1
|
Zhang BW, Huang T, Yang YF, Li MY, Shao GB. Lysine methyltransferase SETD7 in cancer: functions, molecular mechanisms and therapeutic implications. Mol Biol Rep 2025; 52:389. [PMID: 40232640 DOI: 10.1007/s11033-025-10494-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 04/07/2025] [Indexed: 04/16/2025]
Abstract
Since its discovery as a histone methyltransferase, SETD7 has been implicated in many signaling pathways and carcinogenesis. SETD7 catalyzes the methylation of histone H3 and non-histone proteins, regulating their translation, stability and activity. SETD7 is frequently abnormally expressed and has a significant influence on cell proliferation, invasion, autophagy and immune response. As cancer is a complex disease, an outstanding concept in cancer biology is the "hallmarks of cancer". In this review, we focus on the involvement of SETD7 in the hallmarks of cancer, describing its functions and underlying mechanisms in detail. Additionally, we discuss non-coding RNAs and chemical inhibitors targeting SETD7, highlighting the potential and importance of SETD7 in cancer therapy.
Collapse
Affiliation(s)
- Bo-Wen Zhang
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Ting Huang
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Yi-Fan Yang
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Ming-Yang Li
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Gen-Bao Shao
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China.
- Present Address: Jiangsu University, No.301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu province, China.
| |
Collapse
|
2
|
Clark LK, Cullati SN. Activation is only the beginning: mechanisms that tune kinase substrate specificity. Biochem Soc Trans 2025:BST20241420. [PMID: 39907081 DOI: 10.1042/bst20241420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/22/2024] [Accepted: 10/29/2024] [Indexed: 02/06/2025]
Abstract
Kinases are master coordinators of cellular processes, but to appropriately respond to the changing cellular environment, each kinase must recognize its substrates, target only those proteins on the correct amino acids, and in many cases, only phosphorylate a subset of potential substrates at any given time. Therefore, regulation of kinase substrate specificity is paramount to proper cellular function, and multiple mechanisms can be employed to achieve specificity. At the smallest scale, characteristics of the substrate such as its linear peptide motif and three-dimensional structure must be complementary to the substrate binding surface of the kinase. This surface is dynamically shaped by the activation loop and surrounding region of the substrate binding groove, which can adopt multiple conformations, often influenced by post-translational modifications. Domain-scale conformational changes can also occur, such as the interaction with pseudosubstrate domains or other regulatory domains in the kinase. Kinases may multimerize or form complexes with other proteins that influence their structure, function, and/or subcellular localization at different times and in response to different signals. This review will illustrate these mechanisms by examining recent work on four serine/threonine kinases: Aurora B, CaMKII, GSK3β, and CK1δ. We find that these mechanisms are often shared by this diverse set of kinases in diverse cellular contexts, so they may represent common strategies that cells use to regulate cell signaling, and it will be enlightening to continue to learn about the depth and robustness of kinase substrate specificity in additional systems.
Collapse
Affiliation(s)
- Landon K Clark
- Department of Chemistry, Western Washington University, Bellingham, WA, U.S.A
| | - Sierra N Cullati
- Department of Chemistry, Western Washington University, Bellingham, WA, U.S.A
| |
Collapse
|
3
|
Shi J, Xiong Y, Li J, Gao B, Qing G, Sheng Q, Lan M. Utilizing 4-Sulfonylcalix[4]arene as a Selective Mobile Phase Additive for the Capture of Methylated Peptides. Anal Chem 2025; 97:2428-2436. [PMID: 39865840 DOI: 10.1021/acs.analchem.4c06041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Protein methylation has attracted increasing attention due to its significant regulatory roles in various biological processes. However, the diversity of methylation forms, subtle differences between methylated and nonmodified sites, and their ultralow abundances pose substantial challenges for capturing and isolating methylated peptides from biological samples. Herein, we develop a chromatographic method that utilizes 4-sulfonylcalix[4]arene (SC4A) as a mobile phase additive and Click-Maltose as the stationary phase to separate methylated/nonmethylated peptides through the adsorption of the SC4A-K(Me3) complex. By utilization of the interaction between calix[4]arene cavities and trimethylated lysine residues, methylated peptides could be specifically separated from peptide samples. This method significantly improves the signal-to-noise ratio (S/N), even in samples containing a 10-fold excess of bovine serum albumin (BSA) trypsin digests. Additionally, we successfully enriched 12 methylated peptides from histone digests. This study paves the way for the selective enrichment of lysine methylated peptides in post-translational modification proteomics (PTMs), enhancing both the capture efficiency and selectivity of methylated peptides and providing robust technical support for subsequent proteomics research.
