1
|
Moretti R, Lim JT, Ferreira AGA, Ponti L, Giovanetti M, Yi CJ, Tewari P, Cholvi M, Crawford J, Gutierrez AP, Dobson SL, Ross PA. Exploiting Wolbachia as a Tool for Mosquito-Borne Disease Control: Pursuing Efficacy, Safety, and Sustainability. Pathogens 2025; 14:285. [PMID: 40137770 PMCID: PMC11944716 DOI: 10.3390/pathogens14030285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 02/28/2025] [Accepted: 03/07/2025] [Indexed: 03/29/2025] Open
Abstract
Despite the application of control measures, mosquito-borne diseases continue to pose a serious threat to human health. In this context, exploiting Wolbachia, a common symbiotic bacterium in insects, may offer effective solutions to suppress vectors or reduce their competence in transmitting several arboviruses. Many Wolbachia strains can induce conditional egg sterility, known as cytoplasmic incompatibility (CI), when infected males mate with females that do not harbor the same Wolbachia infection. Infected males can be mass-reared and then released to compete with wild males, reducing the likelihood of wild females encountering a fertile mate. Furthermore, certain Wolbachia strains can reduce the competence of mosquitoes to transmit several RNA viruses. Through CI, Wolbachia-infected individuals can spread within the population, leading to an increased frequency of mosquitoes with a reduced ability to transmit pathogens. Using artificial methods, Wolbachia can be horizontally transferred between species, allowing the establishment of various laboratory lines of mosquito vector species that, without any additional treatment, can produce sterilizing males or females with reduced vector competence, which can be used subsequently to replace wild populations. This manuscript reviews the current knowledge in this field, describing the different approaches and evaluating their efficacy, safety, and sustainability. Successes, challenges, and future perspectives are discussed in the context of the current spread of several arboviral diseases, the rise of insecticide resistance in mosquito populations, and the impact of climate change. In this context, we explore the necessity of coordinating efforts among all stakeholders to maximize disease control. We discuss how the involvement of diverse expertise-ranging from new biotechnologies to mechanistic modeling of eco-epidemiological interactions between hosts, vectors, Wolbachia, and pathogens-becomes increasingly crucial. This coordination is especially important in light of the added complexity introduced by Wolbachia and the ongoing challenges posed by global change.
Collapse
Affiliation(s)
- Riccardo Moretti
- Casaccia Research Center, Department for Sustainability, Italian National Agency for New Technologies, Energy, and Sustainable Economic Development (ENEA), 00123 Rome, Italy; (R.M.); (L.P.)
| | - Jue Tao Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (J.T.L.); (C.J.Y.); (P.T.)
| | | | - Luigi Ponti
- Casaccia Research Center, Department for Sustainability, Italian National Agency for New Technologies, Energy, and Sustainable Economic Development (ENEA), 00123 Rome, Italy; (R.M.); (L.P.)
- Center for the Analysis of Sustainable Agricultural Systems, Kensington, CA 94707, USA or (A.P.G.)
| | - Marta Giovanetti
- René Rachou Institute, Oswaldo Cruz Foundation, Belo Horizonte 30190-002, Brazil; (A.G.A.F.); (M.G.)
- Department of Sciences and Technologies for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, 00128 Roma, Italy
| | - Chow Jo Yi
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (J.T.L.); (C.J.Y.); (P.T.)
| | - Pranav Tewari
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (J.T.L.); (C.J.Y.); (P.T.)
| | - Maria Cholvi
- Area of Parasitology, Department of Pharmacy and Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, Universitat de València, 46100 Valencia, Spain; (M.C.)
| | - Jacob Crawford
- Verily Life Sciences, South San Francisco, CA 94080, USA; (J.C.)
| | - Andrew Paul Gutierrez
- Center for the Analysis of Sustainable Agricultural Systems, Kensington, CA 94707, USA or (A.P.G.)
- Division of Ecosystem Science, College of Natural Resources, University of California, Berkeley, CA 94720, USA
| | - Stephen L. Dobson
- Department of Entomology, University of Kentucky, Lexington, KY 40546, USA or (S.L.D.)
