1
|
Erguler K, Saratsis A, Dobler G, Chitimia-Dobler L. Understanding climate-sensitive tick development and diapause with a structured population model. Front Vet Sci 2025; 12:1553557. [PMID: 40241804 PMCID: PMC11999937 DOI: 10.3389/fvets.2025.1553557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 03/14/2025] [Indexed: 04/18/2025] Open
Abstract
Introduction Tick-borne diseases have become a growing public health concern globally. As climate change reshapes the environment, tick populations are expected to expand into previously unsuitable areas, further increasing human exposure to ticks and the pathogens they transmit. Understanding the environmental factors that sustain tick populations is crucial for enhancing prevention and control measures. Methods This study presents a multi-process structured population model that simulates nymph activity, development, and diapause in response to temperature and photoperiod. By integrating laboratory data and meteorological variables, the model captures the role of photoperiod in regulating diapause and the influence of temperature on development rates. Results With this model, we propose a mechanism to better understand how short- and long-day conditions synchronize nymph development, highlighting the importance of repeated sensing of external conditions for maintaining behavioral strategies to optimize fitness under changing environmental conditions. The model successfully replicates nymph development observed in laboratory conditions and extends to field applications, predicting seasonal activity under variable weather conditions. Discussion By providing a mechanistic understanding of tick phenology, our model establishes a foundation for assessing the impacts of climate on tick populations. The insights gained can inform public health tools and strategies, contributing to the mitigation of tick-borne disease risks in a changing environment.
Collapse
Affiliation(s)
- Kamil Erguler
- Climate and Atmosphere Research Center (CARE-C), The Cyprus Institute, Nicosia, Cyprus
| | - Anastasios Saratsis
- Veterinary Research Institute, Hellenic Agricultural Organization's Dimitra, Thermi, Greece
| | - Gerhard Dobler
- Bundeswehr Institute of Microbiology, German Center for Infection Research (DZIF), Munich, Germany
| | - Lidia Chitimia-Dobler
- Fraunhofer Institute of Immunology, Pandemic and Infection Research, Penzberg, Germany
| |
Collapse
|
2
|
Allen D. A mechanistic model explains variation in larval tick questing phenology along an elevation gradient. ROYAL SOCIETY OPEN SCIENCE 2025; 12:250130. [PMID: 40309177 PMCID: PMC12040446 DOI: 10.1098/rsos.250130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 05/02/2025]
Abstract
Many tick-borne pathogens are maintained in enzootic cycles passing from nymphs of one tick cohort to larvae of the next via vertebrate hosts. As such, the phenology of larval and nymphal host-seeking, questing, partially determines pathogen persistence. Across the range of the blacklegged tick (Ixodes scapularis), the timing of larval phenology varies due to differences in climate and local adaptation in the timing of temperature-independent diapause. In this study, an elevation gradient was used to isolate climate as temperature varies with elevation over small geographic scales where local adaptation should be absent. The ability of a mechanistic, temperature-driven, literature-parametrized model to explain variation in larval I. scapularis phenology was tested. Over 7 years, I. scapularis ticks were collected using drag-cloth sampling along a > 500 m elevation gradient in western Vermont, USA. At low elevation, more larval ticks quested in late summer, while at high elevation, more quested in early summer. The literature-parametrized model reproduced these differences better than competing models. This validated model provides an explicit, mechanistic connection between temperature and larval phenology, a key determinant of tick-borne disease persistence.
Collapse
Affiliation(s)
- David Allen
- Department of Biology, Middlebury College, Middlebury, VT, USA
| |
Collapse
|
3
|
Eisen L. Seasonal activity patterns of Ixodes scapularis and Ixodes pacificus in the United States. Ticks Tick Borne Dis 2025; 16:102433. [PMID: 39764925 DOI: 10.1016/j.ttbdis.2024.102433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 02/08/2025]
Abstract
Knowledge of seasonal activity patterns of human-biting life stages of tick species serving as vectors of human disease agents provides basic information on when during the year humans are most at risk for tick bites and tick-borne diseases. Although there is a wealth of published information on seasonal activity patterns of Ixodes scapularis and Ixodes pacificus in the United States, a critical review of the literature for these important tick vectors is lacking. The aims of this paper were to: (i) review what is known about the seasonal activity patterns of I. scapularis and I. pacificus in different parts of their geographic ranges in the US, (ii) provide a synthesis of the main findings, and (iii) outline key knowledge gaps and methodological pitfalls that limit our understanding of variability in seasonal activity patterns. Based on ticks collected while questing or from wild animals, the seasonal activity patterns were found to be similar for I. pacificus in the Far West and I. scapularis in the Southeast, with synchronous activity of larvae and nymphs, peaking in spring (April to June) in the Far West and from spring to early summer (April to July) in the Southeast, and continuous activity of adults from fall through winter and spring with peak activity from fall through winter (November/December to March). In the colder climates of the Upper Midwest and Northeast, I. scapularis adults have a bimodal seasonal pattern, with activity peaks in fall (October to November) and spring (April to May). The seasonal activity patterns for immatures differ between the Upper Midwest, synchronous for larvae and nymphs with peak activity in spring and summer (May to August), and the Northeast, where the peak activity of nymphs in spring and early summer (May to July) precedes that of larvae in summer (July to September). Seasonality of human tick encounters also is influenced by changes over the year in the level of outdoor activities in tick habitat. Studies on the seasonality of ticks infesting humans have primarily focused on the coastal Northeast and the Pacific Coast states, with fewer studies in the Southeast, inland parts of the Northeast, and the Upper Midwest. Discrepancies between seasonal patterns for peak tick questing activity and peak human infestation appear to occur primarily for the adult stages of I. scapularis and I. pacificus. Study design and data presentation limitations of the published literature are discussed. Scarcity of data for seasonal activity patterns of I. pacificus outside of California and for I. scapularis from parts of the Southeast, Northeast, and Upper Midwest is a key knowledge gap. In addition to informing the public of when during the year the risk for tick bites is greatest, high-quality studies describing current seasonal activity patterns also will generate the data needed for robust model-based projections of future climate-driven change in the seasonal activity patterns and provide the baseline needed to empirically determine in the future if the projections were accurate.