Collapse
Affiliation(s)
- Jie Shi
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road, Shanghai 200237, P. R. China
| | - Yuting Xiong
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Junyan Li
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road, Shanghai 200237, P. R. China
| | - Baolei Gao
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road, Shanghai 200237, P. R. China
| | - Guangyan Qing
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Qianying Sheng
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road, Shanghai 200237, P. R. China
| | - Minbo Lan
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road, Shanghai 200237, P. R. China
| |
Collapse
|
4
|
Durojaye OA. Delineation of the CENP-LN sub-complex dissociation mechanism upon multisite phosphorylation during mitosis. J Biomol Struct Dyn 2024; 42:8983-9001. [PMID: 37605944 DOI: 10.1080/07391102.2023.2249101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/12/2023] [Indexed: 08/23/2023]
Abstract
Phosphorylation is the most prevalent form of regulation in cells, organizing virtually all cellular functions, including survival, motility, differentiation, proliferation, and metabolism. This regulatory function has been largely conserved from the primitive single-cell to the more complex multicellular organisms. More than a third of proteins in eukaryotes are phosphorylated, and essentially every class of protein undergoes regulation by phosphorylation. A decline in the cellular level of CENP-L and CENP-N (components of the constitutive centromere associated network) has earlier been reported and linked to cyclin-dependent kinase (CDK) phosphorylation upon transition into mitosis. Given the importance of posttranslational modifications in cell cycle regulation, mechanistic comprehension of the impact of phosphorylation on both proteins (CENP-L and CENP-N) is of high significance. Through the application of diverse computational analytical techniques, including atomistic molecular dynamics simulations, the mechanism of kinetochore mis-localization and dissociation of the CENP-LN sub-complex in mitosis was delineated. We showed that the phosphorylation of both components of the sub-complex induces global conformational destabilizing effects on the proteins, combined with changes in the electrostatic potential and increase in steric clashes around the protein-protein interaction interface. This, consistent with earlier experimental reports, suggest that the multisite phosphorylation of the CENP-LN sub-complex plays a crucial role in the regulation of cell division.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Olanrewaju Ayodeji Durojaye
- MOE Key Laboratory of Membraneless Organelle and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, China
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
- Department of Chemical Sciences, Coal City University, Emene, Enugu State, Nigeria
| |
Collapse
|
5
|
Dwivedi D, Meraldi P. Balancing Plk1 activity levels: The secret of synchrony between the cell and the centrosome cycle. Bioessays 2024; 46:e2400048. [PMID: 39128131 DOI: 10.1002/bies.202400048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 08/13/2024]
Abstract
The accuracy of cell division requires precise regulation of the cellular machinery governing DNA/genome duplication, ensuring its equal distribution among the daughter cells. The control of the centrosome cycle is crucial for the formation of a bipolar spindle, ensuring error-free segregation of the genome. The cell and centrosome cycles operate in close synchrony along similar principles. Both require a single duplication round in every cell cycle, and both are controlled by the activity of key protein kinases. Nevertheless, our comprehension of the precise cellular mechanisms and critical regulators synchronizing these two cycles remains poorly defined. Here, we present our hypothesis that the spatiotemporal regulation of a dynamic equilibrium of mitotic kinases activities forms a molecular clock that governs the synchronous progression of both the cell and the centrosome cycles.
Collapse
Affiliation(s)
- Devashish Dwivedi
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Translational Research Centre in Onco-haematology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Patrick Meraldi
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Translational Research Centre in Onco-haematology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
6
|
Bellah SF, Xiong F, Dou Z, Yang F, Liu X, Yao X, Gao X, Zhang L. PLK1 phosphorylation of ZW10 guides accurate chromosome segregation in mitosis. J Mol Cell Biol 2024; 16:mjae008. [PMID: 38402459 PMCID: PMC11328731 DOI: 10.1093/jmcb/mjae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/09/2023] [Accepted: 02/23/2024] [Indexed: 02/26/2024] Open
Abstract
Stable transmission of genetic information during cell division requires faithful chromosome segregation. Mounting evidence has demonstrated that polo-like kinase 1 (PLK1) dynamics at kinetochores control correct kinetochore-microtubule attachments and subsequent silencing of the spindle assembly checkpoint. However, the mechanisms underlying PLK1-mediated silencing of the spindle checkpoint remain elusive. Here, we identified a regulatory mechanism by which PLK1-elicited zeste white 10 (ZW10) phosphorylation regulates spindle checkpoint silencing in mitosis. ZW10 is a cognate substrate of PLK1, and the phosphorylation of ZW10 at Ser12 enables dynamic ZW10-Zwint1 interactions. Inhibition of ZW10 phosphorylation resulted in misaligned chromosomes, while persistent expression of phospho-mimicking ZW10 mutant caused premature anaphase, in which sister chromatids entangled as cells entered anaphase. These findings reveal the previously uncharacterized PLK1-ZW10 interaction through which dynamic phosphorylation of ZW10 fine-tunes accurate chromosome segregation in mitosis.
Collapse
Affiliation(s)
- Sm Faysal Bellah
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
| | - Fangyuan Xiong
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
| | - Zhen Dou
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei 230027, China
| | - Fengrui Yang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
| | - Xing Liu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei 230027, China
| | - Xuebiao Yao
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei 230027, China
| | - Xinjiao Gao
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei 230027, China
| | - Liangyu Zhang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei 230027, China
| |
Collapse
|
7
|
Zhang J, Duan B, Li F, Jing X, Li R, Cai S, Cao L, Jiang Q, Zhou J, Zhou J, Qin Y, Wang X, Tong D, Huang C. SETD7 Promotes Cell Proliferation and Migration via Methylation-mediated TAF7 in Clear Cell Renal Cell Carcinoma. Int J Biol Sci 2024; 20:3008-3027. [PMID: 38904013 PMCID: PMC11186372 DOI: 10.7150/ijbs.93201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/09/2024] [Indexed: 06/22/2024] Open
Abstract
SET domain containing 7(SETD7), a member of histone methyltransferases, is abnormally expressed in multiple tumor types. However, the biological function and underlying molecular mechanism of SETD7 in clear cell renal cell carcinoma (ccRCC) remain unclear. Here, we explored the biological effects of SETD7-TAF7-CCNA2 axis on proliferation and metastasis in ccRCC. We identified both SETD7 and TAF7 were up-regulated and significantly promoted the proliferation and migration of ccRCC cells. Concurrently, there was a significant positive correlation between the expression of SETD7 and TAF7, and the two were colocalized in the nucleus. Mechanistically, SETD7 methylates TAF7 at K5 and K300 sites, resulting in the deubiquitination and stabilization of TAF7. Furthermore, re-expression of TAF7 could partially restore SETD7 knockdown inhibited ccRCC cells proliferation and migration. In addition, TAF7 transcriptionally activated to drive the expression of cyclin A2 (CCNA2). And more importantly, the methylation of TAF7 at K5 and K300 sites exhibited higher transcriptional activity of CCNA2, which promotes formation and progression of ccRCC. Our findings reveal a unique mechanism that SETD7 mediated TAF7 methylation in regulating transcriptional activation of CCNA2 in ccRCC progression and provide a basis for developing effective therapeutic strategies by targeting members of SETD7-TAF7-CCNA2 axis.