- MosquitoMate, Inc., Lexington, KY 40502, USA
| | - Perran A. Ross
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 2052, Australia; (P.A.R.)
| |
Collapse
|
2
|
Wang H, Liu H, Peng H, Wang Y, Zhang C, Guo X, Wang H, Liu L, Lv W, Cheng P, Gong M. A symbiotic gut bacterium enhances Aedes albopictus resistance to insecticide. PLoS Negl Trop Dis 2022; 16:e0010208. [PMID: 35245311 PMCID: PMC8896681 DOI: 10.1371/journal.pntd.0010208] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/27/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The increasing insecticide resistance of Aedes albopictus puts many countries in Asia and Africa, including China, at great risk of a mosquito-borne virus epidemic. To date, a growing number of researches have focused on the relationship between intestinal symbiotic bacteria and their hosts' resistance to insecticides. This provides a novel aspect to the study of resistant mechanisms. METHODS/FINDINGS This study reveals significant composition and dynamic changes in the intestinal symbiotic bacteria of Ae. albopictus between the resistant and susceptible strains based on full-length sequencing technology. The relative abundance of Serratia oryzae was significantly higher in the resistance strain than in the susceptible strains; also, the relative abundance of S. oryzae was significantly higher in deltamethrin-induced Ae. albopictus than in their counterpart. These suggested that S. oryzae may be involved in the development of insecticide resistance in Ae. albopictus. To explore the insecticide resistance mechanism, adult mosquitoes were fed with GFP-tagged S. oryzae, which resulted in stable bacterial enrichment in the mosquito gut without affecting the normal physiology, longevity, oviposition, and hatching rates of the host. The resistance measurements were made based on bioassays as per the WHO guidelines. The results showed that the survival rate of S. oryzae-enriched Ae. albopictus was significantly higher than the untreated mosquitoes, indicating the enhanced resistance of S. oryzae-enriched Ae. albopictus. Also, the activities of three metabolic detoxification enzymes in S. oryzae-enriched mosquitoes were increased to varying degrees. Meanwhile, the activity of extracellular enzymes released by S. oryzae was measured, but only carboxylesterase activity was detected. HPLC and UHPLC were respectively used to measure deltamethrin residue concentration and metabolite qualitative analysis, showing that the deltamethrin degradation efficiency of S. oryzae was positively correlated with time and bacterial amount. Deltamethrin was broken down into 1-Oleoyl-2-hydroxy-sn-glycero-3-PE and 2',2'-Dibromo-2'-deoxyguanosine. Transcriptome analysis revealed that 9 cytochrome P450s, 8 GSTs and 7 CarEs genes were significantly upregulated. CONCLUSIONS S. oryzae can be accumulated into adult Ae. albopictus by artificial feeding, which enhances deltamethrin resistance by inducing the metabolic detoxification genes and autocrine metabolic enzymes. S. oryzae is vertically transmitted in Ae. albopictus population. Importantly, S. oryzae can degrade deltamethrin in vitro, and use deltamethrin as the sole carbon source for their growths. Therefore, in the future, S. oryzae may also be commercially used to break down the residual insecticides in the farmland and lakes to protect the environment.
Collapse
Affiliation(s)
- Haiyang Wang
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, China
| | - Hongmei Liu
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, China
| | - Hui Peng
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, China
| | - Yang Wang
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, China
| | - Chongxing Zhang
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, China
| | - Xiuxia Guo
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, China
| | - Haifang Wang
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, China
| | - Lijuan Liu
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, China
| | - Wenxiang Lv
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, China
| | - Peng Cheng
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, China
- * E-mail: (PC); (MG)
| | - Maoqing Gong
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, China
- * E-mail: (PC); (MG)
| |
Collapse
|
3
|
Liang X, Liu J, Bian G, Xi Z. Wolbachia Inter-Strain Competition and Inhibition of Expression of Cytoplasmic Incompatibility in Mosquito. Front Microbiol 2020; 11:1638. [PMID: 32765466 PMCID: PMC7381284 DOI: 10.3389/fmicb.2020.01638] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/23/2020] [Indexed: 11/13/2022] Open
Abstract
Successful field trials have been reported as part of the effort to develop the maternally transmitted endosymbiontic bacteria Wolbachia as an intervention agent for controlling mosquito vectors and their transmitted diseases. In order to further improve this novel intervention, artificially transinfected mosquitoes must be optimized to display maximum pathogen blocking, the desired cytoplasmic incompatibility (CI) pattern, and the lowest possible fitness cost. Achieving such optimization, however, requires a better understanding of the interactions between the host and various Wolbabachia strains and their combinations. Here, we transferred the Wolbachia wMel strain by embryonic microinjection into Aedes albopictus, resulting in the successful establishment of a transinfected line, HM (wAlbAwAlbBwMel), with a triple-strain infection comprising wMel, wAlbA, and wAlbB. Surprisingly, no CI was induced when the triply infected males were crossed with the wild-type GUA females or with another triply infected HC females carrying wPip, wAlbA, and wAlbB, but specific removal of wAlbA from the HM (wAlbAwAlbBwMel) line resulted in the expression of CI after crosses with lines infected by either one, two, or three strains of Wolbachia. The transinfected line showed perfect maternal transmission of the triple infection, with fluctuating egg hatch rates that improved to normal levels after repeated outcrosses with GUA line. Strain-specific qPCR assays showed that wMel and wAlbB were present at the highest densities in the ovaries and midguts, respectively, of the HM (wAlbAwAlbBwMel) mosquitoes. These finding suggest that introducing a novel strain of Wolbachia into a Wolbachia-infected host may result in complicated interactions between Wolbachia and the host and between the various Wolbachia strains, with competition likely to occur between strains in the same supergroup.
