1
|
Din RU, Ahmed S, Khan SH, Albanyan A, Hoxha J, Alkhamees B. A novel decision ensemble framework: Attention-customized BiLSTM and XGBoost for speculative stock price forecasting. PLoS One 2025; 20:e0320089. [PMID: 40238912 PMCID: PMC12002496 DOI: 10.1371/journal.pone.0320089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 02/12/2025] [Indexed: 04/18/2025] Open
Abstract
Forecasting speculative stock prices is essential for effective investment risk management and requires innovative algorithms. However, the speculative nature, volatility, and complex sequential dependencies within financial markets present inherent challenges that necessitate advanced techniques. In this regard, a novel framework, ACB-XDE (Attention-Customized BiLSTM-XGB Decision Ensemble), is proposed for predicting the daily closing price of speculative stock Bitcoin-USD (BTC-USD). The proposed ACB-XDE framework integrates the learning capabilities of a customized Bi-directional Long Short-Term Memory (BiLSTM) model with a novel attention mechanism and the XGBoost algorithm. The customized BiLSTM leverages its learning capabilities to capture complex sequential dependencies and speculative market trends. Meanwhile, the new attention mechanism dynamically assigns weights to influential features based on volatility patterns, thereby enhancing interpretability and optimizing effective cost measures and volatility forecasting. Moreover, XGBoost handles nonlinear relationships and contributes to the proposed ACB-XDE framework's robustness. Furthermore, the error reciprocal method improves predictions by iteratively adjusting model weights based on the difference between theoretical expectations and actual errors in the individual attention-customized BiLSTM and XGBoost models. Finally, the predictions from both the XGBoost and attention-customized BiLSTM models are concatenated to create a varied prediction space, which is then fed into the ensemble regression framework to improve the generalization capabilities of the proposed ACB-XDE framework. Empirical validation of the proposed ACB-XDE framework involves its application to the volatile Bitcoin market, utilizing a dataset sourced from Yahoo Finance (Bitcoin-USD, 10/01/2014 to 01/08/2023). The proposed ACB-XDE framework outperforms state-of-the-art models with a MAPE of 0.37%, MAE of 84.40, and RMSE of 106.14. This represents improvements of approximately 27.45%, 53.32%, and 38.59% in MAPE, MAE, and RMSE respectively, over the best-performing attention-BiLSTM. The proposed ACB-XDE framework presents a technique for informed decision-making in dynamic financial landscapes and demonstrates effectiveness in handling the complexities of BTC-USD data.
Collapse
Affiliation(s)
- Riaz Ud Din
- Artificial Intelligence Lab, Department of Computer Systems Engineering, University of Engineering and Applied Sciences (UEAS), Swat, Pakistan
- Department of Computer Systems Engineering, University of Engineering and Technology (UET), Peshawar, Pakistan
| | - Salman Ahmed
- Department of Computer Systems Engineering, University of Engineering and Technology (UET), Peshawar, Pakistan
- Faculty of Computer Science and Engineering, Ghulam Ishaq Khan Institute of Engineering Science and Technology, Topi, Swabi, Pakistan
| | - Saddam Hussain Khan
- Artificial Intelligence Lab, Department of Computer Systems Engineering, University of Engineering and Applied Sciences (UEAS), Swat, Pakistan
| | - Abdullah Albanyan
- College of Computer Engineering and Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Julian Hoxha
- College of Engineering and Technology, American University of the Middle East, Egaila, Kuwait
| | - Bader Alkhamees
- Department of Information Systems, College of Computer and Information Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Guemas E, Routier B, Ghelfenstein-Ferreira T, Cordier C, Hartuis S, Marion B, Bertout S, Varlet-Marie E, Costa D, Pasquier G. Automatic patient-level recognition of four Plasmodium species on thin blood smear by a real-time detection transformer (RT-DETR) object detection algorithm: a proof-of-concept and evaluation. Microbiol Spectr 2024; 12:e0144023. [PMID: 38171008 PMCID: PMC10846087 DOI: 10.1128/spectrum.01440-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 11/15/2023] [Indexed: 01/05/2024] Open
Abstract
Malaria remains a global health problem, with 247 million cases and 619,000 deaths in 2021. Diagnosis of Plasmodium species is important for administering the appropriate treatment. The gold-standard diagnosis for accurate species identification remains the thin blood smear. Nevertheless, this method is time-consuming and requires highly skilled and trained microscopists. To overcome these issues, new diagnostic tools based on deep learning are emerging. This study aimed to evaluate the performances of a real-time detection transformer (RT-DETR) object detection algorithm to discriminate Plasmodium species on thin blood smear images. The algorithm was trained and validated on a data set consisting in 24,720 images from 475 thin blood smears corresponding to 2,002,597 labels. Performances were calculated with a test data set of 4,508 images from 170 smears corresponding to 358,825 labels coming from six French university hospitals. At the patient level, the RT-DETR algorithm exhibited an overall accuracy of 79.4% (135/170) with a recall of 74% (40/54) and 81.9% (95/116) for negative and positive smears, respectively. Among Plasmodium-positive smears, the global accuracy was 82.7% (91/110) with a recall of 90% (38/42), 81.8% (18/22), and 76.1% (35/46) for P. falciparum, P. malariae, and P. ovale/vivax, respectively. The RT-DETR model achieved a World Health Organization (WHO) competence level 2 for species identification. Besides, the RT-DETR algorithm may be run in real-time on low-cost devices such as a smartphone and could be suitable for deployment in low-resource setting areas lacking microscopy experts.IMPORTANCEMalaria remains a global health problem, with 247 million cases and 619,000 deaths in 2021. Diagnosis of Plasmodium species is important for administering the appropriate treatment. The gold-standard diagnosis for accurate species identification remains the thin blood smear. Nevertheless, this method is time-consuming and requires highly skilled and trained microscopists. To overcome these issues, new diagnostic tools based on deep learning are emerging. This study aimed to evaluate the performances of a real-time detection transformer (RT-DETR) object detection algorithm to discriminate Plasmodium species on thin blood smear images. Performances were calculated with a test data set of 4,508 images from 170 smears coming from six French university hospitals. The RT-DETR model achieved a World Health Organization (WHO) competence level 2 for species identification. Besides, the RT-DETR algorithm may be run in real-time on low-cost devices and could be suitable for deployment in low-resource setting areas.