Collapse
Affiliation(s)
- Jinyuan Zhang
- Institute of Genetics and Development Biology, Translational Medcine Institute, Xi'an Jiaotong University, Xi'an 710301, China
| | - Baojun Duan
- Institute of Genetics and Development Biology, Translational Medcine Institute, Xi'an Jiaotong University, Xi'an 710301, China
- Department of Medical Oncology of Shaanxi Provincial People's Hospital, Xi'an 710068, China
| | - Fang Li
- Institute of Genetics and Development Biology, Translational Medcine Institute, Xi'an Jiaotong University, Xi'an 710301, China
| | - Xintao Jing
- Institute of Genetics and Development Biology, Translational Medcine Institute, Xi'an Jiaotong University, Xi'an 710301, China
| | - Rufeng Li
- Institute of Genetics and Development Biology, Translational Medcine Institute, Xi'an Jiaotong University, Xi'an 710301, China
| | - Shuang Cai
- Institute of Genetics and Development Biology, Translational Medcine Institute, Xi'an Jiaotong University, Xi'an 710301, China
| | - Li Cao
- Institute of Genetics and Development Biology, Translational Medcine Institute, Xi'an Jiaotong University, Xi'an 710301, China
| | - Qiuyu Jiang
- Institute of Genetics and Development Biology, Translational Medcine Institute, Xi'an Jiaotong University, Xi'an 710301, China
| | - Jing Zhou
- Institute of Genetics and Development Biology, Translational Medcine Institute, Xi'an Jiaotong University, Xi'an 710301, China
| | - Jiancheng Zhou
- Department of Urology of Shaanxi Provincial People's Hospital, Xi'an 710068, China
| | - Yannan Qin
- Institute of Genetics and Development Biology, Translational Medcine Institute, Xi'an Jiaotong University, Xi'an 710301, China
| | - Xiaofei Wang
- Institute of Genetics and Development Biology, Translational Medcine Institute, Xi'an Jiaotong University, Xi'an 710301, China
| | - Dongdong Tong
- Institute of Genetics and Development Biology, Translational Medcine Institute, Xi'an Jiaotong University, Xi'an 710301, China
| | - Chen Huang
- Institute of Genetics and Development Biology, Translational Medcine Institute, Xi'an Jiaotong University, Xi'an 710301, China
| |
Collapse
|
8
|
Wu F, Akbar H, Wang C, Yuan X, Dou Z, Mullen M, Niu L, Zhang L, Zang J, Wang Z, Yao X, Song X, Liu X. Sgo1 interacts with CENP-A to guide accurate chromosome segregation in mitosis. J Mol Cell Biol 2024; 15:mjad061. [PMID: 37777834 PMCID: PMC11181942 DOI: 10.1093/jmcb/mjad061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 02/21/2023] [Accepted: 09/29/2023] [Indexed: 10/02/2023] Open
Abstract
Shugoshin-1 (Sgo1) is necessary for maintaining sister centromere cohesion and ensuring accurate chromosome segregation during mitosis. It has been reported that the localization of Sgo1 at the centromere is dependent on Bub1-mediated phosphorylation of histone H2A at T120. However, it remains uncertain whether other centromeric proteins play a role in regulating the localization and function of Sgo1 during mitosis. Here, we show that CENP-A interacts with Sgo1 and determines the localization of Sgo1 to the centromere during mitosis. Further biochemical characterization revealed that lysine and arginine residues in the C-terminal domain of Sgo1 are critical for binding CENP-A. Interestingly, the replacement of these basic amino acids with acidic amino acids perturbed the localization of Sgo1 and Aurora B to the centromere, resulting in aberrant chromosome segregation and premature chromatid separation. Taken together, these findings reveal a previously unrecognized but direct link between Sgo1 and CENP-A in centromere plasticity control and illustrate how the Sgo1-CENP-A interaction guides accurate cell division.
