1
|
Zhang R, Zhao T, Xing D, Zhou X, Yu H, Geng D, Fan Z, Wang K, Huang X, Li C. Development of Attractive Toxic Sugar Baits (ATSBs) System and Its Effectiveness in Mosquito Control. INSECTS 2025; 16:258. [PMID: 40266766 PMCID: PMC11942797 DOI: 10.3390/insects16030258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/19/2025] [Accepted: 02/28/2025] [Indexed: 04/25/2025]
Abstract
BACKGROUND Attractive Toxic Sugar Baits (ATSBs) are an innovative vector control strategy based on the "attract-and-kill" principle. The core of ATSBs lies in the preparation of attractive and toxic baits through the mixing and proportioning of luring and active ingredients. Although previous studies have investigated the effects of ATSBs on mosquitoes, significant challenges remain for broader field application. METHODS This study evaluated five fruit juices as ATSBs for mosquitoes, focusing on feeding preferences. Preservative concentrations were assessed by measuring antimicrobial activity over time. Two commercial traps were tested for mosquito entry rates. The optimal insecticide species and concentration were determined based on mortality rates. An optimized ATSBs system was developed and tested under a semi-field cage. Statistical analysis was performed using GraphPad Prism. RESULTS Within 24 h, apple juice-based ATSBs had the highest attractant index for Culex quinquefasciatus and Anopheles sinensis, while a pear juice-based ATSB was most effective for Aedes albopictus. A 0.1% preservative concentration best maintained juice stability. The LC50 values of dinotefuran-based ATSBs for Cx. quinquefasciatus, Ae. albopictus, and An. sinensis were 1.18 × 10-3, 4.06 × 10-4, and 5.20 × 10-5 g/L, respectively. The Spodoptera frugiperda trap outperformed the Drosophilidae trap. Simulated semi-field cage tests showed 48 h mortality rates of 86.00% for Cx. quinquefasciatus and 95.67% for Ae. albopictus. CONCLUSION This study optimized an ATSB system by screening various fruit juices, preservative concentrations, insecticides, and trap devices. The system's efficacy in mosquito control was evaluated under a semi-field cage. These findings provide a strong foundation for the future application and refinement of ATSB-based mosquito control strategies.
Collapse
Affiliation(s)
- Ruixiang Zhang
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, China
| | - Teng Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, China
| | - Dan Xing
- State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, China
| | - Xinyu Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, China
| | - Haotian Yu
- State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, China
| | - Dongfen Geng
- State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, China
| | - Zhihua Fan
- State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, China
| | - Kai Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, China
| | - Xinan Huang
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Chunxiao Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, China
| |
Collapse
|
2
|
Kumar S, Sharma A, Samal RR, Verma V, Sagar RK, Singh SP, Raghavendra K. Development of Deltamethrin-Laced Attractive Toxic Sugar Bait to Control Aedes aegypti (Linnaeus) Population. J Trop Med 2024; 2024:6966205. [PMID: 38223354 PMCID: PMC10787649 DOI: 10.1155/2024/6966205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/23/2023] [Accepted: 12/28/2023] [Indexed: 01/16/2024] Open
Abstract
Background The attractive toxic sugar bait (ATSB) is a promising strategy for controlling mosquitoes at the adult stage. The strategy is based on the use of a combination of fruit juice, sugar, and a toxin in order to attract and kill the adult mosquitoes. The selection of the components and optimization of their concentrations is significant for the formulation of an effective ATSB. Methods The present study formulated nine ATSBs and evaluated their efficacy against two laboratory strains (AND-Aedes aegypti and AND-Aedes aegypti-DL10) and two wildcaught colonized strains of Aedes aegypti (GVD-Delhi and SHD-Delhi). Initially, nine attractive sugar baits (ASBs) were prepared using a mixture of 100% fermented guava juice (attractant) with 10% sucrose solution (w/v) in 1 : 1 ratio. ATSBs were formulated by mixing each ASB with different concentrations of deltamethrin in the ratio of 9 : 1 to obtain final deltamethrin concentration of 0.003125-0.8 mg/10 mL ATSB. Cage bioassays were conducted with 50 mosquitoes for 24 h in order to evaluate the efficacy of each ATSB against the four strains of Ae. aegypti. The data were statistically analyzed using PASW software 19.0 program and 2-way ANOVA. Results The ATSB formulations registered 8.33-97.44% mortality against AND-Aedes aegypti and 5.15-96.91% mortality against AND-Aedes aegypti-DL10 strains of Ae. aegypti, while GVD-Delhi strain registered 2.04-95.83% mortality and SHD-Delhi strain showed 5.10-97.96% mortality. The administration of 0.8 mg of deltamethrin within 10 mL of attractive toxic sugar bait (ATSB) has led to the maximum mortality rate in adult mosquitoes. Conclusions The ATSBs formulated with guava juice-ASB and deltamethrin (9 : 1) showed toxin dose-dependent toxicity by all the four strains of Ae. aegypti. Most effective dosage was found as 0.8 mg deltamethrin/10 mL ATSB which imparted 96% to 98% mortality in adult mosquitoes. The investigations demonstrated the efficacy of deltamethrin-laced ATSB formulations against Ae. aegypti and highlighted the need for conduct of structured field trials and investigating the impact on disease vectors and nontarget organisms.
