1
|
Oh M, Kadam RN, Charania ZS, Somarowthu S. LncRNA SChLAP1 promotes cancer cell proliferation and invasion via its distinct structural domains and conserved regions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.28.635288. [PMID: 39975023 PMCID: PMC11838354 DOI: 10.1101/2025.01.28.635288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Long non-coding RNAs (lncRNAs) play key roles in a range of biological processes and disease progression. Despite their functional significance and therapeutic potential, lncRNAs' mechanisms of action remain understudied. One such lncRNA is the Second Chromosome Locus Associated with Prostate-1 (SChLAP1). SChLAP1 is overexpressed in malignant prostate cancer and is associated with unfavorable patient outcomes, such as metastasis and increased mortality. In this study, we demonstrated that SChLAP1 possesses distinct structural domains and conserved regions that may contribute to its function. We determined the secondary structure of SChLAP1 using chemical probing methods combined with mutational profiling (DMS-MaP and SHAPE-MaP). Our in vitro secondary structural model revealed that SChLAP1 consists of two distinct secondary-structural modules located at its 5' and 3' ends, both featuring regions with a high degree of structural organization. Our in vivo chemical probing identified potential protein-binding hotspots within the two modules. Overexpression of the modules led to a notable increase in cancer cell proliferation and invasion, proving their functional significance on the oncogenicity of SChLAP1. In conclusion, we discovered functionally important, independent modules with well-defined structures of SChLAP1. These results will serve as a guide to explore the detailed molecular mechanisms by which SChLAP1 promotes aggressive prostate cancer, ultimately contributing to the development of SChLAP1 as a novel therapeutic target.
Collapse
Affiliation(s)
- Mihyun Oh
- Graduate Program in Molecular and Cell Biology and Genetics, Graduate School of Biomedical Sciences and Professional Studies, College of Medicine, Drexel University, Philadelphia, Pennsylvania, USA
| | - Roshni Nagesh Kadam
- Graduate Program in Molecular and Cell Biology and Genetics, Graduate School of Biomedical Sciences and Professional Studies, College of Medicine, Drexel University, Philadelphia, Pennsylvania, USA
| | - Zahra Sadruddin Charania
- Graduate Program in Molecular and Cell Biology and Genetics, Graduate School of Biomedical Sciences and Professional Studies, College of Medicine, Drexel University, Philadelphia, Pennsylvania, USA
| | - Srinivas Somarowthu
- Department of Biochemistry and Molecular Biology, College of Medicine, Drexel University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Davis WJH, Drummond CJ, Diermeier S, Reid G. The Potential Links between lncRNAs and Drug Tolerance in Lung Adenocarcinoma. Genes (Basel) 2024; 15:906. [PMID: 39062685 PMCID: PMC11276205 DOI: 10.3390/genes15070906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Lung cancer patients treated with targeted therapies frequently respond well but invariably relapse due to the development of drug resistance. Drug resistance is in part mediated by a subset of cancer cells termed "drug-tolerant persisters" (DTPs), which enter a dormant, slow-cycling state that enables them to survive drug exposure. DTPs also exhibit stem cell-like characteristics, broad epigenetic reprogramming, altered metabolism, and a mutagenic phenotype mediated by adaptive mutability. While several studies have characterised the transcriptional changes that lead to the altered phenotypes exhibited in DTPs, these studies have focused predominantly on protein coding changes. As long non-coding RNAs (lncRNAs) are also implicated in the phenotypes altered in DTPs, it is likely that they play a role in the biology of drug tolerance. In this review, we outline how lncRNAs may contribute to the key characteristics of DTPs, their potential roles in tolerance to targeted therapies, and the emergence of genetic resistance in lung adenocarcinoma.
Collapse
Affiliation(s)
- William J. H. Davis
- Department of Pathology, Dunedin School of Medicine, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; (W.J.H.D.); (C.J.D.)
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag, Auckland 1023, New Zealand
| | - Catherine J. Drummond
- Department of Pathology, Dunedin School of Medicine, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; (W.J.H.D.); (C.J.D.)
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag, Auckland 1023, New Zealand
| | - Sarah Diermeier
- Department of Biochemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand;
- Amaroq Therapeutics, Auckland 1010, New Zealand
| | - Glen Reid
- Department of Pathology, Dunedin School of Medicine, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; (W.J.H.D.); (C.J.D.)
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag, Auckland 1023, New Zealand
| |
Collapse
|
3
|
Zacco E, Broglia L, Kurihara M, Monti M, Gustincich S, Pastore A, Plath K, Nagakawa S, Cerase A, Sanchez de Groot N, Tartaglia GG. RNA: The Unsuspected Conductor in the Orchestra of Macromolecular Crowding. Chem Rev 2024; 124:4734-4777. [PMID: 38579177 PMCID: PMC11046439 DOI: 10.1021/acs.chemrev.3c00575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 04/07/2024]
Abstract
This comprehensive Review delves into the chemical principles governing RNA-mediated crowding events, commonly referred to as granules or biological condensates. We explore the pivotal role played by RNA sequence, structure, and chemical modifications in these processes, uncovering their correlation with crowding phenomena under physiological conditions. Additionally, we investigate instances where crowding deviates from its intended function, leading to pathological consequences. By deepening our understanding of the delicate balance that governs molecular crowding driven by RNA and its implications for cellular homeostasis, we aim to shed light on this intriguing area of research. Our exploration extends to the methodologies employed to decipher the composition and structural intricacies of RNA granules, offering a comprehensive overview of the techniques used to characterize them, including relevant computational approaches. Through two detailed examples highlighting the significance of noncoding RNAs, NEAT1 and XIST, in the formation of phase-separated assemblies and their influence on the cellular landscape, we emphasize their crucial role in cellular organization and function. By elucidating the chemical underpinnings of RNA-mediated molecular crowding, investigating the role of modifications, structures, and composition of RNA granules, and exploring both physiological and aberrant phase separation phenomena, this Review provides a multifaceted understanding of the intriguing world of RNA-mediated biological condensates.
Collapse
Affiliation(s)
- Elsa Zacco
- RNA
Systems Biology Lab, Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen, 83, 16152 Genova, Italy
| | - Laura Broglia
- RNA
Systems Biology Lab, Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen, 83, 16152 Genova, Italy
| | - Misuzu Kurihara
- RNA
Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Michele Monti
- RNA
Systems Biology Lab, Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen, 83, 16152 Genova, Italy
| | - Stefano Gustincich
- Central
RNA Lab, Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen, 83, 16152 Genova, Italy
| | - Annalisa Pastore
- UK
Dementia Research Institute at the Maurice Wohl Institute of King’s
College London, London SE5 9RT, U.K.
| | - Kathrin Plath
- Department
of Biological Chemistry, David Geffen School
of Medicine at the University of California Los Angeles, Los Angeles, California 90095, United States
| | - Shinichi Nagakawa
- RNA
Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Andrea Cerase
- Blizard
Institute,
Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 4NS, U.K.
