1
|
Ziogas DC, Papadopoulou E, Gogas H, Sakellariou S, Felekouras E, Theocharopoulos C, Stefanou DT, Theochari M, Boukovinas I, Matthaios D, Koumarianou A, Zairi E, Liontos M, Koutsoukos K, Metaxa-Mariatou V, Kapetsis G, Meintani A, Tsaousis GN, Nasioulas G. Digging into the NGS Information from a Large-Scale South European Population with Metastatic/Unresectable Pancreatic Ductal Adenocarcinoma: A Real-World Genomic Depiction. Cancers (Basel) 2023; 16:2. [PMID: 38201431 PMCID: PMC10778112 DOI: 10.3390/cancers16010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024] Open
Abstract
Despite ongoing oncological advances, pancreatic ductal adenocarcinoma (PDAC) continues to have an extremely poor prognosis with limited targeted and immunotherapeutic options. Its genomic background has not been fully characterized yet in large-scale populations all over the world. Methods: Replicating a recent study from China, we collected tissue samples from consecutive Greek patients with pathologically-confirmed metastatic/unresectable PDAC and retrospectively investigated their genomic landscape using next generation sequencing (NGS). Findings: From a cohort of 409 patients, NGS analysis was successfully achieved in 400 cases (56.50% males, median age: 61.8 years). Consistent with a previous study, KRAS was the most frequently mutated gene in 81.50% of tested samples, followed by TP53 (50.75%), CDKN2 (8%), and SMAD4 (7.50%). BRCA1/2 variants with on-label indications were detected in 2%, and 87.50% carried a variant associated with off-label treatment (KRAS, ERBB2, STK11, or HRR-genes), while 3.5% of the alterations had unknown/preliminary-studied actionability (TP53/CDKN2A). Most of HRR-alterations were in intermediate- and low-risk genes (CHEK2, RAD50, RAD51, ATM, FANCA, FANCL, FANCC, BAP1), with controversial actionability: 8% harbored a somatic non-BRCA1/2 alteration, 6 cases had a high-risk alteration (PALB2, RAD51C), and one co-presented a PALB2/BRCA2 alteration. Elevated LOH was associated with HRR-mutated status and TP53 mutations while lowered LOH was associated with KRAS alterations. Including TMB/MSI data, the potential benefit from an NGS-oriented treatment was increased from 1.91% to 13.74% (high-MSI: 0.3%, TMB > 10 muts/MB: 12.78%). TMB was slightly increased in females (4.75 vs. 4.46 muts/MB) and in individuals with age > 60 (4.77 vs. 4.40 muts/MB). About 28.41% showed PD-L1 > 1% either in tumor or immune cells, 15.75% expressed PD-L1 ≥ 10%, and only 1.18% had PD-L1 ≥ 50%. This is the largest depiction of real-world genomic characteristics of European patients with PDAC, which offers some useful clinical and research insights.
Collapse
Affiliation(s)
- Dimitrios C. Ziogas
- First Department of Internal Medicine, Laikon General Hospital, School of Medicine, National Kapodistrian University of Athens, 11527 Athens, Greece; (H.G.); (C.T.); (D.T.S.); (M.T.)
| | - Eirini Papadopoulou
- GeneKor Medical S.A., 15344 Gerakas, Greece; (E.P.); (V.M.-M.); (G.K.); (A.M.); (G.N.T.); (G.N.)
| | - Helen Gogas
- First Department of Internal Medicine, Laikon General Hospital, School of Medicine, National Kapodistrian University of Athens, 11527 Athens, Greece; (H.G.); (C.T.); (D.T.S.); (M.T.)
| | - Stratigoula Sakellariou
- First Department of Pathology, School of Medicine, National Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Evangellos Felekouras
- First Department of Surgery, Laikon General Hospital, School of Medicine, National Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Charalampos Theocharopoulos
- First Department of Internal Medicine, Laikon General Hospital, School of Medicine, National Kapodistrian University of Athens, 11527 Athens, Greece; (H.G.); (C.T.); (D.T.S.); (M.T.)
