PI3K/AKT signaling pathway, which may be related to the inhibition of HIF-1α expression. These findings may have clinical significance for the treatment of oxaliplatin-resistant liver cancer.
Collapse
Affiliation(s)
- Ruyue Xu
- Medical School, Anhui University of Science and Technology, Huainan, Anhui 232001, P.R. China
| | - Yinci Zhang
- Medical School, Anhui University of Science and Technology, Huainan, Anhui 232001, P.R. China
| | - Amin Li
- Medical School, Anhui University of Science and Technology, Huainan, Anhui 232001, P.R. China
| | - Yongfang Ma
- Medical School, Anhui University of Science and Technology, Huainan, Anhui 232001, P.R. China
| | - Wenpeng Cai
- Medical School, Anhui University of Science and Technology, Huainan, Anhui 232001, P.R. China
| | - Li Song
- Medical School, Anhui University of Science and Technology, Huainan, Anhui 232001, P.R. China
| | - Yinghai Xie
- Institute of Environmentally Friendly Materials and Occupational Health, Anhui University of Science and Technology, Wuhu, Anhui 241000, P.R. China
| | - Shuping Zhou
- Institute of Environmentally Friendly Materials and Occupational Health, Anhui University of Science and Technology, Wuhu, Anhui 241000, P.R. China
| | - Weiya Cao
- Medical School, Anhui University of Science and Technology, Huainan, Anhui 232001, P.R. China
| | - Xiaolong Tang
- Medical School, Anhui University of Science and Technology, Huainan, Anhui 232001, P.R. China
| |
Collapse
|
19
|
He J, Wu F, Han Z, Hu M, Lin W, Li Y, Cao M. Biomarkers (mRNAs and Non-Coding RNAs) for the Diagnosis and Prognosis of Colorectal Cancer - From the Body Fluid to Tissue Level. Front Oncol 2021; 11:632834. [PMID: 33996548 PMCID: PMC8118670 DOI: 10.3389/fonc.2021.632834] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 04/09/2021] [Indexed: 12/24/2022] Open
Abstract
In recent years, the diagnosis and treatment of colorectal cancer (CRC) have been continuously improved, but the mortality rate continues to be high, especially in advanced patients. CRC patients usually have no obvious symptoms in the early stage and are already in the advanced stage when they are diagnosed. The 5-year survival rate is only 10%. The blood markers currently used to screen for CRC, such as carcinoembryonic antigen and carbohydrate antigen 19-9, have low sensitivity and specificity, whereas other methods are invasive or too expensive. As a result, recent research has shifted to the development of minimally invasive or noninvasive biomarkers in the form of body fluid biopsies. Non-coding RNA molecules are composed of microRNAs, long non-coding RNAs, small nucleolar RNAs, and circular RNAs, which have important roles in the occurrence and development of diseases and can be utilized for the early diagnosis and prognosis of tumors. In this review, we focus on the latest findings of mRNA-ncRNA as biomarkers for the diagnosis and prognosis of CRC, from fluid to tissue level.
Collapse
Affiliation(s)
- Jinhua He
- Department of Laboratory Medicine, Central Hospital of Panyu District, Guangzhou, China
| | - Feifeng Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zeping Han
- Department of Laboratory Medicine, Central Hospital of Panyu District, Guangzhou, China
| | - Min Hu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Weida Lin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yuguang Li
- Department of Laboratory Medicine, Central Hospital of Panyu District, Guangzhou, China
| | - Mingrong Cao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
20
|
Xu W, Wu Y, Fang X, Zhang Y, Cai N, Wen J, Liao J, Zhang B, Chen X, Chu L. SnoRD126 promotes the proliferation of hepatocellular carcinoma cells through transcriptional regulation of FGFR2 activation in combination with hnRNPK. Aging (Albany NY) 2021; 13:13300-13317. [PMID: 33891563 PMCID: PMC8148486 DOI: 10.18632/aging.203014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/14/2021] [Indexed: 02/07/2023]
Abstract
Liver cancer is the sixth most common malignancy and the fourth leading cause of cancer-related death worldwide. Hepatocellular carcinoma (HCC) is the primary type of liver cancer. Small nucleolar RNA (snoRNA) dysfunctions have been associated with cancer development. SnoRD126 is an orphan C/D box snoRNA. How snoRD126 activates the PI3K-AKT pathway, and which domain of snoRD126 exerts its oncogenic function was heretofore completely unknown. Here, we demonstrate that snoRD126 binds to hnRNPK protein to regulate FGFR2 expression and activate the PI3K-AKT pathway. Importantly, we identified the critical domain of snoRD126 responsible for its cancer-promoting functions. Our study further confirms the role of snoRD126 in the progression of HCC and suggests that knockdown snoRD126 may be of potential value as a novel therapeutic approach for the treatment of HCC.
