1
|
Rismani E, Mafakher L, Asgari M, Raz A. Leech, potato, and tomato carboxypeptidase inhibitors against Anopheles stephensi carboxypeptidase B1 and B2. Arch Biochem Biophys 2024; 759:110086. [PMID: 38972626 DOI: 10.1016/j.abb.2024.110086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/16/2024] [Accepted: 07/05/2024] [Indexed: 07/09/2024]
Abstract
Carboxypeptidase B (CPB) in Anopheles spp. breaks down blood and releases free amino acids, which promote Plasmodium sexual development in the mosquito midgut. Our goal was to computationally assess the inhibitory effectiveness of carboxypeptidase inhibitors obtained from tomato, potato (CPiSt), and leech against the Anopheles stephensi CPBAs1 and CPBAs2 enzymes. The tertiary structures of CPB inhibitors were predicted and their interaction mode with CPBAs1 and CPBAs2 were examined using molecular docking. Next, this data was compared with four licensed medications that are known to reduce the Anopheles' CPB activity. Molecular dynamics simulations were used to evaluate the stability of complexes containing CPiSt and its mutant form. Both CPiSt and its mutant form showed promise as possible candidates for further evaluations in the paratransgenesis technique for malaria control, based on the similar bindings of CPiSt and CPiSt-Mut to the active sites of CPBAs1 and CPBAs2, as well as their binding affinity in comparison to the drugs.
Collapse
Affiliation(s)
- Elham Rismani
- Molecular Medicine Department, Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Ladan Mafakher
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Majid Asgari
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Abbasali Raz
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
2
|
Hu P, Peng H, Man X, Xing Z, Wang C, Yu C, Xing J, Yan X, Zhang H, Zeng M, Bao L, Zou J, Zhu P, Xu Y. Transcriptomic analysis and oxidative stress induced by sodium dichloroisocyanurate in the intestine of Phascolosoma esculenta. Comp Biochem Physiol C Toxicol Pharmacol 2024; 278:109857. [PMID: 38354993 DOI: 10.1016/j.cbpc.2024.109857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/20/2024] [Accepted: 02/09/2024] [Indexed: 02/16/2024]
Abstract
Sodium dichloroisocyanurate (NaDCC, C3Cl2N3NaO3) is a solid chlorine-containing product that is widely used as a disinfectant in living environments, which has potential toxic effects on human and rats. Phascolosoma esculenta is a species native to the southeast coast of China and can be used as an indicator organism. In the present study, 150 P. esculenta were used to determine the LC50 of NaDCC for P. esculenta, then 100 P. esculenta were used to analysis the change of histopathology, oxidative stress and transcriptome after NaDCC exposure. The results showed that the LC50 of NaDCC for 48 h was 50 mg/L. NaDCC stress induced pathological events in P. esculenta, including blisters, intestinal structural damage and epithelial cell ruptured or even loss. The highest and lowest intestinal activity of superoxide dismutase in individual survivors was detected at 12 h and 72 h, respectively. Malondialdehyde levels in the intestine declined gradually from 3 h and increased at 9 h, and peaked at 12 h. Total antioxidant capacity declined at 3 h and dropped below the levels of control group after 9 h. Transcriptome sequencing analysis yielded a total of 48.65 Gb of clean data. A total of 34,759 new genes were found including 957 differentially expressed genes (DEGs). The DEGs were significantly enriched in ferroptosis, response to chemicals, response to stress, immune system, ion transport, cell death, oxidation-reduction, cellular homeostasis, protein ubiquitination, and protein neddylation. Additionally, the levels of detoxification enzymes, such as glutathione-S-transferase, cytochrome P450, ABC, UDP-glycosyltransferase and SLC transporters of endogenous and exogenous solutes were significantly changed. Overall, the results provide reference for reasonable use of disinfectants during farming, and also provide insight into the mechanisms related to NaDCC toxicity in P. esculenta.
Collapse
Affiliation(s)
- Peifen Hu
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Qinzhou, Guangxi 535011, China
| | - Huijing Peng
- Guangxi institute of oceanology Co., Ltd., Guangxi Academy of Sciences, Nanning, Guangxi 530007, China
| | - Xiao Man
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Qinzhou, Guangxi 535011, China
| | - Zenghou Xing
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Qinzhou, Guangxi 535011, China
| | - Chongyang Wang
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Qinzhou, Guangxi 535011, China
| | - Congyan Yu
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Qinzhou, Guangxi 535011, China
| | - Jiamin Xing
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Qinzhou, Guangxi 535011, China
| | - Xueyu Yan
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Qinzhou, Guangxi 535011, China
| | - Hong Zhang
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Qinzhou, Guangxi 535011, China
| | - Mengqing Zeng
- Guangxi institute of oceanology Co., Ltd., Guangxi Academy of Sciences, Nanning, Guangxi 530007, China
| | - Lei Bao
- Guangxi institute of oceanology Co., Ltd., Guangxi Academy of Sciences, Nanning, Guangxi 530007, China
| | - Jie Zou
- Guangxi institute of oceanology Co., Ltd., Guangxi Academy of Sciences, Nanning, Guangxi 530007, China
| | - Peng Zhu
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Qinzhou, Guangxi 535011, China.
| | - Youhou Xu
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Qinzhou, Guangxi 535011, China.
| |
Collapse
|
3
|
Kubera A, Putanyawiwat P, Bantuchai S, Kumpitak C, Duangmanee A, Sattabongkot J. Knockdown of Anopheles dirus far upstream element-binding protein gene lower oocyst numbers of Plasmodium vivax. MEDICAL AND VETERINARY ENTOMOLOGY 2023; 37:647-655. [PMID: 37102339 DOI: 10.1111/mve.12662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 04/13/2023] [Indexed: 06/19/2023]
Abstract
The modulation of gene expression levels of Anopheles dirus on Plasmodium vivax infection at the ookinete and oocyst stages was previously reported. In the present study, several upregulated An. dirus genes were selected based on their high expression levels and subcellular locations to examine their roles in P. vivax infection. Five An. dirus genes-carboxylesterase, cuticular protein RR-2 family, far upstream element-binding protein, kraken, and peptidase212-were knocked down by dsRNA feeding using dsRNA-lacZ as a control. The dsRNA-fed mosquitoes were later challenged by P. vivax-infected blood, and the oocyst numbers were determined. The expression of these five genes was examined in many organs of both male and female mosquitoes. The results showed that the decreased expression level of the far upstream element-binding protein gene could lower the oocyst numbers, whereas the others showed no effect on P. vivax infection. The expression levels of these genes in ovaries were found, and in many organs, they were similar between male and female mosquitoes. The reduction of these five gene expressions did not affect the lifespan of the mosquitoes. In addition, the malaria box compound, MMV000634, demonstrated the lowest binding energy to the far upstream element-binding protein using virtual screening. This protein might be a target to block malaria transmission.
Collapse
Affiliation(s)
- Anchanee Kubera
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Piriya Putanyawiwat
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Sirasate Bantuchai
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Chalermpon Kumpitak
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Apisak Duangmanee
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|