1
|
Dusadeepong R, Maquart PO, Hide M, Boyer S. Phylogeny and spatial distribution of Japanese encephalitis virus vector species in Cambodia. MEDICAL AND VETERINARY ENTOMOLOGY 2023; 37:737-744. [PMID: 37404158 DOI: 10.1111/mve.12678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 06/08/2023] [Indexed: 07/06/2023]
Abstract
In Southeast Asia, despite the use of Japanese encephalitis vaccines and vaccination coverage, Japanese encephalitis (JE) transmission is still a major public health issue. The main vectors of this virus are mosquitoes from the genus Culex, which diversity and density are important in Southeast Asia. The main vector species of Japanese encephalitis virus (JEV) in Cambodia belong to the Vishnui subgroup. However, their morphological identification solely based on the adult stage remains challenging, making their segregation and detection difficult. In order to identify and describe the distribution of the three main JEV vector species in Cambodia, namely Culex vishnui, Cx. pseudovishnui and Cx. tritaeniorhynchus, mosquito samplings were carried out throughout the country in different environments. Phylogenetic analysis of the cytochrome c oxidase subunit I (coI) gene using maximum-likelihood tree with ultrafast bootstrap and phylogeographic analysis were performed. The three main Culex species are phylogenetically separated, and represent two distinct clades, one with Cx. tritaeniorhynchus and the second with Cx. vishnui and Cx. pseudovishnui, the latter appearing as a subgroup of Cx. vishnui. The phylogeographic analysis shows a distribution of the Vishnui subgroup on the entire Cambodian territory with an overlapped distribution areas leading to a sympatric distribution of these species. The three JEV vector species are geographically well-defined with a strong presence of Cx. pseudovishnui in the forest. Combined with the presence of Cx. tritaeniorhynchus and Cx. vishnui in rural, peri-urban, and urban areas, the presence of JEV-competent vectors is widespread in Cambodia.
Collapse
Affiliation(s)
- Rutaiwan Dusadeepong
- Medical and Veterinary Entomology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Pierre-Olivier Maquart
- Medical and Veterinary Entomology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Mallorie Hide
- Medical Laboratory, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
- MIVEGEC, Université de Montpellier, IRD (Institut de Recherche pour le Développement), CNRS, Montpellier, France
- LMI Drug Resistance in South East Asia, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Sebastien Boyer
- Medical and Veterinary Entomology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
- Ecology and Emergence of Arthropod-borne diseases, Institut Pasteur, Paris, France
| |
Collapse
|
2
|
Pora W, Kasamsumran N, Tharawatcharasart K, Ampol R, Siriyasatien P, Jariyapan N. Enhancement of VGG16 model with multi-view and spatial dropout for classification of mosquito vectors. PLoS One 2023; 18:e0284330. [PMID: 37486913 PMCID: PMC10365266 DOI: 10.1371/journal.pone.0284330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/28/2023] [Indexed: 07/26/2023] Open
Abstract
Mosquitoes transmit pathogens that can cause numerous significant infectious diseases in humans and animals such as malaria, dengue fever, chikungunya fever, and encephalitis. Although the VGG16 model is not one of the most advanced CNN networks, it is reported that a fine-tuned VGG16 model achieves accuracy over 90% when applied to the classification of mosquitoes. The present study sets out to improve the accuracy and robustness of the VGG16 network by incorporating spatial dropout layers to regularize the network and by modifying its structure to incorporate multi-view inputs. Herein, four models are implemented: (A) early-combined, (B) middle-combined, (C) late-combined, and (D) ensemble model. Moreover, a structure for combining Models (A), (B), (C), and (D), known as the classifier, is developed. Two image datasets, including a reference dataset of mosquitoes in South Korea and a newly generated dataset of mosquitoes in Thailand, are used to evaluate our models. Regards the reference dataset, the average accuracy of ten runs improved from 83.26% to 99.77%, while the standard deviation decreased from 2.60% to 0.12%. When tested on the new dataset, the classifier's accuracy was also over 99% with a standard deviation of less than 2%. This indicates that the algorithm achieves high accuracy with low variation and is independent of a particular dataset. To evaluate the robustness of the classifier, it was applied to a small dataset consisting of mosquito images captured under various conditions. Its accuracy dropped to 86.14%, but after retraining with the small dataset, it regained its previous level of precision. This demonstrates that the classifier is resilient to variation in the dataset and can be retrained to adapt to the variation. The classifier and the new mosquito dataset could be utilized to develop an application for efficient and rapid entomological surveillance for the prevention and control of mosquito-borne diseases.
