1
|
Rajan P, Goswami D, Vanlalhmuaka, Datta S, Rabha B, Kamboj DV. Acoustic behaviour and flight tone frequency changes in adult Aedes albopictus and Culex quinquefasciatus mosquitoes. Sci Rep 2025; 15:15499. [PMID: 40319179 PMCID: PMC12049413 DOI: 10.1038/s41598-025-89608-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 02/06/2025] [Indexed: 05/07/2025] Open
Abstract
Species-specific wingbeat frequency of mosquitoes has already been shown to be useful in species identification. However, mosquito identification using their fundamental wingbeat frequency requires proper evaluation along with its morphological and ecological characters. An acoustic study was carried out on four species of laboratory reared mosquitoes Aedes albopictus, Culex quinquefasciatus, Anopheles crawfordi, and Armigeres subalbatus. However, a detailed study on wingbeat frequency and its variation at different points of the adult life stages was conducted for Ae. albopictus and Cx. quinquefasciatus. Recorded wingbeat beat frequency during the different point of adult life stages was analyzed using the Raven Pro 1.6.1 sound analysis software. Result showed that there was a significant difference in the fundamental frequency between four study species (F = 81.62; df = 151; p < 0.001). Wingbeat frequency of Ae. albopictus and Cx. quinquefasciatus observed to be low immediately after emergence from the pupal stage and gradually became peak during the swarming stage which is considered as the species' fundamental frequency. These change in wingbeat frequency during the early adult stages leads to uncertainty in species identification based on the fundamental frequency. Swarming and pairing activities in Cx. quinquefasciatus and Ae. albopictus exclusively depends on the convergence between male first harmonics (M1) and female second harmonics (F2) of their fundamental frequency and make combined harmonic frequency at 1400-1500 Hz. Interestingly, this study observed that the frequency of adult male and early stages of female did not converge at the M1-F2 harmonics, thereby preventing successful mating. It thus infers that the wingbeat frequency of active male and female have significant role in the selection of potential mates within the species.
Collapse
Affiliation(s)
- P Rajan
- Entomology and Biothreat Management Division, Defence Research Laboratory (DRL), Defence Research and Development Organisation (DRDO), Tezpur, Assam, 784001, India
- Wildlife Biology Division, Kerala Forest Research Institute, Peechi, Thrissur, 680653, India
| | - Diganta Goswami
- Entomology and Biothreat Management Division, Defence Research Laboratory (DRL), Defence Research and Development Organisation (DRDO), Tezpur, Assam, 784001, India
| | - Vanlalhmuaka
- Entomology and Biothreat Management Division, Defence Research Laboratory (DRL), Defence Research and Development Organisation (DRDO), Tezpur, Assam, 784001, India.
| | - Sibnarayan Datta
- Entomology and Biothreat Management Division, Defence Research Laboratory (DRL), Defence Research and Development Organisation (DRDO), Tezpur, Assam, 784001, India
| | - Bipul Rabha
- Entomology and Biothreat Management Division, Defence Research Laboratory (DRL), Defence Research and Development Organisation (DRDO), Tezpur, Assam, 784001, India
| | - Dev Vrat Kamboj
- Entomology and Biothreat Management Division, Defence Research Laboratory (DRL), Defence Research and Development Organisation (DRDO), Tezpur, Assam, 784001, India
| |
Collapse
|
2
|
Freeman EA, Ellis DA, Bagi J, Tytheridge S, Andrés M. Perspectives on the manipulation of mosquito hearing. CURRENT OPINION IN INSECT SCIENCE 2024; 66:101271. [PMID: 39313114 DOI: 10.1016/j.cois.2024.101271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/30/2024] [Accepted: 09/16/2024] [Indexed: 09/25/2024]
Abstract
Vector control is essential for preventing mosquito-borne diseases. However, different challenges associated with the development of insecticide resistance and behavioural adaptations across mosquito populations means novel control strategies are urgently needed. In recent years, disrupting mosquito mating has emerged as an alternative target of control tools because of its potential to reduce mosquito population numbers. Mosquito mating relies on sophisticated auditory processing for mate finding in many medically important species. Manipulating this key process could provide novel methods for mosquito control.