Collapse
Affiliation(s)
- Lars Eisen
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 3156 Rampart Road, Fort Collins, CO 80521, United States.
| |
Collapse
|
4
|
Price LE, Winter JM, Cantoni JL, Cozens DW, Linske MA, Williams SC, Dill GM, Gardner AM, Elias SP, Rounsville TF, Smith RP, Palace MW, Herrick C, Prusinski MA, Casey P, Doncaster EM, Savage JDT, Wallace DI, Shi X. Spatial and temporal distribution of Ixodes scapularis and tick-borne pathogens across the northeastern United States. Parasit Vectors 2024; 17:481. [PMID: 39574137 PMCID: PMC11583392 DOI: 10.1186/s13071-024-06518-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/30/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND The incidence of tick-borne diseases is increasing across the USA, with cases concentrated in the northeastern and midwestern regions of the country. Ixodes scapularis is one of the most important tick-borne disease vectors and has spread throughout the northeastern USA over the past four decades, with established populations in all states of the region. METHODS To better understand the rapid expansion of I. scapularis and the pathogens they transmit, we aggregated and analyzed I. scapularis abundance and pathogen prevalence data from across the northeastern USA, including the states of Connecticut, Maine, New Hampshire, New York and Vermont, from 1989 to 2021. Maine was the only state to collect data during the entire time period, with the other states collecting data during a subset of this time period starting in 2008 or later. We harmonized I. scapularis abundance by county and tick season, where the nymph season is defined as May to September and the adult season is October to December, and calculated I. scapularis pathogen infection prevalence as the percentage of ticks that tested positive for Anaplasma phagocytophilum, Babesia microti, Borrelia burgdorferi, and Borrelia miyamotoi. We then explored temporal trends in I. scapularis abundance and pathogen prevalence data using linear models. RESULTS The resulting dataset is one of the most spatially and temporally comprehensive records of tick abundance and pathogen prevalence in the USA. Using linear models, we found small or insignificant changes in the abundance of nymphs and adults over time; however, A. phagocytophilum, B. microti and B. burgdorferi prevalence in both nymphs and adults has increased over time. For the period 2017-2021, the statewide average prevalence of B. burgdorferi ranged from 19% to 25% in I. scapularis nymphs and from to 49% to 54% in I. scapularis adults. The statewide average prevalence of all other pathogens in I. scapularis for 2017-2021, including A. phagocytophilum (4-6% for nymphs, 4-9% for adults), B. microti (4-8% for nymphs, 2-13% for adults) and B. miyamotoi (1-2% for nymphs, 1-2% for adults), was considerably less. CONCLUSIONS Our efforts revealed the complications of creating a comprehensive dataset of tick abundance and pathogen prevalence across time and space due to variations in tick collection and pathogen testing methods. Although tick abundance has not changed along the more southern latitudes in our study over this time period, and only gradually changed in the more northern latitudes of our study, human risk for exposure to tick-borne pathogens has increased due to increased pathogen prevalence in I. scapularis. This dataset can be used in future studies of I. scapularis and pathogen prevalence across the northeastern USA and to evaluate models of I. scapularis ecology and population dynamics.
Collapse
Affiliation(s)
- Lucas E Price
- Department of Geography, Dartmouth College, 6017 Fairchild, Hanover, NH, 03755, USA.
| | - Jonathan M Winter
- Department of Geography, Dartmouth College, 6017 Fairchild, Hanover, NH, 03755, USA
| | - Jamie L Cantoni
- Department of Entomology, The Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, CT, 06511, USA
| | - Duncan W Cozens
- Department of Entomology, The Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, CT, 06511, USA
| | - Megan A Linske
- Department of Entomology, The Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, CT, 06511, USA
| | - Scott C Williams
- Department of Environmental Science and Forestry, The Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, CT, 06511, USA
| | - Griffin M Dill
- Diagnostic and Research Laboratory, University of Maine Cooperative Extension, 17 Godfrey Drive, Orono, ME, 04473, USA
| | - Allison M Gardner
- School of Biology and Ecology, University of Maine, 5722 Deering Hall, Orono, ME, 04469, USA
| | - Susan P Elias
- Vector-borne Disease Laboratory, MaineHealth Institute for Research, 81 Research Drive, Scarborough, ME, 04074, USA
| | - Thomas F Rounsville
- Diagnostic and Research Laboratory, University of Maine Cooperative Extension, 17 Godfrey Drive, Orono, ME, 04473, USA
| | - Robert P Smith
- Vector-borne Disease Laboratory, MaineHealth Institute for Research, 81 Research Drive, Scarborough, ME, 04074, USA
| | - Michael W Palace
- Institute for the Study of Earth, Oceans and Space, Department of Earth Sciences, University of New Hampshire, Morse Hall, Durham, NH, 03824, USA
| | - Christina Herrick
- Institute for the Study of Earth, Oceans and Space, Department of Earth Sciences, University of New Hampshire, Morse Hall, Durham, NH, 03824, USA
| | - Melissa A Prusinski
- Vector Ecology Laboratory, Bureau of Communicable Disease Control, New York State Department of Health, Biggs Laboratory C-456-C-470A, Wadsworth Center, Empire State Plaza, Albany, NY, 12237, USA
| | - Patti Casey
- Environmental Surveillance Program, Vermont Agency of Agriculture Food & Markets, 116 State Street, Montpelier, VT, 05620, USA
| | - Eliza M Doncaster
- Environmental Surveillance Program, Vermont Agency of Agriculture Food & Markets, 116 State Street, Montpelier, VT, 05620, USA