Collapse
Affiliation(s)
- Xiao Liang
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | - Julian Liu
- Guangzhou Wolbaki Biotech Co., Ltd., Guangzhou, China
| | - Guowu Bian
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | - Zhiyong Xi
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States.,Guangzhou Wolbaki Biotech Co., Ltd., Guangzhou, China
| |
Collapse
|
4
|
Mancini MV, Herd CS, Ant TH, Murdochy SM, Sinkins SP. Wolbachia strain wAu efficiently blocks arbovirus transmission in Aedes albopictus. PLoS Negl Trop Dis 2020; 14:e0007926. [PMID: 32155143 PMCID: PMC7083328 DOI: 10.1371/journal.pntd.0007926] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/20/2020] [Accepted: 01/17/2020] [Indexed: 12/22/2022] Open
Abstract
The global incidence of arboviral diseases transmitted by Aedes mosquitoes, including dengue, chikungunya, yellow fever, and Zika, has increased dramatically in recent decades. The release of Aedes aegypti carrying the maternally inherited symbiont Wolbachia as an intervention to control arboviruses is being trialled in several countries. However, these efforts are compromised in many endemic regions due to the co-localization of the secondary vector Aedes albopictus, the Asian tiger mosquito. Ae. albopictus has an expanding global distribution following incursions into a number of new territories. To date, only the wMel and wPip strains of Wolbachia have been reported to be transferred into and characterized in this vector. A Wolbachia strain naturally infecting Drosophila simulans, wAu, was selected for transfer into a Malaysian Ae. albopictus line to create a novel triple-strain infection. The newly generated line showed self-compatibility, moderate fitness cost and complete resistance to Zika and dengue infections.
Collapse
Affiliation(s)
| | - Christie S. Herd
- MRC- University of Glasgow- Centre for Virus Research, Glasgow, United Kingdom
| | - Thomas H. Ant
- MRC- University of Glasgow- Centre for Virus Research, Glasgow, United Kingdom
| | - Shivan M. Murdochy
- MRC- University of Glasgow- Centre for Virus Research, Glasgow, United Kingdom
| | - Steven P. Sinkins
- MRC- University of Glasgow- Centre for Virus Research, Glasgow, United Kingdom
| |
Collapse
|
5
|
Ross PA, Callahan AG, Yang Q, Jasper M, Arif MAK, Afizah AN, Nazni WA, Hoffmann AA. An elusive endosymbiont: Does Wolbachia occur naturally in Aedes aegypti? Ecol Evol 2020; 10:1581-1591. [PMID: 32076535 PMCID: PMC7029055 DOI: 10.1002/ece3.6012] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/16/2019] [Accepted: 12/20/2019] [Indexed: 02/06/2023] Open
Abstract
Wolbachia are maternally inherited endosymbiotic bacteria found within many insect species. Aedes mosquitoes experimentally infected with Wolbachia are being released into the field for Aedes-borne disease control. These Wolbachia infections induce cytoplasmic incompatibility which is used to suppress populations through incompatible matings or replace populations through the reproductive advantage provided by this mechanism. However, the presence of naturally occurring Wolbachia in target populations could interfere with both population replacement and suppression programs depending on the compatibility patterns between strains. Aedes aegypti were thought to not harbor Wolbachia naturally but several recent studies have detected Wolbachia in natural populations of this mosquito. We therefore review the evidence for natural Wolbachia infections in A. aegypti to date and discuss limitations of these studies. We draw on research from other mosquito species to outline the potential implications of natural Wolbachia infections in A. aegypti for disease control. To validate previous reports, we obtained a laboratory population of A. aegypti from New Mexico, USA, that harbors a natural Wolbachia infection, and we conducted field surveys in Kuala Lumpur, Malaysia, where a natural Wolbachia infection has also been reported. However, we were unable to detect Wolbachia in both the laboratory and field populations. Because the presence of naturally occurring Wolbachia in A. aegypti could have profound implications for Wolbachia-based disease control programs, it is important to continue to accurately assess the Wolbachia status of target Aedes populations.