- Unit
of Cell and developmental Biology, Department of Biology, Università di Pisa, 56123 Pisa, Italy
| | - Natalia Sanchez de Groot
- Unitat
de Bioquímica, Departament de Bioquímica i Biologia
Molecular, Universitat Autònoma de
Barcelona, 08193 Barcelona, Spain
| | - Gian Gaetano Tartaglia
- RNA
Systems Biology Lab, Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen, 83, 16152 Genova, Italy
- Catalan
Institution for Research and Advanced Studies, ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
4
|
Bose R, Saleem I, Mustoe AM. Causes, functions, and therapeutic possibilities of RNA secondary structure ensembles and alternative states. Cell Chem Biol 2024; 31:17-35. [PMID: 38199037 PMCID: PMC10842484 DOI: 10.1016/j.chembiol.2023.12.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/21/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024]
Abstract
RNA secondary structure plays essential roles in encoding RNA regulatory fate and function. Most RNAs populate ensembles of alternatively paired states and are continually unfolded and refolded by cellular processes. Measuring these structural ensembles and their contributions to cellular function has traditionally posed major challenges, but new methods and conceptual frameworks are beginning to fill this void. In this review, we provide a mechanism- and function-centric compendium of the roles of RNA secondary structural ensembles and minority states in regulating the RNA life cycle, from transcription to degradation. We further explore how dysregulation of RNA structural ensembles contributes to human disease and discuss the potential of drugging alternative RNA states to therapeutically modulate RNA activity. The emerging paradigm of RNA structural ensembles as central to RNA function provides a foundation for a deeper understanding of RNA biology and new therapeutic possibilities.
Collapse
Affiliation(s)
- Ritwika Bose
- Therapeutic Innovation Center (THINC), Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA
| | - Irfana Saleem
- Therapeutic Innovation Center (THINC), Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA
| | - Anthony M Mustoe
- Therapeutic Innovation Center (THINC), Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
5
|
Tants JN, Schlundt A. Advances, Applications, and Perspectives in Small-Angle X-ray Scattering of RNA. Chembiochem 2023; 24:e202300110. [PMID: 37466350 DOI: 10.1002/cbic.202300110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/22/2023] [Indexed: 07/20/2023]
Abstract
RNAs exhibit a plethora of functions far beyond transmitting genetic information. Often, RNA functions are entailed in their structure, be it as a regulatory switch, protein binding site, or providing catalytic activity. Structural information is a prerequisite for a full understanding of RNA-regulatory mechanisms. Owing to the inherent dynamics, size, and instability of RNA, its structure determination remains challenging. Methods such as NMR spectroscopy, X-ray crystallography, and cryo-electron microscopy can provide high-resolution structures; however, their limitations make structure determination, even for small RNAs, cumbersome, if at all possible. Although at a low resolution, small-angle X-ray scattering (SAXS) has proven valuable in advancing structure determination of RNAs as a complementary method, which is also applicable to large-sized RNAs. Here, we review the technological and methodological advancements of RNA SAXS. We provide examples of the powerful inclusion of SAXS in structural biology and discuss possible future applications to large RNAs.
Collapse
Affiliation(s)
- Jan-Niklas Tants
- Goethe University Frankfurt, Institute for Molecular Biosciences and Biomagnetic Resonance Centre (BMRZ), Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
| | - Andreas Schlundt
- Goethe University Frankfurt, Institute for Molecular Biosciences and Biomagnetic Resonance Centre (BMRZ), Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
| |
Collapse
|
6
|
Li Q, Kang C. Targeting RNA-binding proteins with small molecules: Perspectives, pitfalls and bifunctional molecules. FEBS Lett 2023; 597:2031-2047. [PMID: 37519019 DOI: 10.1002/1873-3468.14710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 08/01/2023]
Abstract
RNA-binding proteins (RBPs) play vital roles in organisms through binding with RNAs to regulate their functions. Small molecules affecting the function of RBPs have been developed, providing new avenues for drug discovery. Herein, we describe the perspectives on developing small molecule regulators of RBPs. The following types of small molecule modulators are of great interest in drug discovery: small molecules binding to RBPs to affect interactions with RNA molecules, bifunctional molecules binding to RNA or RBP to influence their interactions, and other types of molecules that affect the stability of RNA or RBPs. Moreover, we emphasize that the bifunctional molecules may play important roles in small molecule development to overcome the challenges encountered in the process of drug discovery.
Collapse
Affiliation(s)
- Qingxin Li
- Guangdong Provincial Engineering Laboratory of Biomass High Value Utilization, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
| | - Congbao Kang
- Experimental Drug Development Centre, Agency for Science, Technology and Research, Singapore, Singapore
| |
Collapse
|
7
|
Marques IS, Tavares V, Neto BV, Mota INR, Pereira D, Medeiros R. Long Non-Coding RNAs in Venous Thromboembolism: Where Do We Stand? Int J Mol Sci 2023; 24:12103. [PMID: 37569483 PMCID: PMC10418965 DOI: 10.3390/ijms241512103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Venous thromboembolism (VTE), a common condition in Western countries, is a cardiovascular disorder that arises due to haemostatic irregularities, which lead to thrombus generation inside veins. Even with successful treatment, the resulting disease spectrum of complications considerably affects the patient's quality of life, potentially leading to death. Cumulative data indicate that long non-coding RNAs (lncRNAs) may have a role in VTE pathogenesis. However, the clinical usefulness of these RNAs as biomarkers and potential therapeutic targets for VTE management is yet unclear. Thus, this article reviewed the emerging evidence on lncRNAs associated with VTE and with the activity of the coagulation system, which has a central role in disease pathogenesis. Until now, ten lncRNAs have been implicated in VTE pathogenesis, among which MALAT1 is the one with more evidence. Meanwhile, five lncRNAs have been reported to affect the expression of TFPI2, an important anticoagulant protein, but none with a described role in VTE development. More investigation in this field is needed as lncRNAs may help dissect VTE pathways, aiding in disease prediction, prevention and treatment.
Collapse
Affiliation(s)
- Inês Soares Marques
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/Pathology and Laboratory Medicine Dep., Clinical Pathology SV/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre (Porto.CCC), 4200-072 Porto, Portugal; (I.S.M.); (V.T.); (B.V.N.); (I.N.R.M.)