| | - Joseph D T Savage
- Department of Geography, Dartmouth College, 6017 Fairchild, Hanover, NH, 03755, USA
- Graduate Program in Ecology, Evolution, Environment, and Society, Dartmouth College, Hanover, NH, 03755, USA
| | - Dorothy I Wallace
- Department of Mathematics, Dartmouth College, 6188 Kemeny Hall, Hanover, NH, 03755, USA
| | - Xun Shi
- Department of Geography, Dartmouth College, 6017 Fairchild, Hanover, NH, 03755, USA
| |
Collapse
|
5
|
Ruiz-Carrascal D, Bastard J, Williams SC, Diuk-Wasser M. Modeling platform to assess the effectiveness of single and integrated Ixodes scapularis tick control methods. Parasit Vectors 2024; 17:339. [PMID: 39135071 PMCID: PMC11321154 DOI: 10.1186/s13071-024-06387-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/01/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Lyme disease continues to expand in Canada and the USA and no single intervention is likely to curb the epidemic. METHODS We propose a platform to quantitatively assess the effectiveness of a subset of Ixodes scapularis tick management approaches. The platform allows us to assess the impact of different control treatments, conducted either individually (single interventions) or in combination (combined efforts), with varying timings and durations. Interventions include three low environmental toxicity measures in differing combinations, namely reductions in white-tailed deer (Odocoileus virginianus) populations, broadcast area-application of the entomopathogenic fungus Metarhizium anisopliae, and fipronil-based rodent-targeted bait boxes. To assess the impact of these control efforts, we calibrated a process-based mathematical model to data collected from residential properties in the town of Redding, southwestern Connecticut, where an integrated tick management program to reduce I.xodes scapularis nymphs was conducted from 2013 through 2016. We estimated parameters mechanistically for each of the three treatments, simulated multiple combinations and timings of interventions, and computed the resulting percent reduction of the nymphal peak and of the area under the phenology curve. RESULTS Simulation outputs suggest that the three-treatment combination and the bait boxes-deer reduction combination had the overall highest impacts on suppressing I. scapularis nymphs. All (single or combined) interventions were more efficacious when implemented for a higher number of years. When implemented for at least 4 years, most interventions (except the single application of the entomopathogenic fungus) were predicted to strongly reduce the nymphal peak compared with the no intervention scenario. Finally, we determined the optimal period to apply the entomopathogenic fungus in residential yards, depending on the number of applications. CONCLUSIONS Computer simulation is a powerful tool to identify the optimal deployment of individual and combined tick management approaches, which can synergistically contribute to short-to-long-term, costeffective, and sustainable control of tick-borne diseases in integrated tick management (ITM) interventions.
Collapse
Affiliation(s)
- Daniel Ruiz-Carrascal
- Department of Ecology, Evolution and Environmental Biology, Columbia University in the City of New York, New York, NY, USA
- International Research Institute for Climate and Society, Columbia University in the City of New York, New York, NY, USA
| | - Jonathan Bastard
- Department of Ecology, Evolution and Environmental Biology, Columbia University in the City of New York, New York, NY, USA
| | - Scott C Williams
- Department of Environmental Science and Forestry, Center for Vector Biology & Zoonotic Diseases, The Connecticut Agricultural Experiment Station, New Haven, CT, USA
| | - Maria Diuk-Wasser
- Department of Ecology, Evolution and Environmental Biology, Columbia University in the City of New York, New York, NY, USA.
| |
Collapse
|
6
|
Williams AK, Peterman WE, Pesapane R. Refining Ixodes scapularis (Acari: Ixodidae) distribution models: a comparison of current methods to an established protocol. JOURNAL OF MEDICAL ENTOMOLOGY 2024; 61:827-844. [PMID: 38686854 DOI: 10.1093/jme/tjae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/11/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024]
Abstract
Blacklegged ticks (Ixodes scapularis Say) pose an enormous public health risk in eastern North America as the vector responsible for transmitting 7 human pathogens, including those causing the most common vector-borne disease in the United States, Lyme disease. Species distribution modeling is an increasingly popular method for predicting the potential distribution and subsequent risk of blacklegged ticks, however, the development of such models thus far is highly variable and would benefit from the use of standardized protocols. To identify where standardized protocols would most benefit current distribution models, we completed the "Overview, Data, Model, Assessment, and Prediction" (ODMAP) distribution modeling protocol for 21 publications reporting 22 blacklegged tick distribution models. We calculated an average adherence of 73.4% (SD ± 29%). Most prominently, we found that authors could better justify and connect their selection of variables and associated spatial scales to blacklegged tick ecology. In addition, the authors could provide clearer descriptions of model development, including checks for multicollinearity, spatial autocorrelation, and plausibility. Finally, authors could improve their reporting of variable effects to avoid undermining the models' utility in informing species-environment relationships. To enhance future model rigor and reproducibility, we recommend utilizing several resources including the ODMAP protocol, and suggest that journals make protocol compliance a publication prerequisite.