Collapse
Affiliation(s)
- Perran A Ross
- Pest and Environmental Adaptation Research Group School of BioSciences Bio21 Institute The University of Melbourne Parkville Victoria Australia
| | - Ashley G Callahan
- Pest and Environmental Adaptation Research Group School of BioSciences Bio21 Institute The University of Melbourne Parkville Victoria Australia
| | - Qiong Yang
- Pest and Environmental Adaptation Research Group School of BioSciences Bio21 Institute The University of Melbourne Parkville Victoria Australia
| | - Moshe Jasper
- Pest and Environmental Adaptation Research Group School of BioSciences Bio21 Institute The University of Melbourne Parkville Victoria Australia
| | - Mohd A K Arif
- Institute for Medical Research Kuala Lumpur Malaysia
| | | | - Wasi A Nazni
- Institute for Medical Research Kuala Lumpur Malaysia
| | - Ary A Hoffmann
- Pest and Environmental Adaptation Research Group School of BioSciences Bio21 Institute The University of Melbourne Parkville Victoria Australia
| |
Collapse
|
6
|
Paris V, Cottingham E, Ross PA, Axford JK, Hoffmann AA. Effects of Alternative Blood Sources on Wolbachia Infected Aedes aegypti Females within and across Generations. INSECTS 2018; 9:E140. [PMID: 30314399 PMCID: PMC6315918 DOI: 10.3390/insects9040140] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/06/2018] [Accepted: 10/09/2018] [Indexed: 12/05/2022]
Abstract
Wolbachia bacteria have been identified as a tool for reducing the transmission of arboviruses transmitted by Aedes aegypti. Research groups around the world are now mass rearing Wolbachia-infected Ae. aegypti for deliberate release. We investigated the fitness impact of a crucial element of mass rearing: the blood meal required by female Ae. aegypti to lay eggs. Although Ae. aegypti almost exclusively feed on human blood, it is often difficult to use human blood in disease-endemic settings. When females were fed on sheep or pig blood rather than human blood, egg hatch rates decreased in all three lines tested (uninfected, or infected by wMel, or wAlbB Wolbachia). This finding was particularly pronounced when fed on sheep blood, although fecundity was not affected. Some of these effects persisted after an additional generation on human blood. Attempts to keep populations on sheep and pig blood sources only partly succeeded, suggesting that strong adaptation is required to develop a stably infected line on an alternative blood source. There was a decrease in Wolbachia density when Ae. aegypti were fed on non-human blood sources. Density increased in lines kept for multiple generations on the alternate sources but was still reduced relative to lines kept on human blood. These findings suggest that sheep and pig blood will entail a cost when used for maintaining Wolbachia-infected Ae. aegypti. These costs should be taken into account when planning mass release programs.
Collapse
Affiliation(s)
- Véronique Paris
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Institute, University of Melbourne, Melbourne, VIC 3010, Australia.
| | - Ellen Cottingham
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Institute, University of Melbourne, Melbourne, VIC 3010, Australia.
| | - Perran A Ross
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Institute, University of Melbourne, Melbourne, VIC 3010, Australia.
| | - Jason K Axford
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Institute, University of Melbourne, Melbourne, VIC 3010, Australia.
| | - Ary A Hoffmann
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Institute, University of Melbourne, Melbourne, VIC 3010, Australia.