| | - Dimitra T. Stefanou
- First Department of Internal Medicine, Laikon General Hospital, School of Medicine, National Kapodistrian University of Athens, 11527 Athens, Greece; (H.G.); (C.T.); (D.T.S.); (M.T.)
| | - Maria Theochari
- First Department of Internal Medicine, Laikon General Hospital, School of Medicine, National Kapodistrian University of Athens, 11527 Athens, Greece; (H.G.); (C.T.); (D.T.S.); (M.T.)
| | - Ioannis Boukovinas
- Department of Medical Oncology, Bioclinic Hospital, 54622 Thessaloniki, Greece;
| | | | - Anna Koumarianou
- Hematology Oncology Unit, Fourth Department of Internal Medicine, School of Medicine, National Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Eleni Zairi
- Oncology Department, St. Lukes Hospital, 55236 Thessaloniki, Greece;
| | - Michalis Liontos
- Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National Kapodistrian University of Athens, 11527 Athens, Greece; (M.L.); (K.K.)
| | - Konstantinos Koutsoukos
- Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National Kapodistrian University of Athens, 11527 Athens, Greece; (M.L.); (K.K.)
| | - Vasiliki Metaxa-Mariatou
- GeneKor Medical S.A., 15344 Gerakas, Greece; (E.P.); (V.M.-M.); (G.K.); (A.M.); (G.N.T.); (G.N.)
| | - George Kapetsis
- GeneKor Medical S.A., 15344 Gerakas, Greece; (E.P.); (V.M.-M.); (G.K.); (A.M.); (G.N.T.); (G.N.)
| | - Angeliki Meintani
- GeneKor Medical S.A., 15344 Gerakas, Greece; (E.P.); (V.M.-M.); (G.K.); (A.M.); (G.N.T.); (G.N.)
| | - Georgios N. Tsaousis
- GeneKor Medical S.A., 15344 Gerakas, Greece; (E.P.); (V.M.-M.); (G.K.); (A.M.); (G.N.T.); (G.N.)
| | - George Nasioulas
- GeneKor Medical S.A., 15344 Gerakas, Greece; (E.P.); (V.M.-M.); (G.K.); (A.M.); (G.N.T.); (G.N.)
| |
Collapse
|
2
|
Ando K, Nakamura Y, Kitao H, Shimokawa M, Kotani D, Bando H, Nishina T, Yamada T, Yuki S, Narita Y, Hara H, Ohta T, Esaki T, Hamamoto Y, Kato K, Yamamoto Y, Minashi K, Ohtsubo K, Izawa N, Kawakami H, Kato T, Satoh T, Okano N, Tsuji A, Yamazaki K, Yoshino T, Maehara Y, Oki E. Mutational spectrum of TP53 gene correlates with nivolumab treatment efficacy in advanced gastric cancer (TP53MUT study). Br J Cancer 2023; 129:1032-1039. [PMID: 37532830 PMCID: PMC10491760 DOI: 10.1038/s41416-023-02378-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 07/03/2023] [Accepted: 07/24/2023] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND Although nivolumab has a high efficacy, reliable biomarkers are needed to predict the efficacy. We evaluated the nivolumab efficacy according to the TP53 mutation in advanced gastric cancer patients enrolled in the GI-SCREEN project. METHODS Sequence data of tumour specimens and clinicopathological information of 913 patients with advanced gastric cancer who were enrolled between April 2015 and March 2017 were obtained from the GI-SCREEN database. The follow-up information of 266 patients treated with nivolumab was also provided. RESULTS Among 266 patients treated with nivolumab, the objective response rate (ORR) of TP53 wild type (wt) patients (24.6%) was higher than that of TP53 mutant patients (14.8%). Among TP53 mutant patients, the ORR of the frameshift type tended to be higher than the transition and transversion type (23.1%, 13.6%, and 13.0%, respectively). The median progression-free survival (PFS) was statistically longer in TP53 wt patients than in mutant patients (3.3 vs 2.1 months, HR 1.4, 95% CI 1.1-1.9). Among TP53 mutant patients, PFS was statistically longer in the frameshift type than in the transversion type. CONCLUSION Nivolumab showed better efficacy in TP53 wt patients than in mutant patients. Among TP53 mutant patients, the frameshift type may have efficacy from nivolumab treatment.