Collapse
Affiliation(s)
- Allison K Williams
- School of Environment and Natural Resources, College of Food, Agriculture, and Environmental Science, The Ohio State University, 210 Kottman Hall, 2021 Coffey Road, Columbus, OH 43210, USA
| | - William E Peterman
- School of Environment and Natural Resources, College of Food, Agriculture, and Environmental Science, The Ohio State University, 210 Kottman Hall, 2021 Coffey Road, Columbus, OH 43210, USA
| | - Risa Pesapane
- School of Environment and Natural Resources, College of Food, Agriculture, and Environmental Science, The Ohio State University, 210 Kottman Hall, 2021 Coffey Road, Columbus, OH 43210, USA
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, 1920 Coffey Road, Columbus, OH 43210, USA
| |
Collapse
|
7
|
Pelletier J, Bouchard C, Aenishaenslin C, Beaudry F, Ogden NH, Leighton PA, Rocheleau JP. Pharmacological studies and pharmacokinetic modelling to support the development of interventions targeting ecological reservoirs of Lyme disease. Sci Rep 2024; 14:13537. [PMID: 38866918 PMCID: PMC11169648 DOI: 10.1038/s41598-024-63799-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 06/03/2024] [Indexed: 06/14/2024] Open
Abstract
The development of interventions targeting reservoirs of Borrelia burgdorferi sensu stricto with acaricide to reduce the density of infected ticks faces numerous challenges imposed by ecological and operational limits. In this study, the pharmacokinetics, efficacy and toxicology of fluralaner were investigated in Mus musculus and Peromyscus leucopus mice, the main reservoir of B. burgdorferi in North America. Fluralaner showed rapid distribution and elimination, leading to fast plasma concentration (Cp) depletion in the first hours after administration followed by a slow elimination rate for several weeks, resulting in a long terminal half-life. Efficacy fell below 100% while Cp (± standard deviation) decreased from 196 ± 54 to 119 ± 62 ng/mL. These experimental results were then used in simulations of fluralaner treatment for a duration equivalent to the active period of Ixodes scapularis larvae and nymphs. Simulations showed that doses as low as 10 mg/kg have the potential to protect P. leucopus against infestation for a full I. scapularis active season if administered at least once every 7 days. This study shows that investigating the pharmacology of candidate acaricides in combination with pharmacokinetic simulations can provide important information to support the development of effective interventions targeting ecological reservoirs of Lyme disease. It therefore represents a critical step that may help surpass limits inherent to the development of these interventions.
Collapse
Affiliation(s)
- Jérôme Pelletier
- Département de pathologie et microbiologie, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada.
- Groupe de recherche en épidémiologie des zoonoses et santé publique, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada.
- Centre de recherche en santé publique de l'Université de Montréal et du CIUSSS du Centre-Sud-de-l'Île-de-Montréal, Montréal, Québec, Canada.
| | - Catherine Bouchard
- Groupe de recherche en épidémiologie des zoonoses et santé publique, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Saint-Hyacinthe, Québec, Canada
| | - Cécile Aenishaenslin
- Département de pathologie et microbiologie, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
- Groupe de recherche en épidémiologie des zoonoses et santé publique, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
- Centre de recherche en santé publique de l'Université de Montréal et du CIUSSS du Centre-Sud-de-l'Île-de-Montréal, Montréal, Québec, Canada
| | - Francis Beaudry
- Département de biomédecine vétérinaire, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
- Centre de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montréal, Québec, Canada
| | - Nicholas H Ogden
- Groupe de recherche en épidémiologie des zoonoses et santé publique, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Saint-Hyacinthe, Québec, Canada
| | - Patrick A Leighton
- Département de pathologie et microbiologie, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
- Groupe de recherche en épidémiologie des zoonoses et santé publique, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
- Centre de recherche en santé publique de l'Université de Montréal et du CIUSSS du Centre-Sud-de-l'Île-de-Montréal, Montréal, Québec, Canada
| | - Jean-Philippe Rocheleau
- Groupe de recherche en épidémiologie des zoonoses et santé publique, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
- Département de santé animale, CÉGEP de Saint-Hyacinthe, Saint-Hyacinthe, Québec, Canada
| |
Collapse
|
8
|
Savage JDT, Moore CM. How do host population dynamics impact Lyme disease risk dynamics in theoretical models? PLoS One 2024; 19:e0302874. [PMID: 38722910 PMCID: PMC11081252 DOI: 10.1371/journal.pone.0302874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 04/15/2024] [Indexed: 05/13/2024] Open
Abstract
Lyme disease is the most common wildlife-to-human transmitted disease reported in North America. The study of this disease requires an understanding of the ecology of the complex communities of ticks and host species involved in harboring and transmitting this disease. Much of the ecology of this system is well understood, such as the life cycle of ticks, and how hosts are able to support tick populations and serve as disease reservoirs, but there is much to be explored about how the population dynamics of different host species and communities impact disease risk to humans. In this study, we construct a stage-structured, empirically-informed model with host dynamics to investigate how host population dynamics can affect disease risk to humans. The model describes a tick population and a simplified community of three host species, where primary nymph host populations are made to fluctuate on an annual basis, as commonly observed in host populations. We tested the model under different environmental conditions to examine the effect of environment on the interactions of host dynamics and disease risk. Results show that allowing for host dynamics in the model reduces mean nymphal infection prevalence and increases the maximum annual prevalence of nymphal infection and the density of infected nymphs. Effects of host dynamics on disease measures of nymphal infection prevalence were nonlinear and patterns in the effect of dynamics on amplitude in nymphal infection prevalence varied across environmental conditions. These results highlight the importance of further study of the effect of community dynamics on disease risk. This will involve the construction of further theoretical models and collection of robust field data to inform these models. With a more complete understanding of disease dynamics we can begin to better determine how to predict and manage disease risk using these models.
Collapse
Affiliation(s)
- Joseph D. T. Savage
- Biology Department, Colby College, Waterville, Maine, United States of America
- Department of Geography, Graduate Program in Ecology, Evolution, Environment, and Society, Dartmouth College, Hanover, New Hampshire, United States of America
| | | |
Collapse
|
9
|
Stokowski M, Allen D. IxPopDyMod: an R package to write, run, and analyze tick population and infection dynamics models. Parasit Vectors 2024; 17:90. [PMID: 38409067 PMCID: PMC10898031 DOI: 10.1186/s13071-024-06171-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/29/2024] [Indexed: 02/28/2024] Open
Abstract
Given the increasing prevalence of tick-borne diseases, such as Lyme disease, modeling the population and infection dynamics of tick vectors is an important public health tool. These models have applications for testing the effects of control methods or climate change on tick populations. There is an established history of tick population models, but code for them is rarely shared, especially not in a convenient format for others to modify and use. We present an R package, called IxPopDyMod, intended to function as a flexible and consistent framework for reproducible Ixodidae (hard-bodied ticks) population dynamics models. Here we focus on two key parts of the package: a function to create valid model configurations and a function to run a configured model and return the daily population over time. We provide three examples in appendices: one reproducing an existing Ixodes scapularis population model, one providing a novel Dermacentor albipictus model, and one showing Borrelia burgdorferi infection in ticks. Together these examples show the flexibility of the package to model scenarios of interest to tick researches.