| |
Collapse
|
7
|
Ant TH, Sinkins SP. A Wolbachia triple-strain infection generates self-incompatibility in Aedes albopictus and transmission instability in Aedes aegypti. Parasit Vectors 2018; 11:295. [PMID: 29751814 PMCID: PMC5948879 DOI: 10.1186/s13071-018-2870-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 04/23/2018] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Artificially-introduced transinfections of the intracellular bacterium Wolbachia pipientis have the potential to reduce the vectorial capacity of mosquito populations for viruses such as dengue and chikungunya. Aedes albopictus has two native strains of Wolbachia, but their replacement with the non-native wMel strain blocks transmission of both viruses. The pattern of cytoplasmic incompatiiblity generated by wMel with wild-types is bidirectional. Novel-plus-native-strain co-infection is predicted to lead to a more efficient population spread capacity; from a bi-directional to a uni-directional cytoplasmic incompatibility (CI) model. RESULTS A novel-plus-native-strain triple-infection in Ae. albopictus (wAlbAwAlbBwMel) was generated. Although triple-infected females were fully reproductively viable with uninfected males, they displayed self-incompatibility. qPCR of specific strains in dissected tissues suggested that this may be due to the displacement of one of the native strains (wAlbA) from the ovaries of triple-infected females. When the triple strain infection was transferred into Aedes aegypti it displayed an unexpectedly low level of transmission fidelity of the three strains in this species. CONCLUSIONS These results suggest that combining Wolbachia strains can lead to co-infection interactions that can affect outcomes of CI and maternal transmission.
Collapse
Affiliation(s)
- Thomas H Ant
- Centre for Virus Research, University of Glasgow, Glasgow, UK.,Biomedical and Life Sciences, Lancaster University, Lancaster, UK.,Present Address: Department of Disease Control, London School of Hygiene and Tropical Medicine, Keppel Street, London, UK
| | - Steven P Sinkins
- Centre for Virus Research, University of Glasgow, Glasgow, UK. .,Biomedical and Life Sciences, Lancaster University, Lancaster, UK.
| |
Collapse
|
8
|
Ross PA, Axford JK, Richardson KM, Endersby-Harshman NM, Hoffmann AA. Maintaining Aedes aegypti Mosquitoes Infected with Wolbachia. J Vis Exp 2017. [PMID: 28829414 DOI: 10.3791/56124] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Aedes aegypti mosquitoes experimentally infected with Wolbachia are being utilized in programs to control the spread of arboviruses such as dengue, chikungunya and Zika. Wolbachia-infected mosquitoes can be released into the field to either reduce population sizes through incompatible matings or to transform populations with mosquitoes that are refractory to virus transmission. For these strategies to succeed, the mosquitoes released into the field from the laboratory must be competitive with native mosquitoes. However, maintaining mosquitoes in the laboratory can result in inbreeding, genetic drift and laboratory adaptation which can reduce their fitness in the field and may confound the results of experiments. To test the suitability of different Wolbachia infections for deployment in the field, it is necessary to maintain mosquitoes in a controlled laboratory environment across multiple generations. We describe a simple protocol for maintaining Ae. aegypti mosquitoes in the laboratory, which is suitable for both Wolbachia-infected and wild-type mosquitoes. The methods minimize laboratory adaptation and implement outcrossing to increase the relevance of experiments to field mosquitoes. Additionally, colonies are maintained under optimal conditions to maximize their fitness for open field releases.
Collapse
Affiliation(s)
- Perran A Ross
- School of BioSciences, Bio21 Institute and University of Melbourne;
| | - Jason K Axford
- School of BioSciences, Bio21 Institute and University of Melbourne
| | | | | | - Ary A Hoffmann
- School of BioSciences, Bio21 Institute and University of Melbourne
| |
Collapse
|
9
|
Suh E, Mercer DR, Dobson SL. Life-shortening Wolbachia infection reduces population growth of Aedes aegypti. Acta Trop 2017; 172:232-239. [PMID: 28506794 DOI: 10.1016/j.actatropica.2017.05.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 05/10/2017] [Accepted: 05/11/2017] [Indexed: 12/11/2022]
Abstract
Wolbachia bacteria are being introduced into natural populations of vector mosquitoes, with the goal of reducing the transmission of human diseases such as Zika and dengue fever. The successful establishment of Wolbachia infection is largely dependent on the effects of Wolbachia infection to host fitness, but the effects of Wolbachia infection on the individual life-history traits of immature mosquitoes can vary. Here, the effects of life-shortening Wolbachia (wMelPop) on population growth of infected individuals were evaluated by measuring larval survival, developmental time and adult size of Aedes aegypti in intra- (infected or uninfected only) and inter-group (mixed with infected and uninfected) larval competition assays. At low larval density conditions, the population growth of wMelPop infected and uninfected individuals was similar. At high larval densities, wMelPop infected individuals had a significantly reduced population growth rate relative to uninfected individuals, regardless of competition type. We discuss the results in relation to the invasion of the wMelPop Wolbachia infection into naturally uninfected populations.
Collapse
|