Collapse
Affiliation(s)
- Koji Ando
- Department of Surgery and Science, Kyushu University, Fukuoka, Japan
| | - Yoshiaki Nakamura
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
- Department for the Promotion of Drug and Diagnostic Development, National Cancer Center Hospital East, Kashiwa, Japan
| | - Hiroyuki Kitao
- Oral Medicine Research Center, Fukuoka Dental College, Fukuoka, Japan
| | | | - Daisuke Kotani
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Hideaki Bando
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
- Department for the Promotion of Drug and Diagnostic Development, National Cancer Center Hospital East, Kashiwa, Japan
| | - Tomohiro Nishina
- Department of Gastrointestinal Medical Oncology, National Hospital Organization Shikoku Cancer Center, Matsuyama, Japan
| | - Takanobu Yamada
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center, Yokohama, Japan
| | - Satoshi Yuki
- Department of Gastroenterology and Hepatology, Hokkaido University Hospital, Sapporo, Japan
| | - Yukiya Narita
- Department of Clinical Oncology, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Hiroki Hara
- Department of Gastroenterology, Saitama Cancer Center, Kitaadachi-gun, Japan
| | - Takashi Ohta
- Department of Clinical Oncology, Kansai Rosai Hospital, Amagasaki, Japan
| | - Taito Esaki
- Department of Gastrointestinal and Medical Oncology, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - Yasuo Hamamoto
- Keio Cancer Center, Keio University School of Medicine, Tokyo, Japan
| | - Ken Kato
- Department of Head and Neck, Esophageal Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Yoshiyuki Yamamoto
- Department of Gastroenterology and Hepatology, University of Tsukuba Hospital, Tsukuba, Japan
| | - Keiko Minashi
- Division of Gastroenterology, Chiba Cancer Center, Chiba, Japan
| | - Koushiro Ohtsubo
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Naoki Izawa
- Department of Clinical Oncology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Hisato Kawakami
- Department of Medical Oncology, Kindai University Hospital, Osakasayama, Japan
| | - Takeshi Kato
- Department of Surgery, National Hospital Organization Osaka National Hospital, Osaka, Japan
| | - Taroh Satoh
- Center for Cancer Genomics and Precision Medicine, Osaka University Hospital, Suita, Japan
| | - Naohiro Okano
- Department of Medical Oncology, Kyorin University Faculty of Medicine, Mitaka, Japan
| | - Akihito Tsuji
- Department of Clinical Oncology, Kagawa University Hospital, Kita-gun, Japan
| | - Kentaro Yamazaki
- Division of Gastrointestinal Oncology, Shizuoka Cancer Center, Shunto-gun, Japan
| | - Takayuki Yoshino
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
- Department for the Promotion of Drug and Diagnostic Development, National Cancer Center Hospital East, Kashiwa, Japan
| | - Yoshihiko Maehara
- Kyushu Central Hospital of the Mutual Aid Association of Public School Teachers, Fukuoka, Japan
| | - Eiji Oki
- Department of Surgery and Science, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
3
|
Pan M, Jiang C, Zhang Z, Achacoso N, Alexeeff S, Solorzano AV, Tse P, Chung E, Sundaresan T, Suga JM, Thomas S, Habel LA. TP53 Gain-of-Function and Non-Gain-of-Function Mutations Are Associated With Differential Prognosis in Advanced Pancreatic Ductal Adenocarcinoma. JCO Precis Oncol 2023; 7:e2200570. [PMID: 37163715 DOI: 10.1200/po.22.00570] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023] Open
Abstract