Collapse
Affiliation(s)
- Weiqi Xu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Clinical Medical Research Center of Hepatic Surgery in Hubei Province, Wuhan, China
| | - Yu Wu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Clinical Medical Research Center of Hepatic Surgery in Hubei Province, Wuhan, China
| | - Xianlong Fang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Yuxin Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Clinical Medical Research Center of Hepatic Surgery in Hubei Province, Wuhan, China
| | - Ning Cai
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Clinical Medical Research Center of Hepatic Surgery in Hubei Province, Wuhan, China
| | - Jingyuan Wen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Clinical Medical Research Center of Hepatic Surgery in Hubei Province, Wuhan, China
| | - Jingyu Liao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Clinical Medical Research Center of Hepatic Surgery in Hubei Province, Wuhan, China
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Clinical Medical Research Center of Hepatic Surgery in Hubei Province, Wuhan, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Clinical Medical Research Center of Hepatic Surgery in Hubei Province, Wuhan, China
| | - Liang Chu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Clinical Medical Research Center of Hepatic Surgery in Hubei Province, Wuhan, China
| |
Collapse
|
21
|
Zhang J, Hu X, Zheng G, Yao H, Liang H. In vitro and in vivo antitumor effects of lupeol-loaded galactosylated liposomes. Drug Deliv 2021; 28:709-718. [PMID: 33825591 PMCID: PMC8032341 DOI: 10.1080/10717544.2021.1905749] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Lupeol liposomes, modified with Gal-PEG-DSPE, were developed following a thin-film dispersion method. Then, the morphology, physicochemical properties, and in vitro release properties of those liposomes were investigated. The scanning electron microscopic images showed that most of the liposomes were spherical particles; they were similar in size and uniformly dispersed. Both lupeol liposomes and Gal-lupeol liposomes exhibited an average particle size of about 100 nm. The encapsulation efficiency was greater than 85%. The encapsulation efficiency of lupeol liposome and Gal-lupeol liposome, stored with 15% sucrose as glycoprotein for 6 months, was higher than 80%; although the particle size increased, they remained within 200 nm. The cell-uptake study demonstrated that the Gal-lupeol-liposome uptake efficiency was the highest in HepG2 cells. The HepG2 cells treated with the Gal-lupeol liposomes had higher apoptotic efficiency than the lupeol liposome and free lupeol. After HepG2 cells were treated with Gal-lupeol liposome, the expressions of AKT/mTOR-related proteins (p-AKT308 and p-AKT473) were also significantly reduced than the lupeol-liposome and free lupeol group. The in vivo targeting studies showed that Gal-NR-L exhibited liver-targeting effects on FVB mice. The pharmacodynamic study was performed by transfecting AKT and c-MET via the high-pressure tail vein of FVB mice. After Gal-lupeol-L administration, the liver index and liver weight of mice were less than those non-targeted group. The histopathological study showed that the lobular structure in the mice liver was clearer, the vacuoles were more obvious, and the cytoplasm was more abundant after Gal-lupeol-L administration. Also, the qRT-PCR study showed that AFP, GPC3, and EpCAM mRNA expression levels were significantly lower than those non-targeted lupeol-liposomes.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Pharmacy, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei Province, China
| | - Xixi Hu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei Province, China
| | - Guohua Zheng
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei Province, China
| | - Hui Yao
- College of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei Province, China
| | - Huali Liang
- Nursing Department, Xiangyang Central Hospital, Hubei University of Arts and Science, Xiangyang, Hubei Province, China
| |
Collapse
|
22
|
Zhang Z, Zhang J, Diao L, Han L. Small non-coding RNAs in human cancer: function, clinical utility, and characterization. Oncogene 2021; 40:1570-1577. [PMID: 33452456 DOI: 10.1038/s41388-020-01630-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 01/29/2023]
Abstract
Small non-coding RNAs (sncRNAs) play critical roles in multiple regulatory processes, including transcription, post-transcription, and translation. Emerging evidence reveals the critical roles of sncRNAs in cancer development and their potential role as biomarkers and/or therapeutic targets. In this paper, we review recent research on four sncRNA species with functional significance in cancer: small nucleolar RNAs, transfer RNA, small nuclear RNAs, and piwi-interacting RNAs. We introduce their functional roles in tumorigenesis and discuss the potential utility of sncRNAs as prognostic and diagnostic biomarkers and therapeutic targets. We further summarize approaches to characterize sncRNAs in a high-throughput manner, including the specific library construction and computational framework. Our review provides a perspective of the functions, clinical utility, and characterization of sncRNAs in cancer.
Collapse
Affiliation(s)
- Zhao Zhang
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| | - Jian Zhang
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Lixia Diao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Leng Han
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| |
Collapse
|
23
|
Shang X, Song X, Wang K, Yu M, Ding S, Dong X, Xie L, Song X. SNORD63 and SNORD96A as the non-invasive diagnostic biomarkers for clear cell renal cell carcinoma. Cancer Cell Int 2021; 21:56. [PMID: 33461545 PMCID: PMC7812721 DOI: 10.1186/s12935-020-01744-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/31/2020] [Indexed: 11/10/2022] Open
Abstract
Background Increasing evidence has demonstrated that snoRNAs play crucial roles in tumorigenesis of various cancer types. However, researches on snoRNAs in ccRCC were very little. This study mainly aimed to validate the differential expression and the potential diagnostic value of SNORD63 and SNORD96A in ccRCC. Methods SnoRNAs expression was downloaded from the SNORic and TCGA database including 516 patients with ccRCC and 71 control cases. SNORD63 and SNORD96A expression were further detected in 54 tumor and adjacent FFPE ccRCC tissues, 55 plasma and 75 urinary sediment of ccRCC patients. Then, differential expression and diagnostic value of SNORD63 and SNORD96A were further calculated. Results SNORD63 and SNORD96A expression were significantly increased in ccRCC tissues compared with normal tissues from the TCGA database (both, P < 0.0001). In addition, we found that SNORD63 and SNORD96A localized in plasma and US stably after treating with RNase A. Meanwhile, SNORD63 and SNORD96A in FFPE and US were elevated in ccRCC patients (all, P < 0.0001). However, plasma SNORD63 expression had no significance while SNORD96A significantly increased in plasma of ccRCC patients. Notably, the AUC of SNORD63 in US was 0.7055, by comparison the AUC of plasma SNORD63 was only 0.5161. However, the AUC of plasma SNORD96A was up to 0.8909, by comparison the AUC of SNORD96A in US was 0.6788. Interestingly, the AUC of plasma SNORD96A in early stage ccRCC was highly up to 0.9359. Conclusions Our findings revealed that SNORD63 in US and SNORD96A in plasma could act as the promising non-invasive diagnostic biomarkers for ccRCC patients.
Collapse
Affiliation(s)
- Xiaoling Shang
- Department of Clinical Laboratory, Cheeloo College of Medicine, Shandong Cancer Hospital and Institute, Shandong University, Jinan, 250012, Shandong, China.,Department of Clinical Laboratory, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital and Institute, 440 Ji-Yan Road, Jinan, 250117, Shandong, People's Republic of China
| | - Xingguo Song
- Department of Clinical Laboratory, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital and Institute, 440 Ji-Yan Road, Jinan, 250117, Shandong, People's Republic of China
| | - Kangyu Wang
- Department of Clinical Laboratory, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital and Institute, 440 Ji-Yan Road, Jinan, 250117, Shandong, People's Republic of China
| | - Miao Yu
- Department of Clinical Laboratory, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital and Institute, 440 Ji-Yan Road, Jinan, 250117, Shandong, People's Republic of China.,Department of Clinical Laboratory, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250031, China
| | - Shanshan Ding
- Department of Clinical Laboratory, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital and Institute, 440 Ji-Yan Road, Jinan, 250117, Shandong, People's Republic of China
| | - Xiaohan Dong
- Department of Clinical Laboratory, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital and Institute, 440 Ji-Yan Road, Jinan, 250117, Shandong, People's Republic of China
| | - Li Xie
- Department of Clinical Laboratory, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital and Institute, 440 Ji-Yan Road, Jinan, 250117, Shandong, People's Republic of China
| | - Xianrang Song
- Department of Clinical Laboratory, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital and Institute, 440 Ji-Yan Road, Jinan, 250117, Shandong, People's Republic of China.