Collapse
Affiliation(s)
- Fengge Wu
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of Institute of Health and Medicine (IHM), University of Science and Technology of China School of Life Sciences, Hefei 230026, China
| | - Hameed Akbar
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of Institute of Health and Medicine (IHM), University of Science and Technology of China School of Life Sciences, Hefei 230026, China
| | - Chunyue Wang
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of Institute of Health and Medicine (IHM), University of Science and Technology of China School of Life Sciences, Hefei 230026, China
| | - Xiao Yuan
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of Institute of Health and Medicine (IHM), University of Science and Technology of China School of Life Sciences, Hefei 230026, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei National Center for Cross-disciplinary Sciences, Hefei 230027, China
| | - Zhen Dou
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of Institute of Health and Medicine (IHM), University of Science and Technology of China School of Life Sciences, Hefei 230026, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei National Center for Cross-disciplinary Sciences, Hefei 230027, China
- Keck Center for Cellular Dynamics, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - McKay Mullen
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of Institute of Health and Medicine (IHM), University of Science and Technology of China School of Life Sciences, Hefei 230026, China
- Keck Center for Cellular Dynamics, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Liwen Niu
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of Institute of Health and Medicine (IHM), University of Science and Technology of China School of Life Sciences, Hefei 230026, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei National Center for Cross-disciplinary Sciences, Hefei 230027, China
| | - Liang Zhang
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of Institute of Health and Medicine (IHM), University of Science and Technology of China School of Life Sciences, Hefei 230026, China
| | - Jianye Zang
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of Institute of Health and Medicine (IHM), University of Science and Technology of China School of Life Sciences, Hefei 230026, China
| | - Zhikai Wang
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of Institute of Health and Medicine (IHM), University of Science and Technology of China School of Life Sciences, Hefei 230026, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei National Center for Cross-disciplinary Sciences, Hefei 230027, China
| | - Xuebiao Yao
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of Institute of Health and Medicine (IHM), University of Science and Technology of China School of Life Sciences, Hefei 230026, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei National Center for Cross-disciplinary Sciences, Hefei 230027, China
| | - Xiaoyu Song
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of Institute of Health and Medicine (IHM), University of Science and Technology of China School of Life Sciences, Hefei 230026, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei National Center for Cross-disciplinary Sciences, Hefei 230027, China
| | - Xing Liu
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of Institute of Health and Medicine (IHM), University of Science and Technology of China School of Life Sciences, Hefei 230026, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei National Center for Cross-disciplinary Sciences, Hefei 230027, China
| |
Collapse
|
9
|
Gao L, Zhang J, Long Q, Yang Y, Li Y, Li G, Pu P, Tong S, He Y, Li Q, Chen Y, Liu Y, Kong X. SETD7 promotes metastasis of triple-negative breast cancer by YY1 lysine methylation. Biochim Biophys Acta Mol Basis Dis 2023:166780. [PMID: 37286143 DOI: 10.1016/j.bbadis.2023.166780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/28/2023] [Accepted: 05/30/2023] [Indexed: 06/09/2023]
Abstract
Breast cancer has gradually become the predominant cause for cancer-associated death in women. The metastatic dissemination and underlying mechanisms of triple-negative breast cancer (TNBC) are not sufficiently understood. (Su(var)3-9, enhancer of zeste, Trithorax) domain-containing protein 7 (SETD7) is vital for promoting the metastasis of TNBC, as demonstrated in this study. Clinical outcomes were significantly worse in primary metastatic TNBC with upregulated SETD7. Overexpression of SETD7 in vitro and in vivo promotes migration of TNBC cells. Two highly conserved lysine (K) residues K173 and K411 of Yin Yang 1 (YY1) are methylated by SETD7. Further, we found that SETD7-mediated K173 residue methylation protects YY1 from the ubiquitin-proteasome degradation. Mechanistically, it was found that the SETD7/YY1 axis regulates epithelial-mesenchymal transition (EMT) and tumor cell migration via the ERK/MAPK pathway in TNBC. The findings indicated that TNBC metastasis is driven by a novel pathway, which may be a promising target for advanced TNBC treatment.
Collapse
Affiliation(s)
- Lili Gao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; Department of Pathology, Pudong New Area People's Hospital, Shanghai 201299, China
| | - Junzhe Zhang
- Department of Biliary-pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Qianqian Long
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai 200120, China
| | - Yang Yang
- Department of Biliary-pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Yiming Li
- Department of Biliary-pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Guoqiang Li
- Department of Biliary-pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Peng Pu
- Department of Biliary-pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Shanshi Tong
- Department of Biliary-pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Yamin He
- Department of Pathology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Qing Li
- Department of Pathology, Pudong New Area People's Hospital, Shanghai 201299, China.
| | - Yang Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Yingbin Liu
- Department of Biliary-pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai 200120, China.
| | - Xianming Kong
- Central Laboratory, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; Shanghai university of medicine & health sciences, Shanghai 201318, China.
| |
Collapse
|
10
|
Yan S, Peng B, Kan S, Shao G, Xiahou Z, Tang X, Chen YX, Dong MQ, Liu X, Xu X, Li J. Polo-like kinase 1 (PLK1) O-GlcNAcylation is essential for dividing mammalian cells and inhibits uterine carcinoma. J Biol Chem 2023; 299:102887. [PMID: 36626982 PMCID: PMC9932112 DOI: 10.1016/j.jbc.2023.102887] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/30/2022] [Accepted: 12/31/2022] [Indexed: 01/09/2023] Open
Abstract
The O-linked β-N-acetylglucosamine (O-GlcNAc) transferase (OGT) mediates intracellular O-GlcNAcylation modification. O-GlcNAcylation occurs on Ser/Thr residues and is important for numerous physiological processes. OGT is essential for dividing mammalian cells and is involved in many human diseases; however, many of its fundamental substrates during cell division remain unknown. Here, we focus on the effect of OGT on polo-like kinase 1 (PLK1), a mitotic master kinase that governs DNA replication, mitotic entry, chromosome segregation, and mitotic exit. We show that PLK1 interacts with OGT and is O-GlcNAcylated. By utilizing stepped collisional energy/higher-energy collisional dissociation mass spectrometry, we found a peptide fragment of PLK1 that is modified by O-GlcNAc. Further mutation analysis of PLK1 shows that the T291A mutant decreases O-GlcNAcylation. Interestingly, T291N is a uterine carcinoma mutant in The Cancer Genome Atlas. Our biochemical assays demonstrate that T291A and T291N both increase PLK1 stability. Using stable H2B-GFP cells, we found that PLK1-T291A and PLK1-T291N mutants display chromosome segregation defects and result in misaligned and lagging chromosomes. In mouse xenograft models, we demonstrate that the O-GlcNAc-deficient PLK1-T291A and PLK1-T291N mutants enhance uterine carcinoma in animals. Hence, we propose that OGT partially exerts its mitotic function through O-GlcNAcylation of PLK1, which might be one mechanism by which elevated levels of O-GlcNAc promote tumorigenesis.