- Faculty of Sciences of University of Porto (FCUP), 4169-007 Porto, Portugal
| | - Valéria Tavares
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/Pathology and Laboratory Medicine Dep., Clinical Pathology SV/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre (Porto.CCC), 4200-072 Porto, Portugal; (I.S.M.); (V.T.); (B.V.N.); (I.N.R.M.)
- Faculty of Medicine of University of Porto (FMUP), 4200-072 Porto, Portugal
- Abel Salazar Institute for the Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal
| | - Beatriz Vieira Neto
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/Pathology and Laboratory Medicine Dep., Clinical Pathology SV/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre (Porto.CCC), 4200-072 Porto, Portugal; (I.S.M.); (V.T.); (B.V.N.); (I.N.R.M.)
- Research Department, Portuguese League Against Cancer (NRNorte), 4200-172 Porto, Portugal
| | - Inês N. R. Mota
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/Pathology and Laboratory Medicine Dep., Clinical Pathology SV/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre (Porto.CCC), 4200-072 Porto, Portugal; (I.S.M.); (V.T.); (B.V.N.); (I.N.R.M.)
- Faculty of Sciences of University of Porto (FCUP), 4169-007 Porto, Portugal
| | - Deolinda Pereira
- Oncology Department, Portuguese Institute of Oncology of Porto (IPOP), 4200-072 Porto, Portugal;
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/Pathology and Laboratory Medicine Dep., Clinical Pathology SV/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre (Porto.CCC), 4200-072 Porto, Portugal; (I.S.M.); (V.T.); (B.V.N.); (I.N.R.M.)
- Faculty of Medicine of University of Porto (FMUP), 4200-072 Porto, Portugal
- Abel Salazar Institute for the Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal
- Research Department, Portuguese League Against Cancer (NRNorte), 4200-172 Porto, Portugal
- Faculty of Health Sciences, Fernando Pessoa University, 4200-150 Porto, Portugal
| |
Collapse
|
8
|
Nickbarg EB, Spencer KB, Mortison JD, Lee JT. Targeting RNA with small molecules: lessons learned from Xist RNA. RNA (NEW YORK, N.Y.) 2023; 29:463-472. [PMID: 36725318 PMCID: PMC10019374 DOI: 10.1261/rna.079523.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Although more than 98% of the human genome is noncoding, nearly all drugs on the market target one of about 700 disease-related proteins. However, an increasing number of diseases are now being attributed to noncoding RNA and the ability to target them would vastly expand the chemical space for drug development. We recently devised a screening strategy based upon affinity-selection mass spectrometry and succeeded in identifying bioactive compounds for the noncoding RNA prototype, Xist. One such compound, termed X1, has drug-like properties and binds specifically to the RepA motif of Xist in vitro and in vivo. Small-angle X-ray scattering analysis reveals that X1 changes the conformation of RepA in solution, thereby explaining the displacement of cognate interacting protein factors (PRC2 and SPEN) and inhibition of X-chromosome inactivation. In this Perspective, we discuss lessons learned from these proof-of-concept experiments and suggest that RNA can be systematically targeted by drug-like compounds to disrupt RNA structure and function.
Collapse
Affiliation(s)
| | | | | | - Jeannie T Lee
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Department of Genetics, The Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
9
|
Affiliation(s)
- Xing Chen
- Artificial Intelligence Research Institute, China University of Mining and Technology, Xuzhou, 221116, China
| | - Li Huang
- The Future Laboratory, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
10
|
Delhommel F, Martínez-Lumbreras S, Sattler M. Combining NMR, SAXS and SANS to characterize the structure and dynamics of protein complexes. Methods Enzymol 2022; 678:263-297. [PMID: 36641211 DOI: 10.1016/bs.mie.2022.09.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Understanding the structure and dynamics of biological macromolecules is essential to decipher the molecular mechanisms that underlie cellular functions. The description of structure and conformational dynamics often requires the integration of complementary techniques. In this review, we highlight the utility of combining nuclear magnetic resonance (NMR) spectroscopy with small angle scattering (SAS) to characterize these challenging biomolecular systems. NMR can assess the structure and conformational dynamics of multidomain proteins, RNAs and biomolecular complexes. It can efficiently provide information on interaction surfaces, long-distance restraints and relative domain orientations at residue-level resolution. Such information can be readily combined with high-resolution structural data available on subcomponents of biomolecular assemblies. Moreover, NMR is a powerful tool to characterize the dynamics of biomolecules on a wide range of timescales, from nanoseconds to seconds. On the other hand, SAS approaches provide global information on the size and shape of biomolecules and on the ensemble of all conformations present in solution. Therefore, NMR and SAS provide complementary data that are uniquely suited to investigate dynamic biomolecular assemblies. Here, we briefly review the type of data that can be obtained by both techniques and describe different approaches that can be used to combine them to characterize biomolecular assemblies. We then provide guidelines on which experiments are best suited depending on the type of system studied, ranging from fully rigid complexes, dynamic structures that interconvert between defined conformations and systems with very high structural heterogeneity.
Collapse
Affiliation(s)
- Florent Delhommel
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany; Bavarian NMR Center, Department of Chemistry, Technical University of Munich, Garching, Germany
| | - Santiago Martínez-Lumbreras
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany; Bavarian NMR Center, Department of Chemistry, Technical University of Munich, Garching, Germany
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany; Bavarian NMR Center, Department of Chemistry, Technical University of Munich, Garching, Germany.
| |
Collapse
|
11
|
Sharma S, Pisignano G, Merulla J, Catapano CV, Varani G. A functional SNP regulates E-cadherin expression by dynamically remodeling the 3D structure of a promoter-associated non-coding RNA transcript. Nucleic Acids Res 2022; 50:11331-11343. [PMID: 36243981 DOI: 10.1093/nar/gkac875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 09/03/2022] [Accepted: 10/12/2022] [Indexed: 11/13/2022] Open
Abstract
Transcription of E-cadherin, a tumor suppressor that plays critical roles in cell adhesion and the epithelial-mesenchymal transition, is regulated by a promoter-associated non-coding RNA (paRNA). The sense-oriented paRNA (S-paRNA) includes a functional C/A single nucleotide polymorphism (SNP rs16260). The A-allele leads to decreased transcriptional activity and increased prostate cancer risk. The polymorphic site is known to affect binding of a microRNA-guided Argonaute 1 (AGO1) complex and recruitment of chromatin-modifying enzymes to silence the promoter. Yet the SNP is distant from the microRNA-AGO1 binding domain in both primary sequence and secondary structure, raising the question of how regulation occurs. Here we report the 3D NMR structure of the 104-nucleotide domain of the S-paRNA that encompasses the SNP and the microRNA-binding site. We show that the A to C change alters the locally dynamic and metastable structure of the S-paRNA, revealing how the single nucleotide mutation regulates the E-cadherin promoter through its effect on the non-coding RNA structure.