Collapse
Affiliation(s)
- Myles Stokowski
- Department of Biology, Middlebury College, Middlebury, 05753, VT, USA
| | - David Allen
- Department of Biology, Middlebury College, Middlebury, 05753, VT, USA.
| |
Collapse
|
10
|
Husar K, Pittman DC, Rajala J, Mostafa F, Allen LJS. Lyme Disease Models of Tick-Mouse Dynamics with Seasonal Variation in Births, Deaths, and Tick Feeding. Bull Math Biol 2024; 86:25. [PMID: 38294562 DOI: 10.1007/s11538-023-01248-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 12/19/2023] [Indexed: 02/01/2024]
Abstract
Lyme disease is the most common vector-borne disease in the United States impacting the Northeast and Midwest at the highest rates. Recently, it has become established in southeastern and south-central regions of Canada. In these regions, Lyme disease is caused by Borrelia burgdorferi, which is transmitted to humans by an infected Ixodes scapularis tick. Understanding the parasite-host interaction is critical as the white-footed mouse is one of the most competent reservoir for B. burgdorferi. The cycle of infection is driven by tick larvae feeding on infected mice that molt into infected nymphs and then transmit the disease to another susceptible host such as mice or humans. Lyme disease in humans is generally caused by the bite of an infected nymph. The main aim of this investigation is to study how diapause delays and demographic and seasonal variability in tick births, deaths, and feedings impact the infection dynamics of the tick-mouse cycle. We model tick-mouse dynamics with fixed diapause delays and more realistic Erlang distributed delays through delay and ordinary differential equations (ODEs). To account for demographic and seasonal variability, the ODEs are generalized to a continuous-time Markov chain (CTMC). The basic reproduction number and parameter sensitivity analysis are computed for the ODEs. The CTMC is used to investigate the probability of Lyme disease emergence when ticks and mice are introduced, a few of which are infected. The probability of disease emergence is highly dependent on the time and the infected species introduced. Infected mice introduced during the summer season result in the highest probability of disease emergence.
Collapse
Affiliation(s)
- Kateryna Husar
- Department of Statistical Science, Duke University, Durham, NC, 27705, USA.
| | - Dana C Pittman
- Department of Epidemiology and Biostatistics, Texas A &M University, College Station, TX, 77843, USA
| | - Johnny Rajala
- Department of Computer Science, University of Maryland, College Park, MD, 20742, USA
| | - Fahad Mostafa
- Department of Mathematics and Statistics, Texas Tech University, Lubbock, TX, 79409, USA
| | - Linda J S Allen
- Department of Mathematics and Statistics, Texas Tech University, Lubbock, TX, 79409, USA
| |
Collapse
|
11
|
Deshpande G, Beetch JE, Heller JG, Naqvi OH, Kuhn KG. Assessing the Influence of Climate Change and Environmental Factors on the Top Tick-Borne Diseases in the United States: A Systematic Review. Microorganisms 2023; 12:50. [PMID: 38257877 PMCID: PMC10821204 DOI: 10.3390/microorganisms12010050] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
In the United States (US), tick-borne diseases (TBDs) have more than doubled in the past fifteen years and are a major contributor to the overall burden of vector-borne diseases. The most common TBDs in the US-Lyme disease, rickettsioses (including Rocky Mountain spotted fever), and anaplasmosis-have gradually shifted in recent years, resulting in increased morbidity and mortality. In this systematic review, we examined climate change and other environmental factors that have influenced the epidemiology of these TBDs in the US while highlighting the opportunities for a One Health approach to mitigating their impact. We searched Medline Plus, PUBMED, and Google Scholar for studies focused on these three TBDs in the US from January 2018 to August 2023. Data selection and extraction were completed using Covidence, and the risk of bias was assessed with the ROBINS-I tool. The review included 84 papers covering multiple states across the US. We found that climate, seasonality and temporality, and land use are important environmental factors that impact the epidemiology and patterns of TBDs. The emerging trends, influenced by environmental factors, emphasize the need for region-specific research to aid in the prediction and prevention of TBDs.
Collapse
Affiliation(s)
| | | | | | | | - Katrin Gaardbo Kuhn
- Department of Biostatistics & Epidemiology, Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (G.D.); (J.E.B.); (J.G.H.); (O.H.N.)
| |
Collapse
|
12
|
Pelletier J, Rocheleau JP, Aenishaenslin C, Dimitri Masson G, Lindsay LR, Ogden NH, Bouchard C, Leighton PA. Fluralaner Baits Reduce the Infestation of Peromyscus spp. Mice (Rodentia: Cricetidae) by Ixodes scapularis (Acari: Ixodidae) Larvae and Nymphs in a Natural Environment. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:2080-2089. [PMID: 35980603 DOI: 10.1093/jme/tjac106] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Indexed: 06/15/2023]
Abstract
The development of interventions that reduce Lyme disease incidence remains a challenge. Reservoir-targeted approaches aiming to reduce tick densities or tick infection prevalence with Borrelia burgdorferi have emerged as promising ways to reduce the density of infected ticks. Acaricides of the isoxazoline family offer high potential for reducing infestation of ticks on small mammals as they have high efficacy at killing feeding ticks for a long period. Fluralaner baits were recently demonstrated as effective, in the laboratory, at killing Ixodes scapularis larvae infesting Peromyscus mice, the main reservoir for B. burgdorferi in northeastern North America. Here, effectiveness of this approach for reducing the infestation of small mammals by immature stages of I. scapularis was tested in a natural environment. Two densities of fluralaner baits (2.1 baits/1,000 m2 and 4.4 baits/1,000 m2) were used during three years in forest plots. The number of I. scapularis larvae and nymphs per mouse from treated and control plots were compared. Fluralaner baiting reduced the number of larvae per mouse by 68% (CI95: 51-79%) at 2.1 baits/1,000 m2 and by 86% (CI95: 77-92%) at 4.4 baits/1,000 m2. The number of nymphs per mouse was reduced by 72% (CI95: 22-90%) at 4.4 baits/1,000 m2 but was not significantly reduced at 2.1 baits/1,000 m2. Reduction of Peromyscus mouse infestation by immature stages of I. scapularis supports the hypothesis that an approach targeting reservoirs of B. burgdorferi with isoxazolines has the potential to reduce tick-borne disease risk by decreasing the density of infected ticks in the environment.