Collapse
Affiliation(s)
- Wanchalerm Pora
- Department of Electrical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Natthakorn Kasamsumran
- Department of Electrical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Katanyu Tharawatcharasart
- Department of Electrical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Rinnara Ampol
- Department of Parasitology, Center of Excellence in Vector Biology and Vector-Borne Disease, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Padet Siriyasatien
- Department of Parasitology, Center of Excellence in Vector Biology and Vector-Borne Disease, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Narissara Jariyapan
- Department of Parasitology, Center of Excellence in Vector Biology and Vector-Borne Disease, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
3
|
Hamel R, Vargas REM, Rajonhson DM, Yamanaka A, Jaroenpool J, Wichit S, Missé D, Kritiyakan A, Chaisiri K, Morand S, Pompon J. Identification of the Tembusu Virus in Mosquitoes in Northern Thailand. Viruses 2023; 15:1447. [PMID: 37515135 PMCID: PMC10385312 DOI: 10.3390/v15071447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
Among emerging zoonotic pathogens, mosquito-borne viruses (MBVs) circulate between vertebrate animals and mosquitoes and represent a serious threat to humans via spillover from enzootic cycles to the human community. Active surveillance of MBVs in their vectors is therefore essential to better understand and prevent spillover and emergence, especially at the human-animal interface. In this study, we assessed the presence of MBVs using molecular and phylogenetic methods in mosquitoes collected along an ecological gradient ranging from rural urbanized areas to highland forest areas in northern Thailand. We have detected the presence of insect specific flaviviruses in our samples, and the presence of the emerging zoonotic Tembusu virus (TMUV). Reported for the first time in 1955 in Malaysia, TMUV remained for a long time in the shadow of other flaviviruses such as dengue virus or the Japanese encephalitis virus. In this study, we identified two new TMUV strains belonging to cluster 3, which seems to be endemic in rural areas of Thailand and highlighted the genetic specificities of this Thai cluster. Our results show the active circulation of this emerging flavivirus in Thailand and the need for continuous investigation on this poorly known but threatening virus in Asia.
Collapse
Affiliation(s)
- Rodolphe Hamel
- MIVEGEC, Université de Montpellier, IRD, CNRS, 34394 Montpellier, France
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Nakhon Pathom 73170, Thailand
- Viral Vector Joint Unit, Join Laboratory, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Ronald Enrique Morales Vargas
- Department of Medical Entomology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Dora Murielle Rajonhson
- Department of Medical Entomology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Atsushi Yamanaka
- Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Jiraporn Jaroenpool
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand
- Excellent Center for Dengue and Community Public Health, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Sineewanlaya Wichit
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Nakhon Pathom 73170, Thailand
- Viral Vector Joint Unit, Join Laboratory, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Dorothée Missé
- MIVEGEC, Université de Montpellier, IRD, CNRS, 34394 Montpellier, France
| | - Anamika Kritiyakan
- Faculty of Veterinary Technology, Kasetsart University, Bangkok 10900, Thailand
| | - Kittipong Chaisiri
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10900, Thailand
| | - Serge Morand
- MIVEGEC, Université de Montpellier, IRD, CNRS, 34394 Montpellier, France
- Faculty of Veterinary Technology, Kasetsart University, Bangkok 10900, Thailand
| | - Julien Pompon
- MIVEGEC, Université de Montpellier, IRD, CNRS, 34394 Montpellier, France
| |
Collapse
|
4
|
Li LY, Deng YP, Zhang Y, Wu Y, Fu YT, Liu GH, Liu JH. Characterization of the complete mitochondrial genome of Culex vishnui (Diptera: Culicidae), one of the major vectors of Japanese encephalitis virus. Parasitol Res 2023; 122:1403-1414. [PMID: 37072585 DOI: 10.1007/s00436-023-07840-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 04/05/2023] [Indexed: 04/20/2023]
Abstract
Culex mosquitoes (Diptera: Culicidae) can transmit a variety of arthropod-borne viruses (arboviruses), causing human and animal diseases. Cx. vishnui, Cx. pseudovishnui, and Cx. tritaeniorhynchus are three representative species in Culex vishnui subgroup, which are widely distributed in southeast Asia, and they have been proved as the main vectors transmitting Japanese encephalitis virus (JEV) that could cause human infectious mosquito-borne disease across Asia. However, the epidemiology, biology, and even molecular information of those mosquitos remain poorly understood, and only the mitochondrial genome (mitogenome) of Cx. tritaeniorhynchus has been reported in these species. In the present study, we sequenced and annotated the complete mitogenome sequence of Cx. vishnui which was 15,587 bp in length, comprising 37 genes. Comparisons of nucleotide and amino acid sequences between Cx. vishnui and Cx. tritaeniorhynchus revealed that most genes within Culex vishnui subgroup were conserved, except atp8, nad1, atp6, and nad6, with differences of 0.4 (rrnS) - 15.1% (tRNAs) and 0 (nad4L) - 9.4% (atp8), respectively, interestingly suggesting the genes nad4L and rrnS were the most conserved but atp8 gene was the least. The results based on nucleotide diversity also supported a relatively uniform distribution of the intraspecific differences in Cx. vishnui and Cx. tritaeniorhynchus with only one highly pronounced peak of divergence centered at the control region. Phylogenetic analyses using concatenated amino acid sequences of 13 protein-coding genes supported the previous taxonomic classification of the family Culicidae and the monophyly of tribes Aedini, Culicini, Mansoniini, and Sabethini. The present study revealed detailed information on the subgroup Culex vishnui, reanalyzed the relationships within the family Culicidae, provided better markers to identify and distinguish Culex species, and offered more markers for studying the molecular epidemiology, population genetics, and molecular phylogenetics of Cx. vishnui.
Collapse
Affiliation(s)
- Le-Yan Li
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan Province, China
| | - Yuan-Ping Deng
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan Province, China
| | - Yu Zhang
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan Province, China
| | - You Wu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Hunan Agricultural University, Hunan Province, Changsha, 410128, China
| | - Yi-Tian Fu
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan Province, China
| | - Guo-Hua Liu
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan Province, China
| | - Jin-Hui Liu
- Hunan Co-Innovation Center of Animal Production Safety, Hunan Agricultural University, Changsha, 410128, Hunan Province, China.
| |
Collapse
|