Collapse
Affiliation(s)
- Shrikant Sharma
- Department of Chemistry, University of Washington, Seattle, WA 98195-1700, USA
| | | | - Jessica Merulla
- Institute of Oncology Research (IOR), Università della Svizzera italiana (USI), 6500 Bellinzona, Switzerland
| | - Carlo V Catapano
- Institute of Oncology Research (IOR), Università della Svizzera italiana (USI), 6500 Bellinzona, Switzerland
| | - Gabriele Varani
- Department of Chemistry, University of Washington, Seattle, WA 98195-1700, USA
| |
Collapse
|
12
|
Evidence for a Hepatitis B Virus Short RNA Fragment Directly Targeting the Cellular RRM2 Gene. Cells 2022; 11:cells11142248. [PMID: 35883690 PMCID: PMC9318981 DOI: 10.3390/cells11142248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 11/29/2022] Open
Abstract
The hepatitis B virus (HBV) is one of the smallest but most highly infectious human pathogens. With a DNA genome of only 3.2 kb and only four genes, HBV successfully completes its life cycle by using intricate processes to hijack the host machinery. HBV infects non-dividing liver cells in which dNTPs are limited. As a DNA virus, HBV requires dNTPs for its replication. HBV induces the ATR-mediated cellular DNA damage response pathway to overcome this constraint. This pathway upregulates R2 (RRM2) expression in generating an active RNR holoenzyme catalyzing de novo dNTP synthesis. Previously we reported that ERE, a small RNA fragment within the HBx ORF, is sufficient to induce R2 upregulation. Interestingly, there is high sequence similarity between ERE and a region within the R2 5′UTR that we named R2-box. Here, we established a mutant cell line in the R2-box region of the R2 gene using CRISPR-Cas9 technology to investigate the R2 regulation by ERE. This cell line expresses a much lower R2 level than the parental cell line. Interestingly, the HBV infection and life cycle were severely impaired. These cells became permissive to HBV infection upon ectopically R2 expression. These results validate the requirement of the R2 gene expression for HBV replication. Remarkably, the R2-box mutated cells became ERE refractory, suggesting that the homology region between ERE and R2 gene is critical for ERE-mediated R2 upregulation. Thus, along with the induction of the ATR pathway of the DNA damage response, ERE might also directly target the R2 gene via the R2-box.
Collapse
|
13
|
Jones AN, Tikhaia E, Mourão A, Sattler M. Structural effects of m6A modification of the Xist A-repeat AUCG tetraloop and its recognition by YTHDC1. Nucleic Acids Res 2022; 50:2350-2362. [PMID: 35166835 PMCID: PMC8887474 DOI: 10.1093/nar/gkac080] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/28/2021] [Accepted: 02/11/2022] [Indexed: 12/12/2022] Open
Abstract
The A-repeat region of the lncRNA Xist is critical for X inactivation and harbors several N6-methyladenosine (m6A) modifications. How the m6A modification affects the conformation of the conserved AUCG tetraloop hairpin of the A-repeats and how it can be recognized by the YTHDC1 reader protein is unknown. Here, we report the NMR solution structure of the (m6A)UCG hairpin, which reveals that the m6A base extends 5′ stacking of the A-form helical stem, resembling the unmethylated AUCG tetraloop. A crystal structure of YTHDC1 bound to the (m6A)UCG tetraloop shows that the (m6A)UC nucleotides are recognized by the YTH domain of YTHDC1 in a single-stranded conformation. The m6A base inserts into the aromatic cage and the U and C bases interact with a flanking charged surface region, resembling the recognition of single-stranded m6A RNA ligands. Notably, NMR and fluorescence quenching experiments show that the binding requires local unfolding of the upper stem region of the (m6A)UCG hairpin. Our data show that m6A can be readily accommodated in hairpin loop regions, but recognition by YTH readers requires local unfolding of flanking stem regions. This suggests how m6A modifications may regulate lncRNA function by modulating RNA structure.
Collapse
Affiliation(s)
- Alisha N Jones
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.,Bavarian NMR Center, Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85747, Garching, Germany
| | - Ekaterina Tikhaia
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.,Bavarian NMR Center, Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85747, Garching, Germany
| | - André Mourão
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.,Bavarian NMR Center, Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85747, Garching, Germany
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.,Bavarian NMR Center, Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85747, Garching, Germany
| |
Collapse
|
14
|
Abstract
Most of the transcribed human genome codes for noncoding RNAs (ncRNAs), and long noncoding RNAs (lncRNAs) make for the lion's share of the human ncRNA space. Despite growing interest in lncRNAs, because there are so many of them, and because of their tissue specialization and, often, lower abundance, their catalog remains incomplete and there are multiple ongoing efforts to improve it. Consequently, the number of human lncRNA genes may be lower than 10,000 or higher than 200,000. A key open challenge for lncRNA research, now that so many lncRNA species have been identified, is the characterization of lncRNA function and the interpretation of the roles of genetic and epigenetic alterations at their loci. After all, the most important human genes to catalog and study are those that contribute to important cellular functions-that affect development or cell differentiation and whose dysregulation may play a role in the genesis and progression of human diseases. Multiple efforts have used screens based on RNA-mediated interference (RNAi), antisense oligonucleotide (ASO), and CRISPR screens to identify the consequences of lncRNA dysregulation and predict lncRNA function in select contexts, but these approaches have unresolved scalability and accuracy challenges. Instead-as was the case for better-studied ncRNAs in the past-researchers often focus on characterizing lncRNA interactions and investigating their effects on genes and pathways with known functions. Here, we focus most of our review on computational methods to identify lncRNA interactions and to predict the effects of their alterations and dysregulation on human disease pathways.