Collapse
Affiliation(s)
- Jérôme Pelletier
- Département de pathologie et microbiologie, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
- Groupe de recherche en épidémiologie des zoonoses et santé publique, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
- Centre de recherche en santé publique de l'Université de Montréal et du CIUSSS du Centre-Sud-de-l'Île-de-Montréal, Montréal, Québec, Canada
| | - Jean-Philippe Rocheleau
- Groupe de recherche en épidémiologie des zoonoses et santé publique, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
- Département de santé animale, CÉGEP de Saint-Hyacinthe, Saint-Hyacinthe, Québec, Canada
| | - Cécile Aenishaenslin
- Département de pathologie et microbiologie, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
- Groupe de recherche en épidémiologie des zoonoses et santé publique, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
- Centre de recherche en santé publique de l'Université de Montréal et du CIUSSS du Centre-Sud-de-l'Île-de-Montréal, Montréal, Québec, Canada
| | - Gabrielle Dimitri Masson
- Département de pathologie et microbiologie, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
- Groupe de recherche en épidémiologie des zoonoses et santé publique, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - L Robbin Lindsay
- One Health Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Nicholas H Ogden
- Groupe de recherche en épidémiologie des zoonoses et santé publique, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Saint-Hyacinthe, Québec, Canada
| | - Catherine Bouchard
- Groupe de recherche en épidémiologie des zoonoses et santé publique, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Saint-Hyacinthe, Québec, Canada
| | - Patrick A Leighton
- Département de pathologie et microbiologie, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
- Groupe de recherche en épidémiologie des zoonoses et santé publique, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
- Centre de recherche en santé publique de l'Université de Montréal et du CIUSSS du Centre-Sud-de-l'Île-de-Montréal, Montréal, Québec, Canada
| |
Collapse
|
13
|
Couret J, Schofield S, Narasimhan S. The environment, the tick, and the pathogen - It is an ensemble. Front Cell Infect Microbiol 2022; 12:1049646. [PMID: 36405964 PMCID: PMC9666722 DOI: 10.3389/fcimb.2022.1049646] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/17/2022] [Indexed: 03/22/2024] Open
Abstract
Ixodes scapularis is one of the predominant vectors of Borrelia burgdorferi, the agent of Lyme disease in the USA. The geographic distribution of I. scapularis, endemic to the northeastern and northcentral USA, is expanding as far south as Georgia and Texas, and northwards into Canada and poses an impending public health problem. The prevalence and spread of tick-borne diseases are influenced by the interplay of multiple factors including microbiological, ecological, and environmental. Molecular studies have focused on interactions between the tick-host and pathogen/s that determine the success of pathogen acquisition by the tick and transmission to the mammalian host. In this review we draw attention to additional critical environmental factors that impact tick biology and tick-pathogen interactions. With a focus on B. burgdorferi we highlight the interplay of abiotic factors such as temperature and humidity as well as biotic factors such as environmental microbiota that ticks are exposed to during their on- and off-host phases on tick, and infection prevalence. A molecular understanding of this ensemble of interactions will be essential to gain new insights into the biology of tick-pathogen interactions and to develop new approaches to control ticks and tick transmission of B. burgdorferi, the agent of Lyme disease.
Collapse
Affiliation(s)
- Jannelle Couret
- Department of Biological Sciences, College of Environment and Life Sciences, University of Rhode Island, Kingston, RI, United States
| | - Samantha Schofield
- Department of Biological Sciences, College of Environment and Life Sciences, University of Rhode Island, Kingston, RI, United States
| | - Sukanya Narasimhan
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
14
|
Predictive Model of Lyme Disease Epidemic Process Using Machine Learning Approach. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Lyme disease is the most prevalent tick-borne disease in Eastern Europe. This study focuses on the development of a machine learning model based on a neural network for predicting the dynamics of the Lyme disease epidemic process. A retrospective analysis of the Lyme disease cases reported in the Kharkiv region, East Ukraine, between 2010 and 2017 was performed. To develop the neural network model of the Lyme disease epidemic process, a multilayered neural network was used, and the backpropagation algorithm or the generalized delta rule was used for its learning. The adequacy of the constructed forecast was tested on real statistical data on the incidence of Lyme disease. The learning of the model took 22.14 s, and the mean absolute percentage error is 3.79%. A software package for prediction of the Lyme disease incidence on the basis of machine learning has been developed. Results of the simulation have shown an unstable epidemiological situation of Lyme disease, which requires preventive measures at both the population level and individual protection. Forecasting is of particular importance in the conditions of hostilities that are currently taking place in Ukraine, including endemic territories.