Collapse
Affiliation(s)
- Sarita Kumar
- Department of Zoology, Acharya Narendra Dev College, University of Delhi, Kalkaji, New Delhi 110 019, India
| | - Aarti Sharma
- Department of Zoology, Acharya Narendra Dev College, University of Delhi, Kalkaji, New Delhi 110 019, India
| | - Roopa Rani Samal
- Department of Zoology, Acharya Narendra Dev College, University of Delhi, Kalkaji, New Delhi 110 019, India
| | - Vaishali Verma
- ICMR-National Institute of Malaria Research, Sector 8, Dwarka, New Delhi 110 077, India
| | - Ravinder Kumar Sagar
- Department of Zoology, Acharya Narendra Dev College, University of Delhi, Kalkaji, New Delhi 110 019, India
| | - Shri Pati Singh
- ICMR-National Institute of Malaria Research, Sector 8, Dwarka, New Delhi 110 077, India
| | - Kamaraju Raghavendra
- ICMR-National Institute of Malaria Research, Sector 8, Dwarka, New Delhi 110 077, India
| |
Collapse
|
3
|
Upshur IF, Fehlman M, Parikh V, Vinauger C, Lahondère C. Sugar feeding by invasive mosquito species on ornamental and wild plants. Sci Rep 2023; 13:22121. [PMID: 38092771 PMCID: PMC10719288 DOI: 10.1038/s41598-023-48089-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/22/2023] [Indexed: 12/17/2023] Open
Abstract
Feeding on plant-derived sugars is an essential component of mosquito biology, affecting key aspects of their lives such as survival, metabolism, and reproduction. Among mosquitoes, Aedes aegypti and Aedes albopictus are two invasive mosquito species in the US, and are vectors of diseases such as dengue fever, chikungunya, and Zika. These species live in heavily populated, urban areas, where they have high accessibility to human hosts as well as to plants in backyards and public landscapes. However, the range of plants that are suitable sugar hosts for these species remains to be described, despite the importance of understanding what plants may attract or repel mosquitoes to inform citizens and municipal authorities accordingly. Here, we tested whether Ae. aegypti and Ae. albopictus would sugar-feed on eleven commonly planted ornamental plant species. We confirmed feeding activity using the anthrone method and identified the volatile composition of plant headspace using gas-chromatography mass-spectroscopy. These chemical analyses revealed that a broad range of olfactory cues are associated with plants that mosquitoes feed on. This prompted us to use plant DNA barcoding to identify plants that field-caught mosquitoes feed on. Altogether, results show that native and invasive mosquito species can exploit a broader range of plants than originally suspected, including wild and ornamental plants from different phyla throughout the Spring, Summer and Fall seasons.
Collapse
Affiliation(s)
- Irving Forde Upshur
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
- The Global Change Center, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Mikhyle Fehlman
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Vansh Parikh
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Clément Vinauger
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
- The Fralin Life Science Institute Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
- Center of Emerging, Zoonotic and Arthropod-Borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Chloé Lahondère
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA.
- The Global Change Center, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA.
- The Fralin Life Science Institute Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA.
- Center of Emerging, Zoonotic and Arthropod-Borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA.
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA.
| |
Collapse
|
4
|
Pullmann-Lindsley H, Bartlett-Miller A, Pitts RJ. Diols and sugar substitutes in attractive toxic sugar baits targeting Aedes aegypti and Aedes albopictus (Diptera: Culicidae) mosquitoes. JOURNAL OF MEDICAL ENTOMOLOGY 2023; 60:1022-1029. [PMID: 37348932 DOI: 10.1093/jme/tjad072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/27/2023] [Accepted: 06/08/2023] [Indexed: 06/24/2023]
Abstract
Around the world, mosquitoes continue to transmit disease-causing pathogens and develop resistance to insecticides. We previously discovered that a generally regarded as safe (GRAS) compound, 1,2-propanediol, reduces adult mosquito survivorship when ingested. In this study, we assess and compare 5 more chemically related compounds for mosquito lethality and 8 GRAS sugar substitutes to determine toxicity. We conducted a series of feeding assays to determine if ingesting the compounds influenced mosquito mean survivorship in locally collected lab-reared populations of Aedes aegypti (Diptera, Culicidae, Linnaeus, 1762) and Aedes albopictus (Diptera, Culicidae, Skuse, 1894) mosquitoes. Our results indicate that 1,2-propanediol, 1,3-propanediol, 1,5-pentanediol, 1,6-hexanediol, 2-methyl-1,3-propanediol, DL-dithiothreitol, acesulfame potassium, allulose, erythritol, sodium saccharin, stevia, and sucralose significantly reduced the mean survivorship of one or both species. Short-term trials with the most toxic compounds revealed that they could substantially affect survivorship after 24 h. We also found that there were different responses in the 2 species and that in several experimental conditions, male mosquitoes expired to a greater extent than female mosquitoes. These findings indicate that several of the compounds are toxic to mosquitoes. Further study is required to determine their effectiveness in attractive toxic sugar baits (ATSBs) as a potential component of population control strategies.