Collapse
|
15
|
The long non-coding RNA landscape of Candida yeast pathogens. Nat Commun 2021; 12:7317. [PMID: 34916523 PMCID: PMC8677757 DOI: 10.1038/s41467-021-27635-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 11/30/2021] [Indexed: 12/29/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) constitute a poorly studied class of transcripts with emerging roles in key cellular processes. Despite efforts to characterize lncRNAs across a wide range of species, these molecules remain largely unexplored in most eukaryotic microbes, including yeast pathogens of the Candida clade. Here, we analyze thousands of publicly available sequencing datasets to infer and characterize the lncRNA repertoires of five major Candida pathogens: Candida albicans, Candida tropicalis, Candida parapsilosis, Candida auris and Candida glabrata. Our results indicate that genomes of these species encode hundreds of lncRNAs that show levels of evolutionary constraint intermediate between those of intergenic genomic regions and protein-coding genes. Despite their low sequence conservation across the studied species, some lncRNAs are syntenic and are enriched in shared sequence motifs. We find co-expression of lncRNAs with certain protein-coding transcripts, hinting at potential functional associations. Finally, we identify lncRNAs that are differentially expressed during infection of human epithelial cells for four of the studied species. Our comprehensive bioinformatic analyses of Candida lncRNAs pave the way for future functional characterization of these transcripts. Long non-coding RNAs (lncRNAs) play roles in key cellular processes, but remain largely unexplored in fungal pathogens such as Candida. Here, Hovhannisyan and Gabaldón analyze thousands of sequencing datasets to infer and characterize the lncRNA repertoires of five Candida species, paving the way for their future functional characterization.
Collapse
|
16
|
Trotman JB, Braceros KCA, Cherney RE, Murvin MM, Calabrese JM. The control of polycomb repressive complexes by long noncoding RNAs. WILEY INTERDISCIPLINARY REVIEWS. RNA 2021; 12:e1657. [PMID: 33861025 PMCID: PMC8500928 DOI: 10.1002/wrna.1657] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/12/2021] [Accepted: 03/19/2021] [Indexed: 02/06/2023]
Abstract
The polycomb repressive complexes 1 and 2 (PRCs; PRC1 and PRC2) are conserved histone-modifying enzymes that often function cooperatively to repress gene expression. The PRCs are regulated by long noncoding RNAs (lncRNAs) in complex ways. On the one hand, specific lncRNAs cause the PRCs to engage with chromatin and repress gene expression over genomic regions that can span megabases. On the other hand, the PRCs bind RNA with seemingly little sequence specificity, and at least in the case of PRC2, direct RNA-binding has the effect of inhibiting the enzyme. Thus, some RNAs appear to promote PRC activity, while others may inhibit it. The reasons behind this apparent dichotomy are unclear. The most potent PRC-activating lncRNAs associate with chromatin and are predominantly unspliced or harbor unusually long exons. Emerging data imply that these lncRNAs promote PRC activity through internal RNA sequence elements that arise and disappear rapidly in evolutionary time. These sequence elements may function by interacting with common subsets of RNA-binding proteins that recruit or stabilize PRCs on chromatin. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Jackson B. Trotman
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Keean C. A. Braceros
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Curriculum in Mechanistic, Interdisciplinary Studies of Biological Systems, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Rachel E. Cherney
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - McKenzie M. Murvin
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - J. Mauro Calabrese
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
17
|
Waters E, Pucci P, Hirst M, Chapman S, Wang Y, Crea F, Heath CJ. HAR1: an insight into lncRNA genetic evolution. Epigenomics 2021; 13:1831-1843. [PMID: 34676772 DOI: 10.2217/epi-2021-0069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) have a wide range of functions in health and disease, but many remain uncharacterized because of their complex expression patterns and structures. The genetic loci encoding lncRNAs can be subject to accelerated evolutionary changes within the human lineage. HAR1 is a region that has a significantly altered sequence compared to other primates and is a component of two overlapping lncRNA loci, HAR1A and HAR1B. Although the functions of these lncRNAs are unknown, they have been associated with neurological disorders and cancer. Here, we explore the current state of understanding of evolution in human lncRNA genes, using the HAR1 locus as the case study.
Collapse
Affiliation(s)
- Ella Waters
- School of Life, Health & Chemical Sciences, The Open University, Milton Keynes, MK7 6AA, UK
| | - Perla Pucci
- School of Life, Health & Chemical Sciences, The Open University, Milton Keynes, MK7 6AA, UK.,Division of Cellular & Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Mark Hirst
- School of Life, Health & Chemical Sciences, The Open University, Milton Keynes, MK7 6AA, UK
| | - Simon Chapman
- School of Life, Health & Chemical Sciences, The Open University, Milton Keynes, MK7 6AA, UK
| | - Yuzhuo Wang
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Francesco Crea
- School of Life, Health & Chemical Sciences, The Open University, Milton Keynes, MK7 6AA, UK
| | - Christopher J Heath
- School of Life, Health & Chemical Sciences, The Open University, Milton Keynes, MK7 6AA, UK
| |
Collapse
|
18
|
Spetale FE, Murillo J, Villanova GV, Bulacio P, Tapia E. FGGA-lnc: automatic gene ontology annotation of lncRNA sequences based on secondary structures. Interface Focus 2021; 11:20200064. [PMID: 34123354 PMCID: PMC8193470 DOI: 10.1098/rsfs.2020.0064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2021] [Indexed: 02/01/2023] Open
Abstract
The study of long non-coding RNAs (lncRNAs), greater than 200 nucleotides, is central to understanding the development and progression of many complex diseases. Unlike proteins, the functionality of lncRNAs is only subtly encoded in their primary sequence. Current in-silico lncRNA annotation methods mostly rely on annotations inferred from interaction networks. But extensive experimental studies are required to build these networks. In this work, we present a graph-based machine learning method called FGGA-lnc for the automatic gene ontology (GO) annotation of lncRNAs across the three GO subdomains. We build upon FGGA (factor graph GO annotation), a computational method originally developed to annotate protein sequences from non-model organisms. In the FGGA-lnc version, a coding-based approach is introduced to fuse primary sequence and secondary structure information of lncRNA molecules. As a result, lncRNA sequences become sequences of a higher-order alphabet allowing supervised learning methods to assess individual GO-term annotations. Raw GO annotations obtained in this way are unaware of the GO structure and therefore likely to be inconsistent with it. The message-passing algorithm embodied by factor graph models overcomes this problem. Evaluations of the FGGA-lnc method on lncRNA data, from model and non-model organisms, showed promising results suggesting it as a candidate to satisfy the huge demand for functional annotations arising from high-throughput sequencing technologies.