Collapse
Affiliation(s)
| | - David Andrew Ellis
- Ear Institute, University College London, 332 Gray's Inn Road, London WC1X 8EE, UK
| | - Judit Bagi
- Ear Institute, University College London, 332 Gray's Inn Road, London WC1X 8EE, UK
| | - Scott Tytheridge
- Ear Institute, University College London, 332 Gray's Inn Road, London WC1X 8EE, UK
| | - Marta Andrés
- Ear Institute, University College London, 332 Gray's Inn Road, London WC1X 8EE, UK; Animal Health Research Centre, National Center National Institute for Agricultural and Food Research and Technology, Spanish National Research Council (CISA-INIA-CSIC), 28130 Valdeolmos, Spain.
| |
Collapse
|
3
|
A literature review of dispersal pathways of Aedes albopictus across different spatial scales: implications for vector surveillance. Parasit Vectors 2022; 15:303. [PMID: 36030291 PMCID: PMC9420301 DOI: 10.1186/s13071-022-05413-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/25/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Aedes albopictus is a highly invasive species and an important vector of dengue and chikungunya viruses. Indigenous to Southeast Asia, Ae. albopictus has successfully invaded every inhabited continent, except Antarctica, in the past 80 years. Vector surveillance and control at points of entry (PoE) is the most critical front line of defence against the introduction of Ae. albopictus to new areas. Identifying the pathways by which Ae. albopictus are introduced is the key to implementing effective vector surveillance to rapidly detect introductions and to eliminate them. METHODS A literature review was conducted to identify studies and data sources reporting the known and suspected dispersal pathways of human-mediated Ae. albopictus dispersal between 1940-2020. Studies and data sources reporting the first introduction of Ae. albopictus in a new country were selected for data extraction and analyses. RESULTS Between 1940-2020, Ae. albopictus was reported via various dispersal pathways into 86 new countries. Two main dispersal pathways were identified: (1) at global and continental spatial scales, maritime sea transport was the main dispersal pathway for Ae. albopictus into new countries in the middle to late 20th Century, with ships carrying used tyres of particular importance during the 1980s and 1990s, and (2) at continental and national spatial scales, the passive transportation of Ae. albopictus in ground vehicles and to a lesser extent the trade of used tyres and maritime sea transport appear to be the major drivers of Ae. albopictus dispersal into new countries, especially in Europe. Finally, the dispersal pathways for the introduction and spread of Ae. albopictus in numerous countries remains unknown, especially from the 1990s onwards. CONCLUSIONS This review identified the main known and suspected dispersal pathways of human-mediated Ae. albopictus dispersal leading to the first introduction of Ae. albopictus into new countries and highlighted gaps in our understanding of Ae. albopictus dispersal pathways. Relevant advances in vector surveillance and genomic tracking techniques are presented and discussed in the context of improving vector surveillance.
Collapse
|
4
|
Maïga H, Lu D, Mamai W, Bimbilé Somda NS, Wallner T, Bakhoum MT, Bueno Masso O, Martina C, Kotla SS, Yamada H, Salvador Herranz G, Argiles Herrero R, Chong CS, Tan CH, Bouyer J. Standardization of the FAO/IAEA Flight Test for Quality Control of Sterile Mosquitoes. Front Bioeng Biotechnol 2022; 10:876675. [PMID: 35923573 PMCID: PMC9341283 DOI: 10.3389/fbioe.2022.876675] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/13/2022] [Indexed: 12/22/2022] Open
Abstract
Successful implementation of the sterile insect technique (SIT) against Aedes aegypti and Aedes albopictus relies on maintaining a consistent release of high-quality sterile males. Affordable, rapid, practical quality control tools based on the male’s flight ability (ability to escape from a flight device) may contribute to meeting this requirement. Therefore, this study aims to standardize the use of the original FAO/IAEA rapid quality control flight test device (FTD) (version 1.0), while improving handling conditions and reducing the device’s overall cost by assessing factors that could impact the subsequent flight ability of Aedes mosquitoes. The new FTD (version 1.1) is easier to use. The most important factors affecting escape rates were found to be tube color (or “shade”), the combined use of a lure and fan, mosquito species, and mosquito age and density (25; 50; 75; 100 males). Other factors measured but found to be less important were the duration of the test (30, 60, 90, 120 min), fan speed (normal 3000 rpm vs. high 6000 rpm), and mosquito strain origin. In addition, a cheaper version of the FTD (version 2.0) that holds eight individual tubes instead of 40 was designed and successfully validated against the new FTD (version 1.1). It was sensitive enough to distinguish between the effects of cold stress and high irradiation dose. Therefore, the eight-tube FTD may be used to assess Aedes’ flight ability. This study demonstrated that the new designs (versions 1.1 and 2.0) of the FTD could be used for standard routine quality assessments of Aedes mosquitoes required for an SIT and other male release-based programs.
