1
|
Wazawa T, Ozaki-Noma R, Kai L, Fukushima SI, Matsuda T, Nagai T. Genetically-encoded temperature indicators for thermal biology. Biophys Physicobiol 2025; 22:e220008. [PMID: 40309302 PMCID: PMC12040488 DOI: 10.2142/biophysico.bppb-v22.0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 04/03/2025] [Indexed: 05/02/2025] Open
Abstract
Temperature crucially affects molecular processes in living organisms and thus it is one of the vital physical parameters for life. To investigate how temperature is biologically maintained and regulated and its biological impact on organisms, it is essential to measure the spatial distribution and/or temporal changes of temperature across different biological scales, from whole organism to subcellular structures. Fluorescent nanothermometers have been developed as probes for temperature measurement by fluorescence microscopy for applications in microscopic scales where macroscopic temperature sensors are inaccessible, such as embryos, tissues, cells, and organelles. Although fluorescent nanothermometers have been developed from various materials, fluorescent protein-based ones are especially of interest because they can be introduced into cells as the transgenes for expression with or without specific localization, making them suitable for less-invasive temperature observation in living biological samples. In this article, we review protein-based fluorescent nanothermometers also known as genetically-encoded temperature indicators (GETIs), covering most published GETIs, for developers, users, and researchers in thermal biology as well as interested readers. We provide overviews of the temperature sensing mechanisms and measurement methods of these protein-based fluorescent nanothermometers. We then outline key information for GETI development, focusing on unique protein engineering techniques and building blocks distinct to GETIs, unlike other fluorescent nanothermometers. Furthermore, we propose several standards for the characterization of GETIs. Additionally, we explore various issues and offer perspectives in the field of thermal biology.
Collapse
Affiliation(s)
- Tetsuichi Wazawa
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Ibaraki, Osaka 567-0047, Japan
| | - Ryohei Ozaki-Noma
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Ibaraki, Osaka 567-0047, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Lu Kai
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Ibaraki, Osaka 567-0047, Japan
| | - Shun-ichi Fukushima
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Ibaraki, Osaka 567-0047, Japan
| | - Tomoki Matsuda
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Ibaraki, Osaka 567-0047, Japan
- Department of Biosciences, School of Science, Kitasato University, Sagamihara, Kanagawa 252-0373, Japan
| | - Takeharu Nagai
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Ibaraki, Osaka 567-0047, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
- Transdimensional Life Imaging Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
2
|
Ozaki-Noma R, Wazawa T, Kakizuka T, Shidara H, Takemoto K, Nagai T. Positive-Type Reversibly Photoswitching Red Fluorescent Protein for Dual-Color Superresolution Imaging with Single Light Exposure for Off-Switching. ACS NANO 2025; 19:7188-7201. [PMID: 39937184 PMCID: PMC11867007 DOI: 10.1021/acsnano.4c16847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/29/2025] [Accepted: 01/30/2025] [Indexed: 02/13/2025]
Abstract
Positive-type reversibly photoswitching fluorescent proteins (p-rsFPs) transition to a bright on-state upon light exposure for fluorescence excitation and to a dark off-state under a different wavelength. p-rsFPs are widely used in superresolution (SR) imaging techniques, offering simplified observation procedure and enhanced biocompatibility. Although some green p-rsFPs possess adequate photoproperties for SR imaging, all red p-rsFPs (p-rsRFPs) to date exhibit suboptimal properties, limiting the color palette for multiplexed SR imaging. Here, we present a p-rsRFP, rsZACRO, with 3.0-fold brighter fluorescence, 5.3-fold faster off-switching, and 1.5-fold higher on/off contrast than rsCherry, a conventional representative p-rsRFP. Using rsZACRO with superresolution polarization demodulation/on-state polarization angle narrowing (SPoD-OnSPAN), we successfully demonstrated SR imaging in the red spectrum and dual-color SR imaging with a single light for off-switching, visualizing vimentin intermediate filaments and actin filaments at higher spatial resolution than the diffraction limit of light in a living mammalian cell.