Collapse
Affiliation(s)
- Flavio E. Spetale
- CIFASIS-Conicet-UNR, 27 de Febrero 210 bis, S2000EZP Rosario, Santa Fe, Argentina
- Facultad de Ciencias Exactas, Ingeniería y Agrimensura, Universidad Nacional de Rosario, Riobamba 245 bis, S2000EZP Rosario, Argentina
| | - Javier Murillo
- CIFASIS-Conicet-UNR, 27 de Febrero 210 bis, S2000EZP Rosario, Santa Fe, Argentina
- Facultad de Ciencias Exactas, Ingeniería y Agrimensura, Universidad Nacional de Rosario, Riobamba 245 bis, S2000EZP Rosario, Argentina
| | - Gabriela V. Villanova
- Laboratorio Mixto de Biotecnología Acuática (FCByF-UNR), Av. Eduardo Carrasco S/N, S2000EZP Rosario, Argentina
| | - Pilar Bulacio
- CIFASIS-Conicet-UNR, 27 de Febrero 210 bis, S2000EZP Rosario, Santa Fe, Argentina
- Facultad de Ciencias Exactas, Ingeniería y Agrimensura, Universidad Nacional de Rosario, Riobamba 245 bis, S2000EZP Rosario, Argentina
| | - Elizabeth Tapia
- CIFASIS-Conicet-UNR, 27 de Febrero 210 bis, S2000EZP Rosario, Santa Fe, Argentina
- Facultad de Ciencias Exactas, Ingeniería y Agrimensura, Universidad Nacional de Rosario, Riobamba 245 bis, S2000EZP Rosario, Argentina
| |
Collapse
|
19
|
Garikipati VNS, Uchida S. Elucidating the Functions of Non-Coding RNAs from the Perspective of RNA Modifications. Noncoding RNA 2021; 7:ncrna7020031. [PMID: 34065036 PMCID: PMC8163165 DOI: 10.3390/ncrna7020031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/29/2021] [Accepted: 05/05/2021] [Indexed: 12/11/2022] Open
Abstract
It is now commonly accepted that most of the mammalian genome is transcribed as RNA, yet less than 2% of such RNA encode for proteins. A majority of transcribed RNA exists as non-protein-coding RNAs (ncRNAs) with various functions. Because of the lack of sequence homologies among most ncRNAs species, it is difficult to infer the potential functions of ncRNAs by examining sequence patterns, such as catalytic domains, as in the case of proteins. Added to the existing complexity of predicting the functions of the ever-growing number of ncRNAs, increasing evidence suggests that various enzymes modify ncRNAs (e.g., ADARs, METTL3, and METTL14), which has opened up a new field of study called epitranscriptomics. Here, we examine the current status of ncRNA research from the perspective of epitranscriptomics.
Collapse
Affiliation(s)
- Venkata Naga Srikanth Garikipati
- Department of Emergency Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA;
- Dorothy M. Davis Heart Lung and Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Shizuka Uchida
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, Frederikskaj 10B, 2. (building C), DK-2450 Copenhagen SV, Denmark
- Correspondence: or
| |
Collapse
|
20
|
Li G, Kryczek I, Nam J, Li X, Li S, Li J, Wei S, Grove S, Vatan L, Zhou J, Du W, Lin H, Wang T, Subramanian C, Moon JJ, Cieslik M, Cohen M, Zou W. LIMIT is an immunogenic lncRNA in cancer immunity and immunotherapy. Nat Cell Biol 2021; 23:526-537. [PMID: 33958760 PMCID: PMC8122078 DOI: 10.1038/s41556-021-00672-3] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 03/31/2021] [Indexed: 12/15/2022]
Abstract
MHC-I presents tumor antigens to CD8+ T cells and triggers anti-tumor immunity. Humans may have 30,000-60,000 long noncoding RNAs (lncRNAs). However, it remains poorly understood whether lncRNAs may affect tumor immunity. Here, we identify a LncRNA, capable of Inducing MHC-I and Immunogenicity of Tumor (LIMIT) in humans and mice. We found IFNγ stimulated LIMIT, LIMIT cis-activated guanylate binding protein (GBP) gene cluster, and GBPs disrupted the association between HSP90 and heat shock factor-1 (HSF1) - thereby resulting in HSF1 activation and transcription of MHC-I machinery, but not PD-L1. RNA-guided CRISPR activation of LIMIT boosted GBPs and MHC-I, and potentiated tumor immunogenicity and checkpoint therapy. Silencing LIMIT, GBPs, and/or HSF1 diminished MHC-I, impaired antitumor immunity, and blunted immunotherapy efficacy. Clinically, LIMIT, GBPs- and HSF1-signaling transcripts and proteins correlated with MHC-I, tumor infiltrating T cells, and checkpoint blockade response in cancer patients. Altogether, we demonstrate LIMIT is a previously unknown cancer immunogenic lncRNA and the LIMIT-GBP-HSF1 axis may be targetable for cancer immunotherapy.
Collapse
Affiliation(s)
- Gaopeng Li
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA.,Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Ilona Kryczek
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA.,Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Jutaek Nam
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Xiong Li
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA.,Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Shasha Li
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA.,Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Jing Li
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA.,Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Shuang Wei
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA.,Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Sara Grove
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA.,Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Linda Vatan
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA.,Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Jiajia Zhou
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA.,Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Wan Du
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA.,Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Heng Lin
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA.,Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Ton Wang
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | | | - James J Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Marcin Cieslik
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Mark Cohen
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.,Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - Weiping Zou
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA. .,Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA. .,Department of Pathology, University of Michigan, Ann Arbor, MI, USA. .,Graduate Programs in Immunology, University of Michigan, Ann Arbor, MI, USA. .,Tumor Biology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
21
|
Abzhanova A, Hirschi A, Reiter NJ. An exon-biased biophysical approach and NMR spectroscopy define the secondary structure of a conserved helical element within the HOTAIR long non-coding RNA. J Struct Biol 2021; 213:107728. [PMID: 33753203 DOI: 10.1016/j.jsb.2021.107728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/16/2021] [Accepted: 03/17/2021] [Indexed: 11/16/2022]
Abstract
HOTAIR is a large, multi-exon spliced non-coding RNA proposed to function as a molecular scaffold and competes with chromatin to bind to histone modification enzymes. Previous sequence analysis and biochemical experiments identified potential conserved regions and characterized the full length HOTAIR secondary structure. Here, we examine the thermodynamic folding properties and structural propensity of the individual exonic regions of HOTAIR using an array of biophysical methods and NMR spectroscopy. We demonstrate that different exons of HOTAIR contain variable degrees of heterogeneity, and identify one exonic region, exon 4, that adopts a stable and compact fold under low magnesium concentrations. Close agreement of NMR spectroscopy and chemical probing unambiguously confirm conserved base pair interactions within the structural element, termed helix 10 of exon 4, located within domain I of human HOTAIR. This combined exon-biased and integrated biophysical approach introduces a new strategy to examine conformational heterogeneity in lncRNAs and emphasizes NMR as a key method to validate base pair interactions and corroborate large RNA secondary structures.