Collapse
Affiliation(s)
- Hamidou Maïga
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, IAEA Laboratories, Seibersdorf, Austria
- Institut de Recherche en Sciences de la Santé/Direction Régionale de l’Ouest (IRSS-DRO), Bobo-Dioulasso, Burkina Faso
- *Correspondence: Hamidou Maïga, ,
| | - Deng Lu
- Environmental Health Institute, National Environnent Agency, Singapore, Singapore
| | - Wadaka Mamai
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, IAEA Laboratories, Seibersdorf, Austria
- Institut de Recherche Agricole pour le Développement (IRAD), Yaoundé-Messa, Cameroon
| | - Nanwintoum Séverin Bimbilé Somda
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, IAEA Laboratories, Seibersdorf, Austria
- Unité de Formation et de Recherche en Sciences et Technologies (UFR/ST), Université Norbert ZONGO (UNZ), Koudougou, Burkina Faso
| | - Thomas Wallner
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, IAEA Laboratories, Seibersdorf, Austria
| | - Mame Thierno Bakhoum
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, IAEA Laboratories, Seibersdorf, Austria
- Institut Sénégalais de Recherches Agricoles (ISRA), Dakar, Senegal
| | - Odet Bueno Masso
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, IAEA Laboratories, Seibersdorf, Austria
| | - Claudia Martina
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, IAEA Laboratories, Seibersdorf, Austria
| | - Simran Singh Kotla
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, IAEA Laboratories, Seibersdorf, Austria
| | - Hanano Yamada
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, IAEA Laboratories, Seibersdorf, Austria
| | - Gustavo Salvador Herranz
- Technical School of Design, Architecture and Engineering, University CEU Cardenal Herrera, Valencia, Spain
| | - Rafael Argiles Herrero
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, IAEA Laboratories, Seibersdorf, Austria
| | - Chee Seng Chong
- Environmental Health Institute, National Environnent Agency, Singapore, Singapore
| | - Cheong Huat Tan
- Environmental Health Institute, National Environnent Agency, Singapore, Singapore
| | - Jeremy Bouyer
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, IAEA Laboratories, Seibersdorf, Austria
| |
Collapse
|
5
|
Staunton KM, Goi J, Townsend M, Ritchie SA, Crawford JE, Snoad N, Karl S, Burkot TR. Effect of BG-Lures on the Male Aedes (Diptera: Culicidae) Sound Trap Capture Rates. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:2425-2431. [PMID: 34240181 PMCID: PMC8577766 DOI: 10.1093/jme/tjab121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Indexed: 06/13/2023]
Abstract
With global expansion of the two main vectors of dengue, Aedes aegypti (Linnaeus, Diptera: Culicidae) and Aedes albopictus (Skuse, Diptera: Culicidae), there is a need to further develop cost-effective and user-friendly surveillance tools to monitor the population dynamics of these species. The abundance of Ae. aegypti and Ae. Albopictus, and associated bycatch captured by Male Aedes Sound Traps (MASTs) and BG-Sentinel (BGS) traps that were unbaited or baited with BG-Lures were compared in Cairns, Australia and Madang, Papua New Guinea. Mean male Ae. aegypti and Ae. albopictus catch rates in MASTs did not significantly differ when deployed with BG-Lures. Similarly, males of both these species were not sampled at statistically different rates in BGS traps with or without BG-Lures. However, MASTs with BG-Lures caught significantly less male Ae. aegypti than BGS traps baited with BG-Lures in Cairns, and MASTs without BG-Lures caught significantly more male Ae. albopictus than BGS traps without BG-Lures in Madang. Additionally, BG-Lures significantly increased female Ae. aegypti catch rates in BGS traps in Cairns. Lastly, bycatch capture rates in BGS traps were not significantly influenced by the addition of the BG-Lures. While this study provides useful information regarding the surveillance of Ae. aegypti and Ae. albopictus in these locations, further development and investigation is required to successfully integrate an olfactory lure into the MAST system.