| |
Collapse
|
24
|
Noncoding RNA (ncRNA) Profile Association with Patient Outcome in Epithelial Ovarian Cancer Cases. Reprod Sci 2020; 28:757-765. [PMID: 33125686 PMCID: PMC7862201 DOI: 10.1007/s43032-020-00372-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/21/2020] [Indexed: 12/24/2022]
Abstract
Ovarian cancer (OC) is the second most frequent type of gynecological cancers worldwide. In the past decades, the development of novel diagnostic and prognostic biomarkers available for OC has been limited, reflecting by the lack of specificity of such markers or very costly management. Microarray expression profiling has shown very effective results in exploring new molecular markers for patients with OC. Nonetheless, most screenings are focused on mutations or expression of molecules that are translated into proteins, corresponding to only 2% of the total human genome. In order to account for the vast majority of transcripts, in the present exploratory study, we assessed the expression levels of a comprehensive panel of noncoding RNA in different subtypes of OC. We further evaluated their association with patient overall survival (OS) and aggressive forms of the disease, such as tumor type, stage, and chemotherapy resistance. By microarray profiling in a total of 197 epithelial OC patients (162 serous carcinomas, 15 endometrioid carcinomas, 11 mucinous carcinomas, and 9 clear cell carcinomas), we found two candidates, SNORA68 and SNORD74, which associated with OS and poor clinicopathological features. The overexpression of those two targets combined was correlated with shorter OS and progression-free survival. That association was further observed to correlate with a more aggressive form of the disease. Overall, the results indicate that a panel comprised of SNORA68 and SNORD74 may be clinically relevant, where patients could be offered a more individualized, targeted follow-up, given its further validation on future prospective clinical studies.
Collapse
|
25
|
Hu S, Chen X, Xu X, Zheng C, Huang W, Zhou Y, Akuetteh PDP, Yang H, Shi K, Chen B, Zhang Q. STRAP as a New Therapeutic Target for Poor Prognosis of Pancreatic Ductal Adenocarcinoma Patients Mainly Caused by TP53 Mutation. Front Oncol 2020; 10:594224. [PMID: 33134183 PMCID: PMC7550692 DOI: 10.3389/fonc.2020.594224] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 09/07/2020] [Indexed: 12/21/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has a high mortality rate and poor prognosis. KRAS, TP53, CDKN2A, and SMAD4 are driver genes of PDAC and 30-75% patients have mutations in at least two of these four genes. Herein, we analyzed the relationship between these genes and prognosis of 762 patients in the absence of coexisting mutations, using data from three independent public datasets. Interestingly, we found that compared with mutations in other driver genes, TP53 mutation plays a significant role in leading to poor prognosis of PDAC. Additionally, we found that snoRNA-mediated rRNA maturation was responsible for the progression of cancer in PDAC patients with TP53 mutations. Inhibition of STRAP, which regulates the localization of SMN complexes and further affects the assembly of snoRNP, can effectively reduce maturation of rRNA and significantly suppress progression of TP53-mutant or low p53 expression pancreatic cancer cells in vitro and in vivo. Our study highlighted the actual contribution rate of driver genes to patient prognosis, enriching traditional understanding of the relationship between these genes and PDAC. We also provided a possible mechanism and a new target to combat progression of TP53-mutant PDAC patients.
Collapse
Affiliation(s)
- Shanshan Hu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiao Chen
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiangxiang Xu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chenlei Zheng
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wenqian Huang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yi Zhou
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Percy David Papa Akuetteh
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hongbao Yang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Keqing Shi
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Bicheng Chen
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qiyu Zhang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
26
|
Qian X, Xu C, Wu B, Tang H, Zhao P, Qi Z. SNORD126 Promotes Hepatitis C Virus Infection by Upregulating Claudin-1 via Activation of PI3K-AKT Signaling Pathway. Front Microbiol 2020; 11:565590. [PMID: 33042070 PMCID: PMC7522514 DOI: 10.3389/fmicb.2020.565590] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 08/17/2020] [Indexed: 12/22/2022] Open
Abstract
Hepatitis C virus (HCV) infection involves a variety of viral and host factors, some of which promote the infection process. A small nucleolar RNA, C/D box 126 (SNORD126), was previously shown to be associated with hepatocellular carcinoma (HCC). However, the role of SNORD126 in HCV infection, which is one of the primary reasons for HCC development, has not been elucidated. In the present study, using small nucleolar RNA profiling, we observed that SNORD126 was significantly downregulated during HCV infection in both Huh7 and Huh7.5.1 cells. In addition, overexpression of SNORD126 enhanced HCV entry into host cells, whereas SNORD126 knockdown showed the opposite effect, suggesting that SNORD126 promotes HCV infection, especially through viral entry. Further functional analysis revealed that SNORD126 could enhance the expression level of claudin-1 (CLDN1), a key HCV entry factor, by increasing the levels of phosphorylated AKT. Additionally, the function of SNORD126 in HCV infection was associated with ribonucleoprotein (RNP) complexes. In summary, our findings demonstrate that oncogenic SNORD126 levels are decreased during HCV infection probably due to the host defense reaction, and SNORD126 may be important to promote viral entry by increasing CLDN1 expression through activation of the PI3K-AKT pathway, the mechanism of which is partly associated with SNORD126-mediated snoRNA RNP (snoRNP) function. Our work here provides initial evidence that endogenous snoRNA takes part in HCV infection and shows potential as a diagnostic or antiviral agent.