Collapse
Affiliation(s)
- Ainur Abzhanova
- Department of Chemistry, Marquette University, Milwaukee 53233, WI, United States
| | - Alexander Hirschi
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville 37205-0146, TN, United States
| | - Nicholas J Reiter
- Department of Chemistry, Marquette University, Milwaukee 53233, WI, United States.
| |
Collapse
|
22
|
Martín AL, Mounir M, Meyer IM. CoBold: a method for identifying different functional classes of transient RNA structure features that can impact RNA structure formation in vivo. Nucleic Acids Res 2021; 49:e19. [PMID: 33095878 PMCID: PMC7913772 DOI: 10.1093/nar/gkaa900] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/16/2020] [Accepted: 09/30/2020] [Indexed: 11/14/2022] Open
Abstract
RNA structure formation in vivo happens co-transcriptionally while the transcript is being made. The corresponding co-transcriptional folding pathway typically involves transient RNA structure features that are not part of the final, functional RNA structure. These transient features can play important functional roles of their own and also influence the formation of the final RNA structure in vivo. We here present CoBold, a computational method for identifying different functional classes of transient RNA structure features that can either aid or hinder the formation of a known reference RNA structure. Our method takes as input either a single RNA or a corresponding multiple-sequence alignment as well as a known reference RNA secondary structure and identifies different classes of transient RNA structure features that could aid or prevent the formation of the given RNA structure. We make CoBold available via a web-server which includes dedicated data visualisation.
Collapse
Affiliation(s)
- Adrián López Martín
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str. 28, 10115 Berlin, Germany
| | - Mohamed Mounir
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str. 28, 10115 Berlin, Germany
| | - Irmtraud M Meyer
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str. 28, 10115 Berlin, Germany.,Freie Universität Berlin, Department of Biology, Chemistry and Pharmacy, Institute of Chemistry and Biochemistry, Thielallee 63, 14195 Berlin, Germany
| |
Collapse
|
23
|
Graf J, Kretz M. From structure to function: Route to understanding lncRNA mechanism. Bioessays 2020; 42:e2000027. [PMID: 33164244 DOI: 10.1002/bies.202000027] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 09/03/2020] [Indexed: 12/13/2022]
Abstract
RNAs have emerged as a major target for diagnostics and therapeutics approaches. Regulatory nonprotein-coding RNAs (ncRNAs) in particular display remarkable versatility. They can fold into complex structures and interact with proteins, DNA, and other RNAs, thus modulating activity, localization, or interactome of multi-protein complexes. Thus, ncRNAs confer regulatory plasticity and represent a new layer of regulatory control. Interestingly, long noncoding RNAs (lncRNAs) tend to acquire complex secondary and tertiary structures and their function-in many cases-is dependent on structural conservation rather than primary sequence conservation. Whereas for many proteins, structure and its associated function are closely connected, for lncRNAs, the structural domains that determine functionality and its interactome are still not well understood. Numerous approaches for analyzing the structural configuration of lncRNAs have been developed recently. Here, will provide an overview of major experimental approaches used in the field, and discuss the potential benefit of using combinatorial strategies to analyze lncRNA modes of action based on structural information.
Collapse
Affiliation(s)
- Johannes Graf
- Institute of Biochemistry, Genetics and Microbiology, University of Regensburg, Regensburg, Germany
| | - Markus Kretz
- Institute of Biochemistry, Genetics and Microbiology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
24
|
Long non-coding RNA XIST regulates chondrogenic differentiation of synovium-derived mesenchymal stem cells from temporomandibular joint via miR-27b-3p/ADAMTS-5 axis. Cytokine 2020; 137:155352. [PMID: 33128918 DOI: 10.1016/j.cyto.2020.155352] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/10/2020] [Accepted: 10/16/2020] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Temporomandibular joint osteoarthritis (TMJOA) is a common degenerative disease in jaw joint, accompanied by articular cartilage destruction. Differentiation of stem cells to cartilage has important therapeutic implications in TMJ cartilage repair. Previous studies revealed that lncRNA XIST participated in various biological processes. However, the effect of XIST on chondrogenic differentiation of synovium-derived mesenchymal stem cells (SMSCs) remains unclear. Our study aimed to investigate the function of XIST in chondrogenic differentiation of human SMSCs from TMJ. METHODS Alcian blue staining was performed to determine proteoglycan in SMSCs. qPCR, western blotting and immunofluorescence assays were allowed to assess sex determining region Y-box 9 (SOX9), Collagen type II alpha 1 chain (COL2A1) and Aggrecan (ACAN) expression. The direct interaction between miR-27b-3p and XIST or ADAMTS-5 was confirmed by dual luciferase reporter assay or RNA immunoprecipitation (RIP) assay. RESULTS XIST was remarkably down-regulated in chondrogenic differentiation of SMSCs. Functional analysis demonstrated that XIST silencing promoted chondrogenic differentiation of SMSCs. Dual luciferase reporter and RIP assays identified that XIST acted as a sponge for miR-27b-3p. Moreover, XIST regulated ADAMTS-5 expression by directly binding miR-27b-3p. More importantly, miR-27b-3p/ADAMTS-5 rescued the effects of XIST on chondrogenic differentiation of SMSCs. CONCLUSION The results suggest that XIST modulates SMSCs chondrogenic differentiation via the miR-27b-3p/ADAMTS-5 axis, which provides new targets for TMJOA treatment.
Collapse
|
25
|
Analytical ultracentrifuge: an ideal tool for characterization of non-coding RNAs. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2020; 49:809-818. [PMID: 33067686 DOI: 10.1007/s00249-020-01470-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 09/26/2020] [Accepted: 10/05/2020] [Indexed: 12/25/2022]
Abstract
Analytical ultracentrifugation (AUC) has emerged as a robust and reliable technique for biomolecular characterization with extraordinary sensitivity. AUC is widely used to study purity, conformational changes, biomolecular interactions, and stoichiometry. Furthermore, AUC is used to determine the molecular weight of biomolecules such as proteins, carbohydrates, and DNA and RNA. Due to the multifaceted role(s) of non-coding RNAs from viruses, prokaryotes, and eukaryotes, research aimed at understanding the structure-function relationships of non-coding RNAs is rapidly increasing. However, due to their large size, flexibility, complicated secondary structures, and conformations, structural studies of non-coding RNAs are challenging. In this review, we are summarizing the application of AUC to evaluate the homogeneity, interactions, and conformational changes of non-coding RNAs from adenovirus as well as from Murray Valley, Powassan, and West Nile viruses. We also discuss the application of AUC to characterize eukaryotic long non-coding RNAs, Xist, and HOTAIR. These examples highlight the significant role AUC can play in facilitating the structural determination of non-coding RNAs and their complexes.