Collapse
Affiliation(s)
- Ryohei Ozaki-Noma
- SANKEN
(The Institute of Scientific and Industrial Research), Osaka University, Ibaraki, Osaka 567-0047, Japan
- Graduate
School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Tetsuichi Wazawa
- SANKEN
(The Institute of Scientific and Industrial Research), Osaka University, Ibaraki, Osaka 567-0047, Japan
| | - Taishi Kakizuka
- SANKEN
(The Institute of Scientific and Industrial Research), Osaka University, Ibaraki, Osaka 567-0047, Japan
- Transdimensional
Life Imaging Division, Institute for Open and Transdisciplinary Research
Initiatives, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hisashi Shidara
- Graduate
School of Medicine, Mie University, Tsu, Mie 514-8507, Japan
| | - Kiwamu Takemoto
- Graduate
School of Medicine, Mie University, Tsu, Mie 514-8507, Japan
| | - Takeharu Nagai
- SANKEN
(The Institute of Scientific and Industrial Research), Osaka University, Ibaraki, Osaka 567-0047, Japan
- Graduate
School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
- Transdimensional
Life Imaging Division, Institute for Open and Transdisciplinary Research
Initiatives, Osaka University, Suita, Osaka 565-0871, Japan
- Research
Institute for Electronic Science, Hokkaido
University, Sapporo, Hokkaido 001-0020, Japan
| |
Collapse
|
3
|
Abstract
The genetically encoded fluorescent sensors convert chemical and physical signals into light. They are powerful tools for the visualisation of physiological processes in living cells and freely moving animals. The fluorescent protein is the reporter module of a genetically encoded biosensor. In this study, we first review the history of the fluorescent protein in full emission spectra on a structural basis. Then, we discuss the design of the genetically encoded biosensor. Finally, we briefly review several major types of genetically encoded biosensors that are currently widely used based on their design and molecular targets, which may be useful for the future design of fluorescent biosensors.
Collapse
Affiliation(s)
- Minji Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, No. 3663 Zhong Shan Road North, Shanghai, 200062, China
| | - Yifan Da
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, No. 3663 Zhong Shan Road North, Shanghai, 200062, China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, No. 3663 Zhong Shan Road North, Shanghai, 200062, China
| |
Collapse
|
4
|
Tang L, Fang C. Photoswitchable Fluorescent Proteins: Mechanisms on Ultrafast Timescales. Int J Mol Sci 2022; 23:6459. [PMID: 35742900 PMCID: PMC9223536 DOI: 10.3390/ijms23126459] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 12/15/2022] Open
Abstract
The advancement of super-resolution imaging (SRI) relies on fluorescent proteins with novel photochromic properties. Using light, the reversibly switchable fluorescent proteins (RSFPs) can be converted between bright and dark states for many photocycles and their emergence has inspired the invention of advanced SRI techniques. The general photoswitching mechanism involves the chromophore cis-trans isomerization and proton transfer for negative and positive RSFPs and hydration-dehydration for decoupled RSFPs. However, a detailed understanding of these processes on ultrafast timescales (femtosecond to millisecond) is lacking, which fundamentally hinders the further development of RSFPs. In this review, we summarize the current progress of utilizing various ultrafast electronic and vibrational spectroscopies, and time-resolved crystallography in investigating the on/off photoswitching pathways of RSFPs. We show that significant insights have been gained for some well-studied proteins, but the real-time "action" details regarding the bidirectional cis-trans isomerization, proton transfer, and intermediate states remain unclear for most systems, and many other relevant proteins have not been studied yet. We expect this review to lay the foundation and inspire more ultrafast studies on existing and future engineered RSFPs. The gained mechanistic insights will accelerate the rational development of RSFPs with enhanced two-way switching rate and efficiency, better photostability, higher brightness, and redder emission colors.
Collapse
Affiliation(s)
- Longteng Tang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR 97331-4003, USA
| | - Chong Fang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR 97331-4003, USA
| |
Collapse
|
5
|
Mantovanelli L, Gaastra BF, Poolman B. Fluorescence-based sensing of the bioenergetic and physicochemical status of the cell. CURRENT TOPICS IN MEMBRANES 2021; 88:1-54. [PMID: 34862023 DOI: 10.1016/bs.ctm.2021.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fluorescence-based sensors play a fundamental role in biological research. These sensors can be based on fluorescent proteins, fluorescent probes or they can be hybrid systems. The availability of a very large dataset of fluorescent molecules, both genetically encoded and synthetically produced, together with the structural insights on many sensing domains, allowed to rationally design a high variety of sensors, capable of monitoring both molecular and global changes in living cells or in in vitro systems. The advancements in the fluorescence-imaging field helped researchers to obtain a deeper understanding of how and where specific changes occur in a cell or in vitro by combining the readout of the fluorescent sensors with the spatial information provided by fluorescent microscopy techniques. In this review we give an overview of the state of the art in the field of fluorescent biosensors and fluorescence imaging techniques, and eventually guide the reader through the choice of the best combination of fluorescent tools and techniques to answer specific biological questions. We particularly focus on sensors for probing the bioenergetics and physicochemical status of the cell.