Collapse
Affiliation(s)
- Sheng Yan
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, China
| | - Bin Peng
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and Carson International Cancer Center, Marshall Laboratory of Biomedical Engineering, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Shifeng Kan
- Zaozhuang Municipal Hospital, Shandong, China
| | - Guangcan Shao
- National Institute of Biological Sciences, Beijing, China
| | - Zhikai Xiahou
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, China
| | - Xiangyan Tang
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, China
| | - Yong-Xiang Chen
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing, China
| | - Xiao Liu
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, China.
| | - Xingzhi Xu
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and Carson International Cancer Center, Marshall Laboratory of Biomedical Engineering, Shenzhen University School of Medicine, Shenzhen, Guangdong, China.
| | - Jing Li
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, China.
| |
Collapse
|
11
|
Akbar H, Cao J, Wang D, Yuan X, Zhang M, Muthusamy S, Song X, Liu X, Aikhionbare F, Yao X, Gao X, Liu X. Acetylation of Nup62 by TIP60 ensures accurate chromosome segregation in mitosis. J Mol Cell Biol 2022; 14:6747133. [PMID: 36190325 PMCID: PMC9926331 DOI: 10.1093/jmcb/mjac056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/14/2022] [Accepted: 09/29/2022] [Indexed: 11/14/2022] Open
Abstract
Stable transmission of genetic information during cell division requires faithful mitotic spindle assembly and chromosome segregation. In eukaryotic cells, nuclear envelope breakdown (NEBD) is required for proper chromosome segregation. Although a list of mitotic kinases has been implicated in NEBD, how they coordinate their activity to dissolve the nuclear envelope and protein machinery such as nuclear pore complexes was unclear. Here, we identified a regulatory mechanism in which Nup62 is acetylated by TIP60 in human cell division. Nup62 is a novel substrate of TIP60, and the acetylation of Lys432 by TIP60 dissolves nucleoporin Nup62-Nup58-Nup54 complex during entry into mitosis. Importantly, this acetylation-elicited remodeling of nucleoporin complex promotes the distribution of Nup62 to the mitotic spindle, which is indispensable for orchestrating correct spindle orientation. Moreover, suppression of Nup62 perturbs accurate chromosome segregation during mitosis. These results establish a previously uncharacterized regulatory mechanism in which TIP60-elicited nucleoporin dynamics promotes chromosome segregation in mitosis.
Collapse
Affiliation(s)
- Hameed Akbar
- MOE Key Laboratory for Cellular Dynamics and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China,CAS Center for Excellence in Molecular and Cell Sciences, Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei 230027, China
| | - Jun Cao
- MOE Key Laboratory for Cellular Dynamics and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China,CAS Center for Excellence in Molecular and Cell Sciences, Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei 230027, China
| | - Dongmei Wang
- MOE Key Laboratory for Cellular Dynamics and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China,CAS Center for Excellence in Molecular and Cell Sciences, Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei 230027, China
| | - Xiao Yuan
- MOE Key Laboratory for Cellular Dynamics and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China,CAS Center for Excellence in Molecular and Cell Sciences, Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei 230027, China
| | - Manjuan Zhang
- MOE Key Laboratory for Cellular Dynamics and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China,CAS Center for Excellence in Molecular and Cell Sciences, Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei 230027, China
| | | | - Xiaoyu Song
- MOE Key Laboratory for Cellular Dynamics and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China,Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Xu Liu
- MOE Key Laboratory for Cellular Dynamics and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China,CAS Center for Excellence in Molecular and Cell Sciences, Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei 230027, China
| | | | | | | | - Xing Liu
- Correspondence to: Xing Liu, E-mail:
| |
Collapse
|
12
|
Sedzro DM, Yuan X, Mullen M, Ejaz U, Yang T, Liu X, Song X, Tang YC, Pan W, Zou P, Gao X, Wang D, Wang Z, Dou Z, Liu X, Yao X. Phosphorylation of CENP-R by Aurora B regulates kinetochore-microtubule attachment for accurate chromosome segregation. J Mol Cell Biol 2022; 14:6693714. [PMID: 36069839 PMCID: PMC9802239 DOI: 10.1093/jmcb/mjac051] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/14/2022] [Accepted: 09/01/2022] [Indexed: 01/14/2023] Open
Abstract
Error-free mitosis depends on accurate chromosome attachment to spindle microtubules via a fine structure called the centromere that is epigenetically specified by the enrichment of CENP-A nucleosomes. Centromere maintenance during mitosis requires CENP-A-mediated deposition of constitutive centromere-associated network that establishes the inner kinetochore and connects centromeric chromatin to spindle microtubules during mitosis. Although previously proposed to be an adaptor of retinoic acid receptor, here, we show that CENP-R synergizes with CENP-OPQU to regulate kinetochore-microtubule attachment stability and ensure accurate chromosome segregation in mitosis. We found that a phospho-mimicking mutation of CENP-R weakened its localization to the kinetochore, suggesting that phosphorylation may regulate its localization. Perturbation of CENP-R phosphorylation is shown to prevent proper kinetochore-microtubule attachment at metaphase. Mechanistically, CENP-R phosphorylation disrupts its binding with CENP-U. Thus, we speculate that Aurora B-mediated CENP-R phosphorylation promotes the correction of improper kinetochore-microtubule attachment in mitosis. As CENP-R is absent from yeast, we reasoned that metazoan evolved an elaborate chromosome stability control machinery to ensure faithful chromosome segregation in mitosis.