Collapse
Affiliation(s)
- Xijing Qian
- Department of Microbiology, Second Military Medical University, Shanghai, China
| | - Chen Xu
- Spine Center, Department of Orthopedics, Changzheng Hospital Affiliated to Second Military Medical University, Shanghai, China
| | - Bingan Wu
- Department of Microbiology, Second Military Medical University, Shanghai, China
| | - Hailin Tang
- Department of Microbiology, Second Military Medical University, Shanghai, China
| | - Ping Zhao
- Department of Microbiology, Second Military Medical University, Shanghai, China
| | - Zhongtian Qi
- Department of Microbiology, Second Military Medical University, Shanghai, China
| |
Collapse
|
27
|
Li Y, Chen R, Yang J, Mo S, Quek K, Kok CH, Cheng XD, Tian S, Zhang W, Qin JJ. Integrated Bioinformatics Analysis Reveals Key Candidate Genes and Pathways Associated With Clinical Outcome in Hepatocellular Carcinoma. Front Genet 2020; 11:814. [PMID: 32849813 PMCID: PMC7396661 DOI: 10.3389/fgene.2020.00814] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 07/06/2020] [Indexed: 01/15/2023] Open
Abstract
Hepatocellular carcinoma (HCC) accounts for approximately 85-90% of all liver cancer cases and has poor relapse-free survival. There are many gene expression studies that have been performed to elucidate the genetic landscape and driver pathways leading to HCC. However, existing studies have been limited by the sample size and thus the pathogenesis of HCC is still unclear. In this study, we performed an integrated characterization using four independent datasets including 320 HCC samples and 270 normal liver tissues to identify the candidate genes and pathways in the progression of HCC. A total of 89 consistent differentially expression genes (DEGs) were identified. Gene-set enrichment analysis revealed that these genes were significantly enriched for cellular response to zinc ion in biological process group, collagen trimer in the cellular component group, extracellular matrix (ECM) structural constituent conferring tensile strength in the molecular function group, protein digestion and absorption, mineral absorption and ECM-receptor interaction. Network system biology based on the protein-protein interaction (PPI) network was also performed to identify the most connected and important genes based on our DEGs. The top five hub genes including osteopontin (SPP1), Collagen alpha-2(I) chain (COL1A2), Insulin-like growth factor I (IGF1), lipoprotein A (LPA), and Galectin-3 (LGALS3) were identified. Western blot and immunohistochemistry analysis were employed to verify the differential protein expression of hub genes in HCC patients. More importantly, we identified that these five hub genes were significantly associated with poor disease-free survival and overall survival. In summary, we have identified a potential clinical significance of these genes as prognostic biomarkers for HCC patients who would benefit from experimental approaches to obtain optimal outcome.
Collapse
Affiliation(s)
- Yubin Li
- School of Pharmacy, Naval Medical University, Shanghai, China
| | - Runzhe Chen
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.,Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jian Yang
- School of Pharmacy, Naval Medical University, Shanghai, China
| | - Shaowei Mo
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Kelly Quek
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.,Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.,Accenture Applied Intelligence, ASEAN, Singapore, Singapore
| | - Chung H Kok
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia.,Discipline of Medicine, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Xiang-Dong Cheng
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Hangzhou, China.,Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, China.,Zhejiang Cancer Hospital, Hangzhou, China
| | - Saisai Tian
- School of Pharmacy, Naval Medical University, Shanghai, China
| | - Weidong Zhang
- School of Pharmacy, Naval Medical University, Shanghai, China
| | - Jiang-Jiang Qin
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Hangzhou, China.,Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, China.,Zhejiang Cancer Hospital, Hangzhou, China
| |
Collapse
|
28
|
Non-Coding RNAs: Regulating Disease Progression and Therapy Resistance in Hepatocellular Carcinoma. Cancers (Basel) 2020; 12:cancers12051243. [PMID: 32429062 PMCID: PMC7281199 DOI: 10.3390/cancers12051243] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/12/2020] [Accepted: 05/12/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC), the primary liver cancer arising from hepatocytes, is a universal health problem and one of the most common malignant tumors. Surgery followed by chemotherapy as well as tyrosine kinase inhibitors (TKIs), such as sorafenib, are primary treatment procedures for HCC, but recurrence of disease because of therapy resistance results in high mortality. It is necessary to identify novel regulators of HCC for developing effective targeted therapies that can significantly interfere with progression of the disease process. Non-coding RNAs (ncRNAs) are an abundant group of versatile RNA transcripts that do not translate into proteins, rather serve as potentially functional RNAs. The role of ncRNAs in regulating diverse aspects of the carcinogenesis process are gradually being elucidated. Recent advances in RNA sequencing technology have identified a plethora of ncRNAs regulating all aspects of hepatocarcinogenesis process and serving as potential prognostic or diagnostic biomarkers. The present review provides a comprehensive description of the biological roles of ncRNAs in disease process and therapy resistance, and potential clinical application of these ncRNAs in HCC.
Collapse
|
29
|
He JY, Liu X, Qi ZH, Wang Q, Lu WQ, Zhang QT, He SY, Wang ZD. Small Nucleolar RNA, C/D Box 16 (SNORD16) Acts as a Potential Prognostic Biomarker in Colon Cancer. Dose Response 2020; 18:1559325820917829. [PMID: 32704240 PMCID: PMC7359415 DOI: 10.1177/1559325820917829] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/01/2020] [Accepted: 03/07/2020] [Indexed: 12/15/2022] Open
Abstract
Colon cancer (CC) is considered one of the most common and lethal malignancies occurring both in male and female. Its widespread prevalence demonstrates the need for novel diagnostic and prognostic biomarkers for CC. Emerging evidence has shown that small nucleolar RNAs play critical roles in tumor development. In this study, we investigated the expression profile and functions of SNORD16 in CC. Our data showed that SNORD16, rather than its host gene (RPL4), was upregulated in CC cell lines. Compared to matched adjacent normal tissues, CC tissues showed higher SNORD16 expression levels, and no correlation was found between SNORD16 and RPL4. Patients with high SNORD16 expression levels had a worse prognosis, and multivariate analysis showed the high SNORD16 expression was an independent prognostic factor for CC. In vitro gain- and loss-of-function studies revealed that SNORD16 can promote cell growth, proliferation, migration, and invasion of CC cells by inhibiting apoptosis. These results suggested that SNORD16 has an oncogenic role in CC and might be a novel diagnostic and prognostic biomarker for CC.
Collapse
Affiliation(s)
- Jun-Yan He
- Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, China.,Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Xin Liu
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Zhen-Hua Qi
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Qi Wang
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Wen-Qing Lu
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Qing-Tong Zhang
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Shu-Ya He
- Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, China
| | - Zhi-Dong Wang
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China.,School of Public Health, University of South China, Hengyang, China
| |
Collapse
|
30
|
Abstract
Despite advanced clinical treatments, mortality in patients with metastatic colorectal cancer (CRC) remains high. Three critical determinants in CRC progression include the epithelial proliferation checkpoints, epithelial-to-mesenchymal transition (EMT) and inflammatory cytokines in the tumour microenvironment. Genes involved in these three processes are regulated at the transcriptional and post-transcriptional level. Recent studies revealed previously unappreciated roles of non-coding ribonucleic acids (ncRNAs) in modulating the proliferation checkpoints, EMT, and inflammatory gene expression in CRC. In this review, we will discuss the mechanisms underlying the roles of ncRNAs in CRC as well as examine future perspectives in this field. Better understanding of ncRNA biology will provide novel targets for future therapeutic development.