Collapse
|
26
|
Ohyama T, Takahashi H, Sharma H, Yamazaki T, Gustincich S, Ishii Y, Carninci P. An NMR-based approach reveals the core structure of the functional domain of SINEUP lncRNAs. Nucleic Acids Res 2020; 48:9346-9360. [PMID: 32697302 PMCID: PMC7498343 DOI: 10.1093/nar/gkaa598] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 06/30/2020] [Accepted: 07/06/2020] [Indexed: 02/06/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are attracting widespread attention for their emerging regulatory, transcriptional, epigenetic, structural and various other functions. Comprehensive transcriptome analysis has revealed that retrotransposon elements (REs) are transcribed and enriched in lncRNA sequences. However, the functions of lncRNAs and the molecular roles of the embedded REs are largely unknown. The secondary and tertiary structures of lncRNAs and their embedded REs are likely to have essential functional roles, but experimental determination and reliable computational prediction of large RNA structures have been extremely challenging. We report here the nuclear magnetic resonance (NMR)-based secondary structure determination of the 167-nt inverted short interspersed nuclear element (SINE) B2, which is embedded in antisense Uchl1 lncRNA and upregulates the translation of sense Uchl1 mRNAs. By using NMR 'fingerprints' as a sensitive probe in the domain survey, we successfully divided the full-length inverted SINE B2 into minimal units made of two discrete structured domains and one dynamic domain without altering their original structures after careful boundary adjustments. This approach allowed us to identify a structured domain in nucleotides 31-119 of the inverted SINE B2. This approach will be applicable to determining the structures of other regulatory lncRNAs.
Collapse
Affiliation(s)
- Takako Ohyama
- NMR Division, RIKEN SPring-8 Center (RSC), RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Hazuki Takahashi
- Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Harshita Sharma
- Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Toshio Yamazaki
- NMR Division, RIKEN SPring-8 Center (RSC), RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Stefano Gustincich
- Central RNA Laboratory, Instituto Italiano di Tecnologia (IIT), 16163 Genova, Italy
| | - Yoshitaka Ishii
- NMR Division, RIKEN SPring-8 Center (RSC), RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Piero Carninci
- Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
27
|
Abstract
Long noncoding RNAs (lncRNAs) have multiple functions in the regulation of cellular homeostasis. In recent years, numerous studies have shown that tumor-associated lncRNAs play key roles in promoting and maintaining tumor initiation and progression by shaping the tumor microenvironment through changing tumor cell intrinsic properties. Here, we focus on the roles of lncRNAs in cancer immunology. In the first part, we provide an overview of the roles played by lncRNAs and their deregulation in cancer at the cancer cell- and tumor microenvironment-associated immune cell levels. We go on to describe preclinical strategies for targeting lncRNAs, particularly highlighting the effects on tumor microenvironments. We then discuss the possibility of combining lncRNA targeting and tumor immune checkpoint inhibitor antibodies to treat cancer.
Collapse
|
28
|
Delhommel F, Gabel F, Sattler M. Current approaches for integrating solution NMR spectroscopy and small-angle scattering to study the structure and dynamics of biomolecular complexes. J Mol Biol 2020; 432:2890-2912. [DOI: 10.1016/j.jmb.2020.03.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/27/2020] [Accepted: 03/10/2020] [Indexed: 01/24/2023]
|
29
|
Abstract
Female mammals express the long noncoding X inactivation-specific transcript ( Xist) RNA to initiate X chromosome inactivation (XCI) that eventually results in the formation of the Barr body. Xist encompasses half a dozen repeated sequence stretches containing motifs for RNA-binding proteins that recruit effector complexes with functions for silencing genes and establishing a repressive chromatin configuration. Functional characterization of these effector proteins unveils the cooperation of a number of pathways to repress genes on the inactive X chromosome. Mechanistic insights can be extended to other noncoding RNAs with similar structure and open avenues for the design of new therapies to switch off gene expression. Here we review recent advances in the understanding of Xist and on this basis try to synthesize a model for the initiation of XCI.
Collapse
Affiliation(s)
- Asun Monfort
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, Hönggerberg, HPL E12, Otto-Stern-Weg 7, Zurich, Switzerland
| | - Anton Wutz
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, Hönggerberg, HPL E12, Otto-Stern-Weg 7, Zurich, Switzerland
| |
Collapse
|
30
|
Bindereif A, Wang Z. A joint adventure of Sino-German researchers to explore the wild world of RNAs. J Mol Cell Biol 2019; 11:811-812. [PMID: 31638144 PMCID: PMC6884702 DOI: 10.1093/jmcb/mjz097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 09/06/2019] [Indexed: 11/25/2022] Open
Affiliation(s)
- Albrecht Bindereif
- CAS Key Laboratory of Computational Biology, Biomedical Big Data Center, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zefeng Wang
- CAS Key Laboratory of Computational Biology, Biomedical Big Data Center, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- Department of Biology and Chemistry, Institute of Biochemistry, Justus Liebig University of Giessen, Giessen D-35392, Germany
| |
Collapse
|
31
|
Insights into the Functions of LncRNAs in Drosophila. Int J Mol Sci 2019; 20:ijms20184646. [PMID: 31546813 PMCID: PMC6770079 DOI: 10.3390/ijms20184646] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/11/2019] [Accepted: 09/11/2019] [Indexed: 12/11/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are a class of non-coding RNAs longer than 200 nucleotides (nt). LncRNAs have high spatiotemporal specificity, and secondary structures have been preserved throughout evolution. They have been implicated in a range of biological processes and diseases and are emerging as key regulators of gene expression at the epigenetic, transcriptional, and post-transcriptional levels. Comparative analyses of lncRNA functions among multiple organisms have suggested that some of their mechanisms seem to be conserved. Transcriptome studies have found that some Drosophila lncRNAs have highly specific expression patterns in embryos, nerves, and gonads. In vivo studies of lncRNAs have revealed that dysregulated expression of lncRNAs in Drosophila may result in impaired embryo development, impaired neurological and gonadal functions, and poor stress resistance. In this review, we summarize the epigenetic, transcriptional, and post-transcriptional mechanisms of lncRNAs and mainly focus on recent insights into the transcriptome studies and biological functions of lncRNAs in Drosophila.
Collapse
|