Collapse
Affiliation(s)
- Divine Mensah Sedzro
- MOE Key Laboratory for Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei 230027, China,Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, National Center for Cross-Disciplinary Sciences & CAS Center for Excellence in Molecular Cell Science, Hefei 230026, China
| | - Xiao Yuan
- Correspondence to: Xiao Yuan, E-mail:
| | - McKay Mullen
- MOE Key Laboratory for Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei 230027, China,Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, National Center for Cross-Disciplinary Sciences & CAS Center for Excellence in Molecular Cell Science, Hefei 230026, China,Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Umer Ejaz
- MOE Key Laboratory for Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei 230027, China,Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, National Center for Cross-Disciplinary Sciences & CAS Center for Excellence in Molecular Cell Science, Hefei 230026, China
| | - Tongtong Yang
- MOE Key Laboratory for Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei 230027, China,Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, National Center for Cross-Disciplinary Sciences & CAS Center for Excellence in Molecular Cell Science, Hefei 230026, China
| | - Xu Liu
- MOE Key Laboratory for Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei 230027, China,Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, National Center for Cross-Disciplinary Sciences & CAS Center for Excellence in Molecular Cell Science, Hefei 230026, China,Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Xiaoyu Song
- MOE Key Laboratory for Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei 230027, China,Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, National Center for Cross-Disciplinary Sciences & CAS Center for Excellence in Molecular Cell Science, Hefei 230026, China,Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Yun-Chi Tang
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences (CAS), Shanghai 200031, China
| | - Weijun Pan
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences (CAS), Shanghai 200031, China
| | - Peng Zou
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xinjiao Gao
- MOE Key Laboratory for Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei 230027, China,Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, National Center for Cross-Disciplinary Sciences & CAS Center for Excellence in Molecular Cell Science, Hefei 230026, China
| | - Dongmei Wang
- MOE Key Laboratory for Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei 230027, China,Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, National Center for Cross-Disciplinary Sciences & CAS Center for Excellence in Molecular Cell Science, Hefei 230026, China
| | - Zhikai Wang
- MOE Key Laboratory for Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei 230027, China,Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, National Center for Cross-Disciplinary Sciences & CAS Center for Excellence in Molecular Cell Science, Hefei 230026, China,Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Zhen Dou
- Correspondence to: Zhen Dou, E-mail:
| | - Xing Liu
- Correspondence to: Xing Liu, E-mail:
| | | |
Collapse
|
13
|
Barbosa J, Sunkel CE, Conde C. The Role of Mitotic Kinases and the RZZ Complex in Kinetochore-Microtubule Attachments: Doing the Right Link. Front Cell Dev Biol 2022; 10:787294. [PMID: 35155423 PMCID: PMC8832123 DOI: 10.3389/fcell.2022.787294] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/13/2022] [Indexed: 12/31/2022] Open
Abstract
During mitosis, the interaction of kinetochores (KTs) with microtubules (MTs) drives chromosome congression to the spindle equator and supports the segregation of sister chromatids. Faithful genome partition critically relies on the ability of chromosomes to establish and maintain proper amphitelic end-on attachments, a configuration in which sister KTs are connected to robust MT fibers emanating from opposite spindle poles. Because the capture of spindle MTs by KTs is error prone, cells use mechanisms that sense and correct inaccurate KT-MT interactions before committing to segregate sister chromatids in anaphase. If left unresolved, these errors can result in the unequal distribution of chromosomes and lead to aneuploidy, a hallmark of cancer. In this review, we provide an overview of the molecular strategies that monitor the formation and fine-tuning of KT-MT attachments. We describe the complex network of proteins that operates at the KT-MT interface and discuss how AURORA B and PLK1 coordinate several concurrent events so that the stability of KT-MT attachments is precisely modulated throughout mitotic progression. We also outline updated knowledge on how the RZZ complex is regulated to ensure the formation of end-on attachments and the fidelity of mitosis.
Collapse
Affiliation(s)
- João Barbosa
- i3S, Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Claudio E. Sunkel
- i3S, Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Carlos Conde
- i3S, Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| |
Collapse
|
14
|
Malbeteau L, Pham HT, Eve L, Stallcup MR, Poulard C, Le Romancer M. How Protein Methylation Regulates Steroid Receptor Function. Endocr Rev 2022; 43:160-197. [PMID: 33955470 PMCID: PMC8755998 DOI: 10.1210/endrev/bnab014] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Indexed: 02/06/2023]
Abstract
Steroid receptors (SRs) are members of the nuclear hormonal receptor family, many of which are transcription factors regulated by ligand binding. SRs regulate various human physiological functions essential for maintenance of vital biological pathways, including development, reproduction, and metabolic homeostasis. In addition, aberrant expression of SRs or dysregulation of their signaling has been observed in a wide variety of pathologies. SR activity is tightly and finely controlled by post-translational modifications (PTMs) targeting the receptors and/or their coregulators. Whereas major attention has been focused on phosphorylation, growing evidence shows that methylation is also an important regulator of SRs. Interestingly, the protein methyltransferases depositing methyl marks are involved in many functions, from development to adult life. They have also been associated with pathologies such as inflammation, as well as cardiovascular and neuronal disorders, and cancer. This article provides an overview of SR methylation/demethylation events, along with their functional effects and biological consequences. An in-depth understanding of the landscape of these methylation events could provide new information on SR regulation in physiology, as well as promising perspectives for the development of new therapeutic strategies, illustrated by the specific inhibitors of protein methyltransferases that are currently available.