Collapse
Affiliation(s)
- Shengyun Ma
- Cellular and Molecular Medicine, University of California , San Diego, USA
| | - Tianyun Long
- Cellular and Molecular Medicine, University of California , San Diego, USA
| | | |
Collapse
|
31
|
Role of Non-Coding RNAs in the Progression of Liver Cancer: Evidence from Experimental Models. Cancers (Basel) 2019; 11:cancers11111652. [PMID: 31731549 PMCID: PMC6896146 DOI: 10.3390/cancers11111652] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 12/12/2022] Open
Abstract
Liver cancer is a devastating cancer that ranges from relatively rare (around 2% of all cancers in the United States) to commonplace (up to 50% of cancers in underdeveloped countries). Depending upon the stage of pathogenesis, prognosis, or functional liver tissue present, transplantation or partial hepatectomy may be the only available treatment option. However, due to the rise in metabolic syndrome and the increasing demand for livers, patients often wait months or years for available organs. Due to this shortage, doctors must have other treatment options available. One promising area of cancer research lies in understanding the role of regulatory non-coding RNAs (ncRNAs) as oncogenic drivers and potential targets for prospective therapies. While the role of these ncRNAs was not initially clear, many of them have since been recognized to function as important players in the regulation of gene expression, epigenetic modification, and signal transduction in both normal and cancer cell cycles. Dysregulation of these different ncRNA subtypes has been implicated in the pathogenesis and progression of many major cancers including hepatocellular carcinoma. This review summarizes current findings on the roles noncoding RNAs play in the progression of liver cancer and the various animal models used in current research to elucidate those data.
Collapse
|
32
|
Liang J, Wen J, Huang Z, Chen XP, Zhang BX, Chu L. Small Nucleolar RNAs: Insight Into Their Function in Cancer. Front Oncol 2019; 9:587. [PMID: 31338327 PMCID: PMC6629867 DOI: 10.3389/fonc.2019.00587] [Citation(s) in RCA: 181] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 06/17/2019] [Indexed: 02/04/2023] Open
Abstract
Small nucleolar RNAs (SnoRNAs) are a class of non-coding RNAs divided into two classes: C/D box snoRNAs and H/ACA box snoRNAs. The canonical function of C/D box and H/ACA box snoRNAs are 2'-O-ribose methylation and pseudouridylation of ribosomal RNAs (rRNAs), respectively. Emerging evidence has demonstrated that snoRNAs are involved in various physiological and pathological cellular processes. Mutations and aberrant expression of snoRNAs have been reported in cell transformation, tumorigenesis, and metastasis, indicating that snoRNAs may serve as biomarkers and/or therapeutic targets of cancer. Hence, further study of the functions and underlying mechanism of snoRNAs is valuable. In this review, we summarize the biogenesis and functions of snoRNAs, as well as the association of snoRNAs in different types of cancers and their potential roles in cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Junnan Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingyuan Wen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhao Huang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Ping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bi-Xiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Chu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
33
|
Current Evidence on miRNAs as Potential Theranostic Markers for Detecting Chemoresistance in Colorectal Cancer: A Systematic Review and Meta-Analysis of Preclinical and Clinical Studies. Mol Diagn Ther 2019; 23:65-82. [PMID: 30726546 DOI: 10.1007/s40291-019-00381-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Findings from observational clinical studies examining the relationship between biomarker expression and theranosis in colorectal cancer (CRC) have been conflicting. OBJECTIVE We conducted this systematic review and meta-analysis to summarise the existing evidence to demonstrate the involvement of microRNAs (miRNAs) in chemoresistance and sensitivity in CRC through drug genetic pathways. METHODS Using PRISMA guidelines, we systematically searched PubMed and Science Direct for relevant studies that took place between 2012 and 2017. A random-effects model of meta-analysis was applied to evaluate the pooled effect size of hazard ratios (HRs) across the included studies. Cochran's Q test and the I2 statistic were used to detect heterogeneity. A funnel plot was used to assess potential publication bias. RESULTS Of the 4700 studies found, 39 studies comprising 2822 patients with CRC met the inclusion criteria. The included studies used one or a combination of 14 chemotherapy drugs, including 5-fluorouracil and oxaliplatin. Of the 60 miRNAs, 28 were associated with chemosensitivity, 20 with chemoresistance, and one with differential expression and radiosensitivity; ten miRNAs were not associated with any impact on chemotherapy. The results outline the importance of 34 drug-regulatory pathways of chemoresistance and sensitivity in CRC. The mean effect size was 0.689 (95% confidence interval 0.428-1.110), indicating that the expression of miRNAs decreased the likelihood of death by about 32%. CONCLUSION Studies have consistently shown that multiple miRNAs could act as clinical predictors of chemoresistance and sensitivity. An inclusion of supplementary miRNA estimation in CRC routine practice needs to be considered to evaluate the efficacy of chemotherapy after confirming our findings with large-scale prospective cohort studies. PROSPERO REGISTRATION NUMBER CRD42017082196.
Collapse
|
34
|
Stamm S, Lodmell JS. C/D box snoRNAs in viral infections: RNA viruses use old dogs for new tricks. Noncoding RNA Res 2019; 4:46-53. [PMID: 31193534 PMCID: PMC6533054 DOI: 10.1016/j.ncrna.2019.02.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/27/2019] [Accepted: 02/13/2019] [Indexed: 12/17/2022] Open
Abstract
C/D box snoRNAs (SNORDs) are a highly expressed class of non-coding RNAs. Besides their well-established role in rRNA modification, C/D box snoRNAs form protein complexes devoid of fibrillarin and regulate pre-mRNA splicing and polyadenylation of numerous genes. There is an emerging body of evidence for functional interactions between RNA viruses and C/D box snoRNAs. The infectivity of some RNA viruses depends on enzymatically active fibrillarin, and many RNA viral proteins associate with nucleolin or nucleophosmin, suggesting that viruses benefit from their cytosolic accumulation. These interactions are likely reflected by morphological changes in the nucleolus, often leading to relocalization of nucleolar proteins and ncRNAs to the cytosol that are a characteristic feature of viral infections. Knock-down studies have also shown that RNA viruses need specific C/D box snoRNAs for optimal replication, suggesting that RNA viruses benefit from gene expression programs regulated by SNORDs, or that viruses have evolved “new” uses for these humble ncRNAs to advance their prospects during infection.