Collapse
|
15
|
Khan I, Khan I, Jianye Z, Xiaohua Z, Khan M, Hilal MG, Kakakhel MA, Mehmood A, Lizhe A, Zhiqiang L. Exploring blood microbial communities and their influence on human cardiovascular disease. J Clin Lab Anal 2022; 36:e24354. [PMID: 35293034 PMCID: PMC8993628 DOI: 10.1002/jcla.24354] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 01/03/2023] Open
Abstract
Background Cardiovascular disease (CVD) is the single biggest contributor to global mortality. CVD encompasses multiple disorders, including atherosclerosis, hypertension, platelet hyperactivity, stroke, hyperlipidemia, and heart failure. In addition to traditional risk factors, the circulating microbiome or the blood microbiome has been analyzed recently in chronic inflammatory diseases, including CVD in humans. Methods For this review, all relevant original research studies were assessed by searching in electronic databases, including PubMed, Google Scholar, and Web of Science, by using relevant keywords. Results This review demonstrated that elevated markers of systemic bacterial exposure are associated with noncommunicable diseases, including CVD. Studies have shown that the bacterial DNA sequence found in healthy blood belongs mainly to the Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria phyla. In cardiac events, such as stroke, coronary heart disease, and myocardial infarction, the increased proportion of Proteobacteria and Actinobacteria phyla was found. Lipopolysaccharides are a major component of Proteobacteria, which play a key role in the onset of CVD. Moreover, recently, a study reported the lower cholesterol‐degrading bacteria, including Caulobacterales order and Caulobacteraceae family were both considerably reduced in myocardial infarction. Conclusion Proteobacteria and Actinobacteria were shown to be independent markers of the risk of CVD. This finding is evidence for the new concept of the role played by blood microbiota dysbiosis in CVD. However, the association between blood microbiota and CVD is still inconsistent. Thus, more deep investigations are required in future to fully understand the role of the bacteria community in causing and preventing CVD.
Collapse
Affiliation(s)
- Ikram Khan
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Imran Khan
- Department of Microbiology, Khyber Medical University Peshawar, Peshawar, Pakistan
| | - Zhou Jianye
- Key Laboratory of Oral Diseases of Gansu Province, School of Stomatology, Northwest Minzu University, Lanzhou, China
| | - Zhang Xiaohua
- Key Laboratory of Oral Diseases of Gansu Province, School of Stomatology, Northwest Minzu University, Lanzhou, China
| | - Murad Khan
- Department of Genetics, Hebei Key Laboratory Animal, Hebei Medical University, Shijiazhuang, China
| | - Mian Gul Hilal
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | | | - Arshad Mehmood
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - An Lizhe
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Li Zhiqiang
- Key Laboratory of Oral Diseases of Gansu Province, School of Stomatology, Northwest Minzu University, Lanzhou, China
| |
Collapse
|
16
|
The evolving story of Borrelia burgdorferi sensu lato transmission in Europe. Parasitol Res 2022; 121:781-803. [PMID: 35122516 PMCID: PMC8816687 DOI: 10.1007/s00436-022-07445-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 01/19/2022] [Indexed: 12/13/2022]
Abstract
Beside mosquitoes, ticks are well-known vectors of different human pathogens. In the Northern Hemisphere, Lyme borreliosis (Eurasia, LB) or Lyme disease (North America, LD) is the most commonly occurring vector-borne infectious disease caused by bacteria of the genus Borrelia which are transmitted by hard ticks of the genus Ixodes. The reported incidence of LB in Europe is about 22.6 cases per 100,000 inhabitants annually with a broad range depending on the geographical area analyzed. However, the epidemiological data are largely incomplete, because LB is not notifiable in all European countries. Furthermore, not only differ reporting procedures between countries, there is also variation in case definitions and diagnostic procedures. Lyme borreliosis is caused by several species of the Borrelia (B.) burgdorferi sensu lato (s.l.) complex which are maintained in complex networks including ixodid ticks and different reservoir hosts. Vector and host influence each other and are affected by multiple factors including climate that have a major impact on their habitats and ecology. To classify factors that influence the risk of transmission of B. burgdorferi s.l. to their different vertebrate hosts as well as to humans, we briefly summarize the current knowledge about the pathogens including their astonishing ability to overcome various host immune responses, regarding the main vector in Europe Ixodes ricinus, and the disease caused by borreliae. The research shows, that a higher standardization of case definition, diagnostic procedures, and standardized, long-term surveillance systems across Europe is necessary to improve clinical and epidemiological data.
Collapse
|
17
|
Tick bite risk resulting from spatially heterogeneous hazard, exposure and coping capacity. ECOLOGICAL COMPLEXITY 2021. [DOI: 10.1016/j.ecocom.2021.100967] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
18
|
Tsao JI, Hamer SA, Han S, Sidge JL, Hickling GJ. The Contribution of Wildlife Hosts to the Rise of Ticks and Tick-Borne Diseases in North America. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:1565-1587. [PMID: 33885784 DOI: 10.1093/jme/tjab047] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Indexed: 05/09/2023]
Abstract
Wildlife vertebrate hosts are integral to enzootic cycles of tick-borne pathogens, and in some cases have played key roles in the recent rise of ticks and tick-borne diseases in North America. In this forum article, we highlight roles that wildlife hosts play in the maintenance and transmission of zoonotic, companion animal, livestock, and wildlife tick-borne pathogens. We begin by illustrating how wildlife contribute directly and indirectly to the increase and geographic expansion of ticks and their associated pathogens. Wildlife provide blood meals for tick growth and reproduction; serve as pathogen reservoirs; and can disperse ticks and pathogens-either through natural movement (e.g., avian migration) or through human-facilitated movement (e.g., wildlife translocations and trade). We then discuss opportunities to manage tick-borne disease through actions directed at wildlife hosts. To conclude, we highlight key gaps in our understanding of the ecology of tick-host interactions, emphasizing that wildlife host communities are themselves a very dynamic component of tick-pathogen-host systems and therefore complicate management of tick-borne diseases, and should be taken into account when considering host-targeted approaches. Effective management of wildlife to reduce tick-borne disease risk further requires consideration of the 'human dimensions' of wildlife management. This includes understanding the public's diverse views and values about wildlife and wildlife impacts-including the perceived role of wildlife in fostering tick-borne diseases. Public health agencies should capitalize on the expertise of wildlife agencies when developing strategies to reduce tick-borne disease risks.