Collapse
Affiliation(s)
- Luca Mantovanelli
- Department of Biochemistry, University of Groningen, Groningen, the Netherlands
| | - Bauke F Gaastra
- Department of Biochemistry, University of Groningen, Groningen, the Netherlands
| | - Bert Poolman
- Department of Biochemistry, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
6
|
Smylla TK, Wagner K, Huber A. Application of Fluorescent Proteins for Functional Dissection of the Drosophila Visual System. Int J Mol Sci 2021; 22:8930. [PMID: 34445636 PMCID: PMC8396179 DOI: 10.3390/ijms22168930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/13/2021] [Accepted: 08/14/2021] [Indexed: 11/22/2022] Open
Abstract
The Drosophila eye has been used extensively to study numerous aspects of biological systems, for example, spatio-temporal regulation of differentiation, visual signal transduction, protein trafficking and neurodegeneration. Right from the advent of fluorescent proteins (FPs) near the end of the millennium, heterologously expressed fusion proteins comprising FPs have been applied in Drosophila vision research not only for subcellular localization of proteins but also for genetic screens and analysis of photoreceptor function. Here, we summarize applications for FPs used in the Drosophila eye as part of genetic screens, to study rhodopsin expression patterns, subcellular protein localization, membrane protein transport or as genetically encoded biosensors for Ca2+ and phospholipids in vivo. We also discuss recently developed FPs that are suitable for super-resolution or correlative light and electron microscopy (CLEM) approaches. Illustrating the possibilities provided by using FPs in Drosophila photoreceptors may aid research in other sensory or neuronal systems that have not yet been studied as well as the Drosophila eye.
Collapse
Affiliation(s)
- Thomas K. Smylla
- Department of Biochemistry, Institute of Biology, University of Hohenheim, 70599 Stuttgart, Germany; (K.W.); (A.H.)
| | | | | |
Collapse
|
7
|
Konen T, Stumpf D, Grotjohann T, Jansen I, Bossi M, Weber M, Jensen N, Hell SW, Jakobs S. The Positive Switching Fluorescent Protein Padron2 Enables Live-Cell Reversible Saturable Optical Linear Fluorescence Transitions (RESOLFT) Nanoscopy without Sequential Illumination Steps. ACS NANO 2021; 15:9509-9521. [PMID: 34019380 PMCID: PMC8291764 DOI: 10.1021/acsnano.0c08207] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Reversibly switchable fluorescent proteins (RSFPs) can be repeatedly transferred between a fluorescent on- and a nonfluorescent off-state by illumination with light of different wavelengths. Negative switching RSFPs are switched from the on- to the off-state with the same wavelength that also excites fluorescence. Positive switching RSFPs have a reversed light response, where the fluorescence excitation wavelength induces the transition from the off- to the on-state. Reversible saturable optical linear (fluorescence) transitions (RESOLFT) nanoscopy utilizes these switching states to achieve diffraction-unlimited resolution but so far has primarily relied on negative switching RSFPs by using time sequential switching schemes. On the basis of the green fluorescent RSFP Padron, we engineered the positive switching RSFP Padron2. Compared to its predecessor, it can undergo 50-fold more switching cycles while displaying a contrast ratio between the on- and the off-states of more than 100:1. Because of its robust switching behavior, Padron2 supports a RESOLFT imaging scheme that entirely refrains from sequential switching as it only requires beam scanning of two spatially overlaid light distributions. Using Padron2, we demonstrate live-cell RESOLFT nanoscopy without sequential illumination steps.
Collapse
Affiliation(s)
- Timo Konen
- Department
of NanoBiophotonics, Max Planck Institute
for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Daniel Stumpf
- Department
of NanoBiophotonics, Max Planck Institute
for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Tim Grotjohann
- Department
of NanoBiophotonics, Max Planck Institute
for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Isabelle Jansen
- Department
of NanoBiophotonics, Max Planck Institute
for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Mariano Bossi
- Department
of Optical Nanoscopy, Max Planck Institute
for Medical Research, 69120 Heidelberg, Germany
| | - Michael Weber
- Department
of NanoBiophotonics, Max Planck Institute
for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Nickels Jensen
- Department
of NanoBiophotonics, Max Planck Institute
for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Stefan W. Hell
- Department
of NanoBiophotonics, Max Planck Institute
for Biophysical Chemistry, 37077 Göttingen, Germany
- Department
of Optical Nanoscopy, Max Planck Institute
for Medical Research, 69120 Heidelberg, Germany
| | - Stefan Jakobs
- Department
of NanoBiophotonics, Max Planck Institute
for Biophysical Chemistry, 37077 Göttingen, Germany
- Clinic
of Neurology, University of Göttingen, 37075 Göttingen, Germany
| |
Collapse
|