Collapse
Affiliation(s)
- Lucie Malbeteau
- Université de Lyon, F-69000 Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | - Ha Thuy Pham
- Université de Lyon, F-69000 Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | - Louisane Eve
- Université de Lyon, F-69000 Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | - Michael R Stallcup
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Coralie Poulard
- Université de Lyon, F-69000 Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | - Muriel Le Romancer
- Université de Lyon, F-69000 Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| |
Collapse
|
15
|
Gao L, Yu W, Song P, Li Q. Non-histone methylation of SET7/9 and its biological functions. Recent Pat Anticancer Drug Discov 2021; 17:231-243. [PMID: 34856916 DOI: 10.2174/1574892816666211202160041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/01/2021] [Accepted: 10/02/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND (su(var)-3-9,enhancer-of-zeste,trithorax) domain-containing protein 7/9 (SET7/9) is a member of the protein lysine methyltransferases (PLMTs or PKMTs) family. It contains a SET domain. Recent studies demonstrate that SET7/9 methylates both lysine 4 of histone 3 (H3-K4) and lysine(s) of non-histone proteins, including transcription factors, tumor suppressors, and membrane-associated receptors. OBJECTIVE This article mainly reviews the non-histone methylation effects of SET7/9 and its functions in tumorigenesis and development. METHODS PubMed was screened for this information. RESULTS SET7/9 plays a key regulatory role in various biological processes such as cell proliferation, transcription regulation, cell cycle, protein stability, cardiac morphogenesis, and development. In addition, SET7/9 is involved in the pathogenesis of hair loss, breast cancer progression, human carotid plaque atherosclerosis, chronic kidney disease, diabetes, obesity, ovarian cancer, prostate cancer, hepatocellular carcinoma, and pulmonary fibrosis. CONCLUSION SET7/9 is an important methyltransferase, which can catalyze the methylation of a variety of proteins. Its substrates are closely related to the occurrence and development of tumors.
Collapse
Affiliation(s)
- Lili Gao
- Department of Pathology, Pudong New Area People's Hospital, Shanghai 201299. China
| | - Weiping Yu
- Department of Pathophysiology, Medical school of Southeast University, Nanjing 210009, Jiangsu. China
| | - Peng Song
- Department of Pathology, Pudong New Area People's Hospital, Shanghai 201299. China
| | - Qing Li
- Department of Pathology, Pudong New Area People's Hospital, Shanghai 201299. China
| |
Collapse
|
16
|
Xu L, Ali M, Duan W, Yuan X, Garba F, Mullen M, Sun B, Poser I, Duan H, Lu J, Tian R, Ge Y, Chu L, Pan W, Wang D, Hyman A, Green H, Li L, Dou Z, Liu D, Liu X, Yao X. Feedback control of PLK1 by Apolo1 ensures accurate chromosome segregation. Cell Rep 2021; 36:109343. [PMID: 34260926 PMCID: PMC8358895 DOI: 10.1016/j.celrep.2021.109343] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 04/01/2020] [Accepted: 06/15/2021] [Indexed: 12/12/2022] Open
Abstract
Stable transmission of genetic material during cell division requires accurate chromosome segregation. PLK1 dynamics at kinetochores control establishment of correct kinetochore-microtubule attachments and subsequent silencing of the spindle checkpoint. However, the regulatory mechanism responsible for PLK1 activity in prometaphase has not yet been affirmatively identified. Here we identify Apolo1, which tunes PLK1 activity for accurate kinetochore-microtubule attachments. Apolo1 localizes to kinetochores during early mitosis, and suppression of Apolo1 results in misaligned chromosomes. Using the fluorescence resonance energy transfer (FRET)-based PLK1 activity reporter, we found that Apolo1 sustains PLK1 kinase activity at kinetochores for accurate attachment during prometaphase. Apolo1 is a cognate substrate of PLK1, and the phosphorylation enables PP1γ to inactivate PLK1 by dephosphorylation. Mechanistically, Apolo1 constitutes a bridge between kinase and phosphatase, which governs PLK1 activity in prometaphase. These findings define a previously uncharacterized feedback loop by which Apolo1 provides fine-tuning for PLK1 to guide chromosome segregation in mitosis.
Collapse
Affiliation(s)
- Leilei Xu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science & Technology of China, Hefei 230027, China; Keck Center for Molecular Imaging, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Mahboob Ali
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science & Technology of China, Hefei 230027, China
| | - Wenxiu Duan
- Anhui Key Laboratory for Chemical Biology, Hefei National Center for Physical Sciences at Microscale, Hefei 230027, China
| | - Xiao Yuan
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science & Technology of China, Hefei 230027, China; Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Fatima Garba
- Keck Center for Molecular Imaging, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - McKay Mullen
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science & Technology of China, Hefei 230027, China; Keck Center for Molecular Imaging, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Binwen Sun
- National Chromatographic Research and Analysis Center, Dalian 116023, China
| | - Ina Poser
- Max Planck Institute for Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Hequan Duan
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science & Technology of China, Hefei 230027, China; Keck Center for Molecular Imaging, Morehouse School of Medicine, Atlanta, GA 30310, USA; Anhui Key Laboratory for Chemical Biology, Hefei National Center for Physical Sciences at Microscale, Hefei 230027, China
| | - Jianlin Lu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science & Technology of China, Hefei 230027, China
| | - Ruijun Tian
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yushu Ge
- Anhui Key Laboratory for Chemical Biology, Hefei National Center for Physical Sciences at Microscale, Hefei 230027, China
| | - Lingluo Chu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science & Technology of China, Hefei 230027, China; Keck Center for Molecular Imaging, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Weijun Pan
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Dongmei Wang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science & Technology of China, Hefei 230027, China
| | - Anthony Hyman
- Max Planck Institute for Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Hadiyah Green
- Keck Center for Molecular Imaging, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Lin Li
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhen Dou
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science & Technology of China, Hefei 230027, China; Anhui Key Laboratory for Chemical Biology, Hefei National Center for Physical Sciences at Microscale, Hefei 230027, China.
| | - Dan Liu
- Anhui Key Laboratory for Chemical Biology, Hefei National Center for Physical Sciences at Microscale, Hefei 230027, China.