Collapse
Affiliation(s)
- Stefan Stamm
- University of Kentucky, Molecular and Cellular Biochemistry, 741 South Limestone, Lexington, KY 40536, USA
| | - J Stephen Lodmell
- Division of Biological Sciences and Center for Biomolecular Structure and Dynamics, The University of Montana, Missoula, MT, USA
| |
Collapse
|
35
|
Jiang Y, Wang Z, Chen X, Wang W, Wang X. ADAR1 silencing-induced HUVEC apoptosis is mediated by FGFR2 under hypoxia stress. Drug Des Devel Ther 2018; 12:4181-4189. [PMID: 30573948 PMCID: PMC6292393 DOI: 10.2147/dddt.s181312] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background The adenosine deaminase acting on RNA 1 (ADAR1) specifically deaminates adenosine to inosine in double-stranded RNA (dsRNA). Emerging evidence indicated that under hypoxia condition, such as tumor microenvironment, ADAR1 level was increased. Interestingly, we found FGFR2 was also increased under hypoxia stress. The purpose of this study was to investigate the regulation mechanism of ADAR1 and the potential role of ADAR1–FGFR2 axis in cell proliferation and apoptosis. Methods Using human umbilical vein endothelial cells as cellular model, we explored the function of ADAR1 in regulating cell survival. Results We found manipulation of FGFR2 activity could override the cellular effect of ADAR1, suggesting FGFR2 could be a potential effector of ADAR1. Moreover, our results revealed that PI3K-Akt pathway was involved in ADAR1–FGFR2 axis-induced cell proliferation. Conclusion In summary, this study supported the notion that ADAR1 could play a role in tumor cell proliferation, which was mediated by FGFR2.
Collapse
Affiliation(s)
- Yun Jiang
- Department of Cardiology, The Eighth People's Hospital of Shanghai, Shanghai 200233, China,
| | - Zhancheng Wang
- Department of Cardiology, The Eighth People's Hospital of Shanghai, Shanghai 200233, China,
| | - Xu Chen
- Department of Cardiology, The Eighth People's Hospital of Shanghai, Shanghai 200233, China,
| | - Wei Wang
- Department of Cardiology, The Eighth People's Hospital of Shanghai, Shanghai 200233, China,
| | - Xiaowei Wang
- Shanghai Weiang Info Tech Ltd., Shanghai 200233, China
| |
Collapse
|
36
|
Pan WY, Zeng JH, Wen DY, Wang JY, Wang PP, Chen G, Feng ZB. Oncogenic value of microRNA-15b-5p in hepatocellular carcinoma and a bioinformatics investigation. Oncol Lett 2018; 17:1695-1713. [PMID: 30675229 PMCID: PMC6341845 DOI: 10.3892/ol.2018.9748] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 10/12/2018] [Indexed: 02/07/2023] Open
Abstract
miR-15b-5p has frequently been reported to function as a biomarker in some malignancies; however, the function of miR-15b-5p in hepatocellular carcinoma (HCC) and its molecular mechanism are still not well understood. The present study was designed to confirm the clinical value of miR-15b-5p and further explore its underlying molecular mechanism. A comprehensive investigation of the clinical value of miR-15b-5p in HCC was investigated by data mining The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets as well as literature. In addition, intersected target genes of miR-15b-5p were predicted using the miRWalk database and differentially expressed genes of HCC from TCGA. Furthermore, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were carried out. Then, a protein-protein interaction network (PPI) was constructed to reveal the interactions between some hub target genes of miR-15b-5p. The miR-15b-5p expression level in HCC was predominantly overexpressed compared with non-HCC tissues samples (SMD=0.618, 95% CI: 0.207, 1.029; P<0.0001) based on 991 HCC and 456 adjacent non-HCC tissue samples. The pooled summary receiver operator characteristic (SROC) of miR-15b-5p was 0.81 (Q*=0.74), and the pooled sensitivity and specificity of miR-15b-5p in HCC were 72% (95% CI: 69–75%) and 68% (95% CI: 65–72%), respectively. Bioinformatically, 225 overlapping genes were selected as prospective target genes of miR-15b-5p in HCC, and profoundly enriched GO terms and KEGG pathway investigation in silico demonstrated that the target genes were associated with prostate cancer, proximal tubule bicarbonate reclamation, heart trabecula formation, extracellular space, and interleukin-1 receptor activity. Five genes (ACACB, RIPK4, MAP2K1, TLR4 and IGF1) were defined as hub genes from the PPI network. The high expression of miR-15b-5p could play an essential part in hepatocarcinogenesis through diverse regulation approaches.
Collapse
Affiliation(s)
- Wen-Ya Pan
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Jiang-Hui Zeng
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Dong-Yue Wen
- Department of Ultrasonography, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Jie-Yu Wang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Peng-Peng Wang
- Department of Nursing, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Zhen-Bo Feng
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
37
|
Non-Coding RNAs and Hepatitis C Virus-Induced Hepatocellular Carcinoma. Viruses 2018; 10:v10110591. [PMID: 30380697 PMCID: PMC6265700 DOI: 10.3390/v10110591] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 10/27/2018] [Accepted: 10/29/2018] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) infection is a worldwide health problem and is one of the main causes of chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma (HCC). Despite recent improvements, effective treatments for HCC are still missing and new tools for early detection are needed. Non-coding RNAs (ncRNAs) have emerged as important regulators of gene expression and key players in human carcinogenesis, including HCC. Aberrant expression of ncRNAs is associated with HCC metastasis, invasion, dissemination, and recurrence. This review will focus on the recent advances in ncRNA expression profiles, their dysregulation in HCV-related HCC, and the clinical perspective of ncRNA signatures for the early detection of HCC.
Collapse
|
38
|
Li D, Qiao H, Qiu W, Xu X, Liu T, Jiang Q, Liu R, Jiao Z, Zhang K, Bi L, Chen R, Kan Y. Identification and functional characterization of intermediate-size non-coding RNAs in maize. BMC Genomics 2018; 19:730. [PMID: 30286715 PMCID: PMC6172812 DOI: 10.1186/s12864-018-5103-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 09/21/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The majority of eukaryote genomes can be actively transcribed into non-coding RNAs (ncRNAs), which are functionally important in development and evolution. In the study of maize, an important crop for both humans and animals, aside from microRNAs and long non-coding RNAs, few studies have been conducted on intermediate-size ncRNAs. RESULTS We constructed a homogenized cDNA library of 50-500 nt RNAs in the maize inbred line Chang 7-2. Sequencing revealed 169 ncRNAs, which contained 58 known and 111 novel ncRNAs (including 70 snoRNAs, 27 snRNAs, 13 unclassified ncRNAs and one tRNA). Forty of the novel ncRNAs were specific to the Panicoideae, and 24% of them are located on sense-strand of the 5' or 3' terminus of protein coding genes on chromosome. Target site analysis found that 22 snoRNAs can guide to 38 2'-O-methylation and pseudouridylation modification sites of ribosomal RNAs and small nuclear RNAs. Expression analysis showed that 43 ncRNAs exhibited significantly altered expression in different tissues or developmental stages of maize seedlings, eight ncRNAs had tissue-specific expression and five ncRNAs were strictly accumulated in the early stage of leaf development. Further analysis showed that 3 of the 5 stage-specific ncRNAs (Zm-3, Zm-18, and Zm-73) can be highly induced under drought and salt stress, while one snoRNA Zm-8 can be repressed under PEG-simulated drought condition. CONCLUSIONS We provided a genome-wide identification and functional analysis of ncRNAs with a size range of 50-500 nt in maize. 111 novel ncRNAs were cloned and 40 ncRNAs were determined to be specific to Panicoideae. 43 ncRNAs changed significantly during maize development, three ncRNAs can be strongly induced under drought and salt stress, suggesting their roles in maize stress response. This work set a foundation for further study of intermediate-size ncRNAs in maize.