PURPOSE To examine the impact of TP53 gain-of-function (GOF) and non-GOF mutations on prognosis of advanced pancreatic ductal adenocarcinoma (PDAC) among patients with KRAS, CDKN2A, and SMAD4 comutations. METHODS This cohort included patients with locally advanced, recurrent, and de novo metastatic PDAC with next-generation sequencing performed from November 2017 to May 2022. We defined R175H, R248W, R248Q, R249S, R273H, R273L, and R282W as GOF and all other p53 mutations (mutp53) as non-GOF. We used Cox regression modeling to examine the association between GOF and non-GOF mutp53 and overall survival (OS), adjusting for demographics, performance status, Charlson comorbidity index, receipt of chemotherapy, and KRAS, CDKN2A, and SMAD4 comutations. RESULTS Of 893 total eligible patients, 68.5% had tumors with mutp53, 90.1% had KRAS mutations (mutKRAS), 44.7% had CDKN2A mutations (mutCDKN2A), and 17.0% had SMAD4 mutations. Among patients with mutp53, 121 had GOF and 491 had non-GOF. GOF mutp53 was associated with worse OS than non-GOF mutp53 (hazard ratio [HR], 1.27; 95% CI, 1.02 to 1.59) and wild-type p53 (wtp53; HR, 1.24; 95% CI, 0.98 to 1.57), whereas non-GOF was not associated with worse OS than wtp53 (HR, 0.95; 95% CI, 0.80 to 1.13). In addition, mutKRAS was associated with worse OS than wild-type KRAS in patients with mutCDKN2A (HR, 1.57; 95% CI, 0.88 to 2.80) but not in patients with wild-type CDKN2A (HR, 1.03; 95% CI, 0.76 to 1.39). CONCLUSION GOF and non-GOF mutp53 were associated with differential prognosis in advanced PDAC. The adverse effect of mutKRAS on OS appeared to be primarily driven by patients with mutCDKN2A. Our results provide new insight that could be helpful for prognostic stratification in clinical practice and for aiding future clinical trial designs.
Collapse
Affiliation(s)
- Minggui Pan
- Department of Oncology and Hematology, Kaiser Permanente, Santa Clara, CA
- Division of Research, Kaiser Permanente, Oakland, CA
| | - Chen Jiang
- Division of Research, Kaiser Permanente, Oakland, CA
| | - Zheyang Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, Fujian, China
| | | | | | | | - Pam Tse
- Division of Research, Kaiser Permanente, Oakland, CA
| | - Elaine Chung
- Division of Research, Kaiser Permanente, Oakland, CA
| | - Tilak Sundaresan
- Department of Oncology and Hematology, Kaiser Permanente, San Francisco, CA
| | | | - Sachdev Thomas
- Department of Oncology and Hematology, Kaiser Permanente, Santa Clara, CA
| | | |
Collapse
|
4
|
Szychowski KA, Skóra B, Pomianek T. Effect of the elastin-derived peptides (VGVAPG and VVGPGA) on breast (MCF-7) and lung (A549) cancer cell lines in vitro. Biomed Pharmacother 2022; 151:113149. [PMID: 35598370 DOI: 10.1016/j.biopha.2022.113149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/11/2022] [Accepted: 05/15/2022] [Indexed: 11/29/2022] Open
Abstract
Tissues are subjected to dynamic communication between cells and the extracellular matrix (ECM), resulting in ECM remodeling. One of the ECM components is elastin, which releases elastin-derived peptides (EDPs) during the aging process. Therefore, the aim of the present study was to evaluate the impact of the VGVAPG hexapeptide and elastin-like peptide VVGPGA (control) on certain metabolism parameters in human breast adenocarcinoma (MCF-7) and human lung carcinoma (A549) cell lines. The results did not show a significant effect of the peptides on metabolic activity and caspase-3 activity. However, more specific analysis revealed that VGVAPG and VVGPGA were able to increase KI67 protein expression in both tested cell lines after 24-h treatment. Moreover, the same correlation was observed at the KI67 gene level. VGVAPG also increased the P53, ATM and SHH gene expression in the A549 cells up to 19.08%, 20.74%, and 28.77%, respectively. Interestingly, the VGVAPG peptide exerted an effect on the expression of antioxidant enzymes SOD2 and CAT in the A549 and MCF-7 cells, especially after the 24-h treatment. Lastly, both peptides influenced the CAV1 and CLTC1 expression. Our results show that the tested EDPs have an effect on both A549 and MCF-7 cells at the cellular level. This may be correlated with the multidrug-resistance (MDR) phenotype in these cancer cells, which is an emerging problem in the current anticancer treatment. However, more research is needed in this field.