| | - Xing Liu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science & Technology of China, Hefei 230027, China; Keck Center for Molecular Imaging, Morehouse School of Medicine, Atlanta, GA 30310, USA.
| | - Xuebiao Yao
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science & Technology of China, Hefei 230027, China; Keck Center for Molecular Imaging, Morehouse School of Medicine, Atlanta, GA 30310, USA.
| |
Collapse
|
17
|
Dunphy K, Dowling P, Bazou D, O’Gorman P. Current Methods of Post-Translational Modification Analysis and Their Applications in Blood Cancers. Cancers (Basel) 2021; 13:1930. [PMID: 33923680 PMCID: PMC8072572 DOI: 10.3390/cancers13081930] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/04/2021] [Accepted: 04/14/2021] [Indexed: 12/12/2022] Open
Abstract
Post-translational modifications (PTMs) add a layer of complexity to the proteome through the addition of biochemical moieties to specific residues of proteins, altering their structure, function and/or localization. Mass spectrometry (MS)-based techniques are at the forefront of PTM analysis due to their ability to detect large numbers of modified proteins with a high level of sensitivity and specificity. The low stoichiometry of modified peptides means fractionation and enrichment techniques are often performed prior to MS to improve detection yields. Immuno-based techniques remain popular, with improvements in the quality of commercially available modification-specific antibodies facilitating the detection of modified proteins with high affinity. PTM-focused studies on blood cancers have provided information on altered cellular processes, including cell signaling, apoptosis and transcriptional regulation, that contribute to the malignant phenotype. Furthermore, the mechanism of action of many blood cancer therapies, such as kinase inhibitors, involves inhibiting or modulating protein modifications. Continued optimization of protocols and techniques for PTM analysis in blood cancer will undoubtedly lead to novel insights into mechanisms of malignant transformation, proliferation, and survival, in addition to the identification of novel biomarkers and therapeutic targets. This review discusses techniques used for PTM analysis and their applications in blood cancer research.
Collapse
Affiliation(s)
- Katie Dunphy
- Department of Biology, National University of Ireland, W23 F2K8 Maynooth, Ireland; (K.D.); (P.D.)
| | - Paul Dowling
- Department of Biology, National University of Ireland, W23 F2K8 Maynooth, Ireland; (K.D.); (P.D.)
| | - Despina Bazou
- Department of Haematology, Mater Misericordiae University Hospital, D07 WKW8 Dublin, Ireland;
| | - Peter O’Gorman
- Department of Haematology, Mater Misericordiae University Hospital, D07 WKW8 Dublin, Ireland;
| |
Collapse
|
18
|
Ong JY, Bradley MC, Torres JZ. Phospho-regulation of mitotic spindle assembly. Cytoskeleton (Hoboken) 2020; 77:558-578. [PMID: 33280275 PMCID: PMC7898546 DOI: 10.1002/cm.21649] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/08/2020] [Accepted: 12/02/2020] [Indexed: 12/23/2022]
Abstract
The assembly of the bipolar mitotic spindle requires the careful orchestration of a myriad of enzyme activities like protein posttranslational modifications. Among these, phosphorylation has arisen as the principle mode for spatially and temporally activating the proteins involved in early mitotic spindle assembly processes. Here, we review key kinases, phosphatases, and phosphorylation events that regulate critical aspects of these processes. We highlight key phosphorylation substrates that are important for ensuring the fidelity of centriole duplication, centrosome maturation, and the establishment of the bipolar spindle. We also highlight techniques used to understand kinase-substrate relationships and to study phosphorylation events. We conclude with perspectives on the field of posttranslational modifications in early mitotic spindle assembly.
Collapse
Affiliation(s)
- Joseph Y Ong
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA
| | - Michelle C Bradley
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA
| | - Jorge Z Torres
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA.,Molecular Biology Institute, University of California, Los Angeles, California, USA.,Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, USA
| |
Collapse
|
19
|
Barbosa J, Conde C, Sunkel C. RZZ-SPINDLY-DYNEIN: you got to keep 'em separated. Cell Cycle 2020; 19:1716-1726. [PMID: 32544383 PMCID: PMC7469663 DOI: 10.1080/15384101.2020.1780382] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 10/24/2022] Open
Abstract
To maintain genome stability, chromosomes must be equally distributed among daughter cells at the end of mitosis. The accuracy of chromosome segregation requires sister-kinetochores to stably attach to microtubules emanating from opposite spindle poles. However, initial kinetochore-microtubule interactions are able to turnover so that defective attachment configurations that typically arise during early mitosis may be corrected. Growing evidence supports a role for the RZZ complex in preventing the stabilization of erroneous kinetochore-microtubule attachments. This inhibitory function of RZZ toward end-on attachments is relieved by DYNEIN-mediated transport of the complex as chromosomes congress and appropriate interactions with microtubules are established. However, it remains unclear how DYNEIN is antagonized to prevent premature RZZ removal. We recently described a new mechanism that sheds new light on this matter. We found that POLO kinase phosphorylates the DYNEIN adaptor SPINDLY to promote the uncoupling between RZZ and DYNEIN. Elevated POLO activity during prometaphase ensures that RZZ is retained at kinetochores to allow the dynamic turnover of kinetochore-microtubule interactions and prevent the stabilization of erroneous attachments. Here, we discuss additional interpretations to explain a model for POLO-dependent regulation of the RZZ-SPINDLY-DYNEIN module during mitosis.
Collapse
Affiliation(s)
- João Barbosa
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- i3S, Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Porto, Portugal
| | - Carlos Conde
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- i3S, Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Porto, Portugal
| | - Claudio Sunkel
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- i3S, Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Porto, Portugal
- ICBAS - Instituto de Ciência Biomédicas Abel Salazar da Universidade do Porto, Porto, Portugal
| |
Collapse
|