Collapse
Affiliation(s)
- Dandan Li
- China-UK-NYNU-RRes Joint Laboratory of insect biology, Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061, Henan, China
| | - Huili Qiao
- China-UK-NYNU-RRes Joint Laboratory of insect biology, Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061, Henan, China
| | - Wujie Qiu
- China-UK-NYNU-RRes Joint Laboratory of insect biology, Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061, Henan, China
| | - Xin Xu
- China-UK-NYNU-RRes Joint Laboratory of insect biology, Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061, Henan, China
| | - Tiemei Liu
- China-UK-NYNU-RRes Joint Laboratory of insect biology, Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061, Henan, China
| | - Qianling Jiang
- China-UK-NYNU-RRes Joint Laboratory of insect biology, Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061, Henan, China
| | - Renyi Liu
- Center for Agroforestry Mega Data Science and FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhujin Jiao
- China-UK-NYNU-RRes Joint Laboratory of insect biology, Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061, Henan, China
| | - Kun Zhang
- China-UK-NYNU-RRes Joint Laboratory of insect biology, Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061, Henan, China
| | - Lijun Bi
- Bioinformatics Laboratory and National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Runsheng Chen
- Bioinformatics Laboratory and National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yunchao Kan
- China-UK-NYNU-RRes Joint Laboratory of insect biology, Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061, Henan, China.
| |
Collapse
|
39
|
Prospects of Noncoding RNAs in Hepatocellular Carcinoma. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6579436. [PMID: 30148169 PMCID: PMC6083484 DOI: 10.1155/2018/6579436] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/16/2018] [Accepted: 06/06/2018] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) is a global health problem and one of the most common malignant tumors. Recent studies have shown that noncoding RNAs (ncRNAs) contribute to the pathogenesis of hepatocellular carcinoma (HCC). These RNAs may be involved in a variety of pathological processes such as cell proliferation, apoptosis, angiogenesis, invasion, and metastasis. In addition, abnormal expression of ncRNAs in HCC may provide potential prognostic or diagnostic biomarkers. This review provides an overview of the role and potential applications of ncRNAs, miRNAs, lncRNAs, circRNAs, and snoRNAs in liver cancer.
Collapse
|
40
|
Baral D, Wu L, Katwal G, Yan X, Wang Y, Ye Q. Clinical significance and biological roles of small nucleolar RNAs in hepatocellular carcinoma. Biomed Rep 2018. [PMID: 29541452 PMCID: PMC5838311 DOI: 10.3892/br.2018.1063] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is among the most common and fatal cancers. It is a multistage and multifactorial carcinoma, in which a number of factors serve roles in its initiation and progression. Small nucleolar RNAs (snoRNAs), considered to serve a role in various cancers, have recently been identified to have significant contributions to HCC tumorigenesis. Recent studies suggest that snoRNAs have a critical role in the pathogenesis of HCC. Moreover, detailed studies have demonstrated that various snoRNAs are involved in a range of biological processes associated with HCC, including initiation, proliferation, tumor growth, the cell cycle, apoptosis and metastasis. In the present review, an overview of recent studies to date has been provided, focusing on the association of snoRNAs with HCC. Based on the findings, further studies focusing on the association of snoRNAs with HCC are required to verify the diagnostic and therapeutic capacities of snoRNAs in HCC.
Collapse
Affiliation(s)
- Dilip Baral
- Wuhan University, Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, Hubei 430071, P.R. China
| | - Long Wu
- Wuhan University, Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, Hubei 430071, P.R. China
| | - Gaurav Katwal
- Wuhan University, Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, Hubei 430071, P.R. China
| | - Xiong Yan
- Wuhan University, Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, Hubei 430071, P.R. China
| | - Yanfeng Wang
- Wuhan University, Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, Hubei 430071, P.R. China
| | - Qifa Ye
- Wuhan University, Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, Hubei 430071, P.R. China.,The Third Xiangya Hospital of Central South University, Research Center of National Health Ministry on Transplantation Medicine Engineering and Technology, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
41
|
Wu L, Chang L, Wang H, Ma W, Peng Q, Yuan Y. Clinical significance of C/D box small nucleolar RNA U76 as an oncogene and a prognostic biomarker in hepatocellular carcinoma. Clin Res Hepatol Gastroenterol 2018; 42:82-91. [PMID: 28578939 DOI: 10.1016/j.clinre.2017.04.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 04/06/2017] [Accepted: 04/26/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Recent evidence has suggested novel roles of small nucleolar RNAs (snoRNAs) in tumorigenicity. However, the roles of C/D box snoRNA U76 (SNORD76) in the development of hepatocellular carcinoma (HCC) remain unknown. Herein, we systematically evaluated dysregulation of snoRNAs in HCC and clarified the biomarker potential and biological significance of SNORD76 in HCC. METHODS We performed quantitative analyses of the expression of SNORD76 in 66 HCC specimens to compare its expression pattern between tumor tissue and matched non-tumor tissue. The effects of SNORD76 on HCC tumorigenicity were investigated in SK-Hep1 and Huh7 cells as well as in a xenograft nude mouse model. RESULTS SNORD76 expression was significantly upregulated in HCC tissues compared to corresponding non-tumor tissues. This upregulation of SNORD76 in HCC tumors was significantly associated with poorer patient survival. Furthermore, inhibiting SNORD76 expression suppressed cell proliferation by inducing G0/G1 cell cycle arrest and apoptosis. Low SNORD76 expression also resulted in decreased HCC growth in an animal model. Conversely, overexpressing SNORD76 promoted cell proliferation. SNORD76 increased HCC cell invasion by inducing epithelial-mesenchymal transition (EMT). Finally, we found that SNORD76 promoted HCC tumorigenicity through activation of the Wnt/β-catenin pathway. CONCLUSIONS Therefore, we demonstrated for the first time that SNORD76 may function as a novel tumor promoter in HCC and may serve as a promising prognostic biomarker in patients with HCC.