Collapse
Affiliation(s)
- Konrad A Szychowski
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland.
| | - Bartosz Skóra
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland
| | - Tadeusz Pomianek
- Department of Management, Management College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, Rzeszow 35-225, Poland
| |
Collapse
|
5
|
Pan M, Jiang C, Tse P, Achacoso N, Alexeeff S, Solorzano AV, Chung E, Hu W, Truong TG, Arora A, Sundaresan T, Suga JM, Thomas S, Habel LA. TP53 Gain-of-Function and Non-Gain-of-Function Mutations Are Differentially Associated With Sidedness-Dependent Prognosis in Metastatic Colorectal Cancer. J Clin Oncol 2022; 40:171-179. [PMID: 34843402 PMCID: PMC8718185 DOI: 10.1200/jco.21.02014] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
PURPOSE To examine the association of gain-of-function (GOF) and non-gain-of-function (non-GOF) TP53 mutations with prognosis of metastatic right-sided (RCC) versus left-sided colorectal cancer (LCC). METHODS This cohort study included patients with metastatic colorectal cancer (CRC) who had next-generation sequencing performed from November 2017 to January 2021. We defined R175H, R248W, R248Q, R249S, R273H, R273L, and R282W as GOF and all other mutp53 as non-GOF. We used Cox regression modeling to examine the association between GOF and non-GOF mutp53 and overall survival (OS), adjusting for age, sex, ethnicity, performance status, Charlson comorbidity index and receipt of chemotherapy. RESULTS Of total 1,043 patients, 735 had tumors with mutp53 and 308 had wild-type p53 (wtp53). GOF was associated with worse OS than non-GOF mutp53 only in LCC (hazard ratio [HR] = 1.66 [95% CI, 1.20 to 2.29]), but not in RCC (HR = 0.79 [95% CI, 0.49 to 1.26]). Importantly, RCC was associated with worse OS than LCC only in the subset of patients whose CRC carried non-GOF (HR = 1.76 [95% CI, 1.30 to 2.39]), but not GOF mutp53 (HR = 0.92 [95% CI, 0.55 to 1.53]) or wtp53 (HR = 0.88 [95% CI, 0.60 to 1.28]). These associations were largely unchanged after also adjusting for RAS, BRAF, and PIK3CA mutations, and microsatellite instability-high. CONCLUSION Poorer survival of patients with metastatic RCC versus LCC appeared to be restricted to the subset with non-GOF mutp53, whereas GOF versus non-GOF mutp53 was associated with poorer survival only among patients with LCC. This approach of collectively classifying mutp53 into GOF and non-GOF provides new insight for prognostic stratification and for understanding the mechanism of sidedness-dependent prognosis. If confirmed, future CRC clinical trials may benefit from incorporating this approach.