Collapse
Affiliation(s)
- Kyran M Staunton
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Smithfield, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, Australia
| | - Joelyn Goi
- Vector-Borne Diseases Unit, PNG Institute of Medical Research, Madang, 511 Madang Province, Papua New Guinea
| | - Michael Townsend
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Smithfield, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, Australia
| | - Scott A Ritchie
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Smithfield, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, Australia
| | | | - Nigel Snoad
- Debug, Verily Life Sciences, South San Francisco, CA, USA
| | - Stephan Karl
- Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, Australia
- Vector-Borne Diseases Unit, PNG Institute of Medical Research, Madang, 511 Madang Province, Papua New Guinea
| | - Thomas R Burkot
- Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, Australia
| |
Collapse
|
6
|
Swan T, Ritmejerytė E, Sebayang B, Jones R, Devine G, Graham M, Zich FA, Staunton KM, Russell TL, Burkot TR. Sugar prevalence in Aedes albopictus differs by habitat, sex and time of day on Masig Island, Torres Strait, Australia. Parasit Vectors 2021; 14:520. [PMID: 34625096 PMCID: PMC8501651 DOI: 10.1186/s13071-021-05020-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/14/2021] [Indexed: 11/21/2022] Open
Abstract
Background Sugar feeding is a fundamental behaviour of many mosquito species. For Aedes albopictus, an important vector of dengue virus and chikungunya virus, little is known about its sugar-feeding behaviour, and no studies have been conducted on this in the southern hemisphere. This knowledge is pivotal for determining the potential of attractive targeted sugar baits (ATSBs) to control this important vector. Methods The prevalence of sugar was assessed in 1808 Ae. albopictus from Masig Island, Torres Strait, Australia collected between 13 and 25 March 2020. Fructose presence and content in field-collected Ae. albopictus were quantified using the cold anthrone assay. Results Significantly more male (35.8%) than female (28.4%) Ae. albopictus were sugar fed. There was a significant interaction between sex and time of day on the probability of capturing sugar-fed Ae. albopictus. For both sexes, fructose prevalence and content were higher in mosquitoes caught in the morning than in the afternoon. Female Ae. albopictus collected in the residential habitat were significantly more likely to be sugar fed than those collected in the woodland habitat. Conclusions These findings provide baseline information about the sugar-feeding patterns of Ae. albopictus and provide essential information to enable an assessment of the potential of ATSBs for vector suppression and control on Masig Island, with relevance to other locations where this species occurs. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-05020-w.
Collapse
Affiliation(s)
- T Swan
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Cairns, Australia. .,Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia.