Collapse
Affiliation(s)
- Jean I Tsao
- Department of Fisheries and Wildlife, Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI, USA
| | - Sarah A Hamer
- Department of Veterinary Integrative Biosciences, and Schubot Center for Avian Health, Department of Veterinary Pathology, Texas A&M University, College Station, TX, USA
| | - Seungeun Han
- Department of Disease Control and Epidemiology, National Veterinary Institute (SVA), Uppsala, Sweden
| | - Jennifer L Sidge
- Michigan Department of Agriculture and Rural Development, Lansing, MI, USA
| | - Graham J Hickling
- Center for Wildlife Health, Department of Forestry, Wildlife and Fisheries, University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
19
|
Conte CE, Leahy JE, Gardner AM. Active Forest Management Reduces Blacklegged Tick and Tick-Borne Pathogen Exposure Risk. ECOHEALTH 2021; 18:157-168. [PMID: 34155574 DOI: 10.1007/s10393-021-01531-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 04/15/2021] [Accepted: 05/02/2021] [Indexed: 06/13/2023]
Abstract
In the northeastern USA, active forest management can include timber harvests designed to meet silvicultural objectives (i.e., harvesting trees that meet certain maturity, height, age, or quality criteria). Timber harvesting is an important tool in enhancing regeneration and maintaining forest health. It also has considerable potential to influence transmission dynamics of tick-borne pathogens, which are deeply embedded in the forest ecosystem. We conducted a 2-year study to test the hypotheses that recent timber harvesting impacts blacklegged tick density and infection prevalence in managed nonindustrial forests. We found that (1) recent harvesting reduces the presence of nymphal and density of adult blacklegged ticks, (2) recently harvested stands are characterized by understory microclimate conditions that may inhibit tick survival and host-seeking behavior, (3) capture rates of small mammal species frequently parasitized by immature ticks are lower in recently harvested stands compared to control stands with no recent harvest history. In addition, a 1-year pilot study suggests that harvesting does not affect nymphal infection prevalence. Collectively, our results demonstrate that forest structure and understory conditions may impact ticks and the pathogens they transmit via a range of mechanistic pathways, and moreover, active forest management may offer sustainable tools to inhibit entomological risk of exposure to tick-borne pathogens in the landscape.
Collapse
Affiliation(s)
- Christine E Conte
- School of Biology and Ecology, University of Maine, 5722 Deering Hall, Orono, ME, 04469, USA
| | - Jessica E Leahy
- School of Forest Resources, University of Maine, 5755 Nutting Hall, Orono, ME, 04469, USA
| | - Allison M Gardner
- School of Biology and Ecology, University of Maine, 5722 Deering Hall, Orono, ME, 04469, USA.
| |
Collapse
|
20
|
Lippi CA, Gaff HD, White AL, Ryan SJ. Scoping review of distribution models for selected Amblyomma ticks and rickettsial group pathogens. PeerJ 2021; 9:e10596. [PMID: 33643699 PMCID: PMC7896504 DOI: 10.7717/peerj.10596] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 11/26/2020] [Indexed: 01/23/2023] Open
Abstract
The rising prevalence of tick-borne diseases in humans in recent decades has called attention to the need for more information on geographic risk for public health planning. Species distribution models (SDMs) are an increasingly utilized method of constructing potential geographic ranges. There are many knowledge gaps in our understanding of risk of exposure to tick-borne pathogens, particularly for those in the rickettsial group. Here, we conducted a systematic scoping review of the SDM literature for rickettsial pathogens and tick vectors in the genus Amblyomma. Of the 174 reviewed articles, only 24 studies used SDMs to estimate the potential extent of vector and/or pathogen ranges. The majority of studies (79%) estimated only tick distributions using vector presence as a proxy for pathogen exposure. Studies were conducted at different scales and across multiple continents. Few studies undertook original data collection, and SDMs were mostly built with presence-only datasets from public database or surveillance sources. The reliance on existing data sources, using ticks as a proxy for disease risk, may simply reflect a lag in new data acquisition and a thorough understanding of the tick-pathogen ecology involved.
Collapse
Affiliation(s)
- Catherine A. Lippi
- Department of Geography, University of Florida, Gainesville, FL, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Holly D. Gaff
- Department of Biology, Old Dominion University, Norfolk, VA, USA
- School of Mathematics, Statistics and Computer Science, University of Kwa-Zulu Natal, Durban, South Africa
| | - Alexis L. White
- Department of Geography, University of Florida, Gainesville, FL, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Sadie J. Ryan
- Department of Geography, University of Florida, Gainesville, FL, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| |
Collapse
|
21
|
Eisen L, Eisen RJ. Benefits and Drawbacks of Citizen Science to Complement Traditional Data Gathering Approaches for Medically Important Hard Ticks (Acari: Ixodidae) in the United States. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:1-9. [PMID: 32772108 PMCID: PMC8056287 DOI: 10.1093/jme/tjaa165] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Indexed: 05/16/2023]
Abstract
Tick-borne diseases are increasing in North America. Knowledge of which tick species and associated human pathogens are present locally can inform the public and medical community about the acarological risk for tick bites and tick-borne infections. Citizen science (also called community-based monitoring, volunteer monitoring, or participatory science) is emerging as a potential approach to complement traditional tick record data gathering where all aspects of the work is done by researchers or public health professionals. One key question is how citizen science can best be used to generate high-quality data to fill knowledge gaps that are difficult to address using traditional data gathering approaches. Citizen science is particularly useful to generate information on human-tick encounters and may also contribute to geographical tick records to help define species distributions across large areas. Previous citizen science projects have utilized three distinct tick record data gathering methods including submission of: 1) physical tick specimens for identification by professional entomologists, 2) digital images of ticks for identification by professional entomologists, and 3) data where the tick species and life stage were identified by the citizen scientist. We explore the benefits and drawbacks of citizen science, relative to the traditional scientific approach, to generate data on tick records, with special emphasis on data quality for species identification and tick encounter locations. We recognize the value of citizen science to tick research but caution that the generated information must be interpreted cautiously with data quality limitations firmly in mind to avoid misleading conclusions.
Collapse
Affiliation(s)
- Lars Eisen
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 3156 Rampart Road, Fort Collins, CO 80521
| | - Rebecca J. Eisen
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 3156 Rampart Road, Fort Collins, CO 80521
| |
Collapse
|