Collapse
Affiliation(s)
- Long Wu
- Department of General Surgery, Research Center of Digestive Diseases, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan 430071, PR China
| | - Lei Chang
- Department of General Surgery, Research Center of Digestive Diseases, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan 430071, PR China
| | - Haitao Wang
- Department of General Surgery, Research Center of Digestive Diseases, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan 430071, PR China
| | - Weijie Ma
- Department of General Surgery, Research Center of Digestive Diseases, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan 430071, PR China
| | - Qin Peng
- Department of General Surgery, Research Center of Digestive Diseases, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan 430071, PR China
| | - Yufeng Yuan
- Department of General Surgery, Research Center of Digestive Diseases, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan 430071, PR China.
| |
Collapse
|
42
|
Zhou J, He L, Pang Z, Appelman HD, Kuick R, Beer DG, Li M, Wang TD. Identification and validation of FGFR2 peptide for detection of early Barrett's neoplasia. Oncotarget 2017; 8:87095-87106. [PMID: 29152066 PMCID: PMC5675618 DOI: 10.18632/oncotarget.19764] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 07/03/2017] [Indexed: 02/07/2023] Open
Abstract
The incidence of esophageal adenocarcinoma (EAC) is rising rapidly, and early detection within the precursor state of Barrett's esophagus (BE) is challenged by flat premalignant lesions that are difficult detect with conventional endoscopic surveillance. Overexpression of cell surface fibroblast growth factor receptor 2 (FGFR2) is an early event in progression of BE to EAC, and is a promising imaging target. We used phage display to identify the peptide SRRPASFRTARE that binds specifically to the extracellular domain of FGFR2. We labeled this peptide with a near-infrared fluorophore Cy5.5, and validated the specific binding to FGFR2 overexpressed in cells in vitro. We found high affinity kd = 68 nM and rapid binding k = 0.16 min-1 (6.2 min). In human esophageal specimens, we found significantly greater peptide binding to high-grade dysplasia (HGD) versus either BE or normal squamous epithelium, and good correlation with anti-FGFR2 antibody. We also observed significantly greater peptide binding to excised specimens of esophageal squamous cell carcinoma and gastric cancer compared to normal mucosa. These results demonstrate potential for this FGFR2 peptide to be used as a clinical imaging agent to guide tissue biopsy and improve methods for early detection of EAC and potentially other epithelial-derived cancers.
Collapse
Affiliation(s)
- Juan Zhou
- Department of Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Lei He
- Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi'an 710032, China
| | - Zhijun Pang
- Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi'an 710032, China
| | - Henry D Appelman
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Rork Kuick
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - David G Beer
- Department of Surgery, Section of Thoracic Surgery, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Meng Li
- Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi'an 710032, China
| | - Thomas D Wang
- Department of Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, Michigan 48109, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA.,Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
43
|
Falaleeva M, Welden JR, Duncan MJ, Stamm S. C/D-box snoRNAs form methylating and non-methylating ribonucleoprotein complexes: Old dogs show new tricks. Bioessays 2017; 39:10.1002/bies.201600264. [PMID: 28505386 PMCID: PMC5586538 DOI: 10.1002/bies.201600264] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
C/D box snoRNAs (SNORDs) are an abundantly expressed class of short, non-coding RNAs that have been long known to perform 2'-O-methylation of rRNAs. However, approximately half of human SNORDs have no predictable rRNA targets, and numerous SNORDs have been associated with diseases that show no defects in rRNAs, among them Prader-Willi syndrome, Duplication 15q syndrome and cancer. This apparent discrepancy has been addressed by recent studies showing that SNORDs can act to regulate pre-mRNA alternative splicing, mRNA abundance, activate enzymes, and be processed into shorter ncRNAs resembling miRNAs and piRNAs. Furthermore, recent biochemical studies have shown that a given SNORD can form both methylating and non-methylating ribonucleoprotein complexes, providing an indication of the likely physical basis for such diverse new functions. Thus, SNORDs are more structurally and functionally diverse than previously thought, and their role in gene expression is under-appreciated. The action of SNORDs in non-methylating complexes can be substituted with oligonucleotides, allowing devising therapies for diseases like Prader-Willi syndrome.
Collapse
Affiliation(s)
- Marina Falaleeva
- University Kentucky, Institute for Biochemistry, Lexington, KY, USA
| | - Justin R. Welden
- University Kentucky, Institute for Biochemistry, Lexington, KY, USA
| | | | - Stefan Stamm
- University Kentucky, Institute for Biochemistry, Lexington, KY, USA
| |
Collapse
|
44
|
Small nucleolar RNA ACA11 promotes proliferation, migration and invasion in hepatocellular carcinoma by targeting the PI3K/AKT signaling pathway. Biomed Pharmacother 2017; 90:705-712. [PMID: 28419966 DOI: 10.1016/j.biopha.2017.04.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 04/03/2017] [Accepted: 04/10/2017] [Indexed: 11/21/2022] Open
Abstract
Emerging evidence suggests that tumorigenesis involves dysregulation of small nucleolar RNAs (snoRNAs). However, the role of small nucleolar RNA ACA11 (ACA11) in the development of hepatocellular carcinoma (HCC) remains unknown. Expression of ACA11 was measured using quantitative RT-PCR in 92 HCC specimens and 7 HCC cell lines. We found that ACA11 expression was significantly upregulated in HCC tissues and hepatoma cell lines. This upregulation of ACA11 in HCC tumors was significantly associated with histological grade, HBV infection, Barcelona Clinic Liver Cancer stage, portal vein tumor thrombus and poorer patient survival. Knockdown of ACA11 induced G0/G1 phase arrest and suppressed proliferation, migration and invasion of HCCLM9 and SK-Hep1 cells. Low ACA11 expression resulted in decreased HCC growth in an animal model. Conversely, transgenic expression of ACA11 induced S phase progression and enhanced proliferation, migration and invasion of Huh7 cells in vitro and in vivo. Finally, we found that ACA11 promoted cell growth, migration and invasion through activation of the PI3K/AKT pathway, subsequently increasing cyclinD1 expression and inducing EMT. These results suggest that ACA11 has an oncogenic role in HCC and may serve as a promising prognostic biomarker and therapeutic target for patients with HCC.
Collapse
|