| | - E Ritmejerytė
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| | - B Sebayang
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Cairns, Australia.,Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| | - R Jones
- Division of Tropical Health and Medicine, James Cook University, Townsville, Australia
| | - G Devine
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - M Graham
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - F A Zich
- Australian Tropical Herbarium, James Cook University, Cairns, Australia.,National Research Collections Australia, Commonwealth Industrial and Scientific Research Organisation (CSIRO), Canberra, Australia
| | - K M Staunton
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Cairns, Australia.,Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| | - T L Russell
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Cairns, Australia.,Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| | - T R Burkot
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Cairns, Australia.,Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| |
Collapse
|
7
|
Virome in adult Aedes albopictus captured during different seasons in Guangzhou City, China. Parasit Vectors 2021; 14:415. [PMID: 34407871 PMCID: PMC8371599 DOI: 10.1186/s13071-021-04922-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 08/03/2021] [Indexed: 01/09/2023] Open
Abstract
Background The mosquito Aedes albopictus is an important vector for many pathogens. Understanding the virome in Ae. albopictus is critical for assessing the risk of disease transmission, implementation of vector control measures, and health system strengthening. Methods In this study, viral metagenomic and PCR methods were used to reveal the virome in adult Ae. albopictus captured in different areas and during different seasons in Guangzhou, China. Results The viral composition of adult Ae. albopictus varied mainly between seasons. Over 50 viral families were found, which were specific to vertebrates, invertebrates, plants, fungi, bacteria, and protozoa. In rural areas, Siphoviridae (6.5%) was the most common viral family harbored by mosquitoes captured during winter and spring, while Luteoviridae (1.1%) was the most common viral family harbored by mosquitoes captured during summer and autumn. Myoviridae (7.0% and 1.3%) was the most common viral family in mosquitoes captured in urban areas during all seasons. Hepatitis B virus (HBV) was detected by PCR in a female mosquito pool. The first near full-length HBV genome from Ae. albopictus was amplified, which showed a high level of similarity with human HBV genotype B sequences. Human parechovirus (HPeV) was detected in male and female mosquito pools, and the sequences were clustered with HPeV 1 and 3 sequences. Conclusions Large numbers of viral species were found in adult Ae. albopictus, including viruses from vertebrates, insects, and plants. The viral composition in Ae. albopictus mainly varied between seasons. Herein, we are the first to report the detection of HPeV and HBV in mosquitoes. This study not only provides valuable information for the control and prevention of mosquito-borne diseases, but it also demonstrates the feasibility of xenosurveillance. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-04922-z.
Collapse
|
8
|
Designing Aedes (Diptera: Culicidae) Mosquito Traps: The Evolution of the Male Aedes Sound Trap by Iterative Evaluation. INSECTS 2021; 12:insects12050388. [PMID: 33925425 PMCID: PMC8146609 DOI: 10.3390/insects12050388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 11/17/2022]
Abstract
Effective surveillance of Aedes aegypti (Linnaeus, Diptera: Culicidae) is critical to monitoring the impact of vector control measures when mitigating disease transmission by this species. There are benefits to deploying male-specific traps, particularly when a high level of catch-specificity is desired. Here, the rationale behind the developmental process of an entirely new trap which uses a sound lure to capture male Ae. aegypti, the male Aedes sound trap (MAST), is presented as a target product profile with findings from developmental trials of key trap components and performance. Trial results suggest that the presence of a black base associated with the trap influenced male catches as did variations in size of this base, to a degree. Trap entrance shape didn't influence catch rates, but entrance size did. No significant differences in catch rates were found when sound lures were set to intermittent or continuous playbacks, at volumes between 63-74 dB or frequencies of 450 Hz compared to 500 Hz. Additionally, adult males aged 3 days post-eclosion, were less responsive to sound lures set to 500 Hz than those 4 or 6 days old. Lastly, almost no males were caught when the MAST directly faced continual winds of 1.5 ms-1, but males were captured at low rates during intermittent winds, or if the trap faced away from the wind. The developmental process to optimising this trap is applicable to the development of alternate mosquito traps beyond Aedes sound traps and provides useful information towards the improved surveillance of these disease vectors.