Collapse
Affiliation(s)
- Minggui Pan
- Department of Oncology and Hematology, Kaiser Permanente, Santa Clara, CA,Division of Research, Kaiser Permanente, Oakland, CA,Minggui Pan, MD, PhD, Division of Research and Department of Oncology and Hematology, Kaiser Permanente, 710 Lawrence Expressway, Santa Clara, CA 95051; e-mail:
| | - Chen Jiang
- Division of Research, Kaiser Permanente, Oakland, CA
| | - Pam Tse
- Division of Research, Kaiser Permanente, Oakland, CA
| | | | | | | | - Elaine Chung
- Division of Research, Kaiser Permanente, Oakland, CA
| | - Wenwei Hu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, State University of New Jersey, New Brunswick, NJ
| | - Thach-Giao Truong
- Department of Oncology and Hematology, Kaiser Permanente, Vallejo, CA
| | - Amit Arora
- Department of Oncology and Hematology, Kaiser Permanente, Fremont, CA
| | - Tilak Sundaresan
- Department of Oncology and Hematology, Kaiser Permanente, San Francisco, CA
| | | | - Sachdev Thomas
- Department of Oncology and Hematology, Kaiser Permanente, Vallejo, CA
| | | |
Collapse
|
6
|
Over Fifty Years of Life, Death, and Cannibalism: A Historical Recollection of Apoptosis and Autophagy. Int J Mol Sci 2021; 22:ijms222212466. [PMID: 34830349 PMCID: PMC8618802 DOI: 10.3390/ijms222212466] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 01/18/2023] Open
Abstract
Research in biomedical sciences has changed dramatically over the past fifty years. There is no doubt that the discovery of apoptosis and autophagy as two highly synchronized and regulated mechanisms in cellular homeostasis are among the most important discoveries in these decades. Along with the advancement in molecular biology, identifying the genetic players in apoptosis and autophagy has shed light on our understanding of their function in physiological and pathological conditions. In this review, we first describe the history of key discoveries in apoptosis with a molecular insight and continue with apoptosis pathways and their regulation. We touch upon the role of apoptosis in human health and its malfunction in several diseases. We discuss the path to the morphological and molecular discovery of autophagy. Moreover, we dive deep into the precise regulation of autophagy and recent findings from basic research to clinical applications of autophagy modulation in human health and illnesses and the available therapies for many diseases caused by impaired autophagy. We conclude with the exciting crosstalk between apoptosis and autophagy, from the early discoveries to recent findings.
Collapse
|
7
|
Sun Z, Qiu Z, Wang Z, Chi H, Shan P. Silencing Ribosomal Protein L22 Promotes Proliferation and Migration, and Inhibits Apoptosis of Gastric Cancer Cells by Regulating the Murine Double Minute 2-Protein 53 (MDM2-p53) Signaling Pathway. Med Sci Monit 2021; 27:e928375. [PMID: 34050122 PMCID: PMC8168286 DOI: 10.12659/msm.928375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background The aim of this study was to investigate the effect of ribosomal protein L22 (RPL22) on gastric cancer (GC) cell proliferation, migration, and apoptosis, and its correlation with the murine double minute 2-protein 53 (MDM2-p53) signaling pathway. Material/Methods The RPL22 expression in GC tissues and cells was detected by quantitative reverse transcription-polymerase chain reaction and western blotting. RPL22 was overexpressed in the MKN-45 cells by the transfection of a vector, pcDNA3.1 (pcDNA)-RPL22, whereas it was silenced in the MGC-803 cells by the transfection of short interfering (si) RNA (si-RPL22). Flow cytometric analysis, cell viability assays, wound healing assays, and transwell assays were utilized to explore the influences of RPL22 on the apoptosis, proliferation, migration, and invasion. Nutlin-3 (an MDM2-p53 inhibitor) was used to inhibit MDM2-p53 signaling. Results The RPL22 expression was downregulated in GC tissues and cells. It was significantly lower in the advanced GC tissues than in the early GC tissues, and was significantly lower in the lymphatic metastatic tissues than in the non-lymphatic metastatic tissues. The transfection of si-RPL22 accelerated the ability of GC cells to proliferate and metastasize, whereas apoptosis was dampened. The transfection of pcDNA-RPL22 exerted the opposite effect on the GC cells; MDM2 expression was upregulated in RPL22-silenced GC cells, while the expression of p53 was downregulated. In vitro, treatment with nutlin-3 reversed the promoting effects of si-RPL22 on GC progression. Conclusions In vitro, the silencing of RPL22 aggravates GC by regulating the MDM2-p53 signaling pathway.
Collapse
Affiliation(s)
- Zhenqing Sun
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Zhigang Qiu
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Zhengkun Wang
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Honghui Chi
- Department of Cardiovascular Surgery II, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Peipei Shan
- Institute for Translational Medicine, College of Medicine of Qingdao University, Qingdao, Shandong, China (mainland)
| |
Collapse
|