Collapse
Affiliation(s)
| | - Ava Bartlett-Miller
- Department of Biology, Baylor University, 101 Bagby Avenue, Waco, TX 76706, USA
| | - Ronald Jason Pitts
- Department of Biology, Baylor University, 101 Bagby Avenue, Waco, TX 76706, USA
| |
Collapse
|
5
|
Abernathy HA, Boyce RM, Reiskind MH. Exploring the effects of caffeine on Aedes albopictus (Diptera: Culicidae) survival and fecundity. JOURNAL OF MEDICAL ENTOMOLOGY 2023:7135995. [PMID: 37085153 DOI: 10.1093/jme/tjad047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/20/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023]
Abstract
Investigating new avenues of mosquito control is an important area of entomological research. Examining the effects of various compounds on mosquito biology contributes to the foundation of knowledge from which novel control methods can be built. Caffeine, in particular, is a commonly consumed compound that has not been thoroughly studied for its potential in disrupting the natural life cycle of mosquitoes. In this exploratory study, we analyzed caffeine's effect on the blood-feeding behavior, survival, and fecundity of Aedes albopictus Skuse (Diptera: Culicidae) mosquitoes. Two outcomes, blood-feeding behavior and fecundity, were analyzed in the first experiment in which mosquitoes were exposed to caffeine doses ranging from 0.2 to 2.4 mg/ml. We found a negative linear relationship between dose and fecundity, but no significant impact on blood-feeding behavior. Adjustments were made to the experimental design in which mosquitoes were exposed to doses ranging from 2.5 to 20 mg/ml. From this experiment, we found that caffeine negatively affected blood-feeding behavior, survival, and fecundity especially at higher concentrations. These results suggest that caffeine could be a potential target for future mosquito control research.
Collapse
Affiliation(s)
- Haley A Abernathy
- Institute for Global Health and Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ross M Boyce
- Institute for Global Health and Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Michael H Reiskind
- Department of Entomology and Plant Pathology, North Carolina State University, Box 7613, Raleigh, NC 27695, USA
| |
Collapse
|
6
|
Survivorship-Reducing Effect of Propylene Glycol on Vector Mosquito Populations and Its Potential Use in Attractive Toxic Sugar Baits. INSECTS 2022; 13:insects13070595. [PMID: 35886771 PMCID: PMC9324135 DOI: 10.3390/insects13070595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/24/2022] [Accepted: 06/26/2022] [Indexed: 02/05/2023]
Abstract
Simple Summary Mosquitoes (Diptera: Culicidae) spread disease and pose a significant risk to public health around the world. While there are currently many control measures available, many are typically unsafe for humans and other animals, and they are becoming less effective against mosquitoes. We tested a compound called propylene glycol (1,2 propanediol) for its toxicity to three species of mosquitoes that serve as vectors of human pathogens. Propylene glycol is a compound that the FDA has designated as generally regarded as safe (GRAS) for human consumption, meaning it is approved for use in everyday household products. Through a series of assays in which we fed mosquitoes propylene glycol, we found that this compound is highly toxic to all three mosquito species examined and can drastically reduce the survivorship of laboratory populations. Our results suggest that propylene glycol could be a safe and effective substance to be used in the context of attractive toxic sugar baits (ATSBs) as a means of controlling mosquitoes near human habitations. Abstract Arthropod control mechanisms are a vital part of public health measures around the world as many insect species serve as vectors for devastating human diseases. Aedes aegypti (Linnaeus, 1762) is a widely distributed, medically important mosquito species that transmits viruses such as yellow fever, Dengue, and Zika. Many traditional control mechanisms have become less effective due to insecticide resistance or exhibit unwanted off-target effects, and, consequently, there is a need for novel solutions. The use of attractive toxic sugar baits (ATSBs) has increased in recent years, though the toxic elements are often harmful to humans and other vertebrates. Therefore, we are investigating propylene glycol, a substance that is generally regarded as safe (GRAS) for human consumption. Using a series of feeding assays, we found that propylene glycol is highly toxic to Ae. aegypti adults and a single day of exposure significantly reduces the survivorship of test populations compared with controls. The effects are more pronounced in males, drastically reducing their survivorship after one day of consumption. Additionally, the consumption of propylene glycol reduced the survivorship of two prominent disease vectors: Aedes albopictus (Skuse, 1894) and Culex pipiens (Linnaeus, 1758). These findings indicate that propylene glycol could be used as a safe and effective alternative to pesticides in an ATSB system.
Collapse
|