Collapse
|
9
|
Staunton KM, Leiva D, Cruz A, Goi J, Arisqueta C, Liu J, Desnoyer M, Howell P, Espinosa F, Mendoza AC, Karl S, Crawford JE, Xiang W, Manrique-Saide P, Achee NL, Grieco JP, Ritchie SA, Burkot TR, Snoad N. Outcomes from international field trials with Male Aedes Sound Traps: Frequency-dependent effectiveness in capturing target species in relation to bycatch abundance. PLoS Negl Trop Dis 2021; 15:e0009061. [PMID: 33630829 PMCID: PMC7906331 DOI: 10.1371/journal.pntd.0009061] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023] Open
Abstract
Aedes aegypti and Aedes albopictus vector dengue, chikungunya and Zika viruses. With both species expanding their global distributions at alarming rates, developing effective surveillance equipment is a continuing priority for public health researchers. Sound traps have been shown, in limited testing, to be highly species-specific when emitting a frequency corresponding to a female mosquito wingbeat. Determining male mosquito capture rates in sound traps based on lure frequencies in endemic settings is the next step for informed deployment of these surveillance tools. We field-evaluated Male Aedes Sound Traps (MASTs) set to either 450 Hz, 500 Hz, 550 Hz or 600 Hz for sampling Aedes aegypti and/or Aedes albopictus and compared catch rates to BG-Sentinel traps within Pacific (Madang, Papua New Guinea) and Latin American (Molas, Mexico and Orange Walk Town, Belize) locations. MASTs set to 450-550 Hz consistently caught male Ae. aegypti at rates comparable to BG-Sentinel traps in all locations. A peak in male Ae. albopictus captures in MASTs set at 550 Hz was observed, with the lowest mean abundance recorded in MASTs set to 450 Hz. While significantly higher abundances of male Culex were sampled in MASTs emitting lower relative frequencies in Molas, overall male Culex were captured in significantly lower abundances in the MASTs, relative to BG-Sentinel traps within all locations. Finally, significant differences in rates at which male Aedes and Culex were positively detected in trap-types per weekly collections were broadly consistent with trends in abundance data per trap-type. MASTs at 550 Hz effectively captured both male Ae. aegypti and Ae. albopictus while greatly reducing bycatch, especially male Culex, in locations where dengue transmission has occurred. This high species-specificity of the MAST not only reduces staff-time required to sort samples, but can also be exploited to develop an accurate smart-trap system-both outcomes potentially reducing public health program expenses.
Collapse
Affiliation(s)
- Kyran M. Staunton
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Smithfield, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, Australia
| | - Donovan Leiva
- Belize Vector and Ecology Center (BVEC), Orange Walk Town, Belize, Central America
| | - Alvaro Cruz
- Belize Vector and Ecology Center (BVEC), Orange Walk Town, Belize, Central America
| | - Joelyn Goi
- Vector-Borne Diseases Unit, PNG Institute of Medical Research, Madang, Papua New Guinea
| | - Carlos Arisqueta
- Collaborative Unit for Entomological Bioassays (UCBE) and the Laboratory of Biological Control for Ae. aegypti, Universidad Autónoma de Yucatán, Merida, México
| | - Jianyi Liu
- Verily Life Sciences, San Francisco, California, United States of America
| | - Mark Desnoyer
- Verily Life Sciences, San Francisco, California, United States of America
| | - Paul Howell
- Verily Life Sciences, San Francisco, California, United States of America
| | - Francia Espinosa
- Collaborative Unit for Entomological Bioassays (UCBE) and the Laboratory of Biological Control for Ae. aegypti, Universidad Autónoma de Yucatán, Merida, México
| | - Azael Che Mendoza
- Collaborative Unit for Entomological Bioassays (UCBE) and the Laboratory of Biological Control for Ae. aegypti, Universidad Autónoma de Yucatán, Merida, México
| | - Stephan Karl
- Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, Australia
- Vector-Borne Diseases Unit, PNG Institute of Medical Research, Madang, Papua New Guinea
| | - Jacob E. Crawford
- Verily Life Sciences, San Francisco, California, United States of America
| | - Wei Xiang
- School of Engineering and Mathematical Sciences, La Trobe University, Melbourne, Australia
| | - Pablo Manrique-Saide
- Collaborative Unit for Entomological Bioassays (UCBE) and the Laboratory of Biological Control for Ae. aegypti, Universidad Autónoma de Yucatán, Merida, México
| | - Nicole L. Achee
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - John P. Grieco
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Scott A. Ritchie
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Smithfield, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, Australia
| | - Thomas R. Burkot
- Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, Australia
| | - Nigel Snoad
- Verily Life Sciences, San Francisco, California, United States of America
| |
Collapse
|