Collapse
Affiliation(s)
- Emilie Guemas
- Department of Parasitology and Mycology, Academic Hospital (CHU) of Toulouse, Toulouse, France
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), CNRS UMR5051, INSERM UMR1291, UPS, Toulouse, France
| | - Baptiste Routier
- Laboratory of Parasitology-Mycology, EA7510 ESCAPE, University Hospital of Rouen, University of Rouen Normandie, Normandie, France
| | - Théo Ghelfenstein-Ferreira
- Université de Paris Cité, Laboratoire de Parasitologie-Mycologie, Groupe Hospitalier Saint-Louis-Lariboisière-Fernand-Widal, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Camille Cordier
- Laboratory of Parasitology-Mycology, INSERM U1285, Unité de Glycobiologie Structurale et Fonctionnelle (CNRS UMR 8576), University Hospital (CHU) of Lille, University of Lille, Lille, France
| | - Sophie Hartuis
- Nantes University,Academic Hospital (CHU) of Nantes,Cibles et Médicaments des Infections et de l'Immunité, IICiMed, UR1155, Nantes, France
| | - Bénédicte Marion
- Department of Physical Chemistry and Biophysics, Academic Hospital (CHU) of Montpellier, University of Montpellier, National Reference Centre (CNR) for Paludism, Montpellier, France
- Department of Parasitology/Mycology, Academic Hospital (CHU) of Montpellier, University of Montpellier, National Reference Centre (CNR) for Paludism, Montpellier, France
| | - Sébastien Bertout
- Laboratory of Parasitology/Mycology, UMI 233 TransVIHMI, University of Montpellier, IRD, INSERM U1175, Montpellier, France
| | - Emmanuelle Varlet-Marie
- Department of Physical Chemistry and Biophysics, Academic Hospital (CHU) of Montpellier, University of Montpellier, National Reference Centre (CNR) for Paludism, Montpellier, France
- Department of Parasitology/Mycology, Academic Hospital (CHU) of Montpellier, University of Montpellier, National Reference Centre (CNR) for Paludism, Montpellier, France
| | - Damien Costa
- Laboratory of Parasitology-Mycology, EA7510 ESCAPE, University Hospital of Rouen, University of Rouen Normandie, Normandie, France
| | - Grégoire Pasquier
- Department of Parasitology/Mycology, Academic Hospital (CHU) of Montpellier, University of Montpellier, National Reference Centre (CNR) for Paludism, Montpellier, France
| |
Collapse
|
3
|
Aljrees T. Improving prediction of cervical cancer using KNN imputer and multi-model ensemble learning. PLoS One 2024; 19:e0295632. [PMID: 38170713 PMCID: PMC10763959 DOI: 10.1371/journal.pone.0295632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/23/2023] [Indexed: 01/05/2024] Open
Abstract
Cervical cancer is a leading cause of women's mortality, emphasizing the need for early diagnosis and effective treatment. In line with the imperative of early intervention, the automated identification of cervical cancer has emerged as a promising avenue, leveraging machine learning techniques to enhance both the speed and accuracy of diagnosis. However, an inherent challenge in the development of these automated systems is the presence of missing values in the datasets commonly used for cervical cancer detection. Missing data can significantly impact the performance of machine learning models, potentially leading to inaccurate or unreliable results. This study addresses a critical challenge in automated cervical cancer identification-handling missing data in datasets. The study present a novel approach that combines three machine learning models into a stacked ensemble voting classifier, complemented by the use of a KNN Imputer to manage missing values. The proposed model achieves remarkable results with an accuracy of 0.9941, precision of 0.98, recall of 0.96, and an F1 score of 0.97. This study examines three distinct scenarios: one involving the deletion of missing values, another utilizing KNN imputation, and a third employing PCA for imputing missing values. This research has significant implications for the medical field, offering medical experts a powerful tool for more accurate cervical cancer therapy and enhancing the overall effectiveness of testing procedures. By addressing missing data challenges and achieving high accuracy, this work represents a valuable contribution to cervical cancer detection, ultimately aiming to reduce the impact of this disease on women's health and healthcare systems.
Collapse
Affiliation(s)
- Turki Aljrees
- College of Computer Science and Engineering, University of Hafr Al-Batin, Hafar Al-Batin, Saudi Arabia
| |
Collapse
|
4
|
Wu S, Zhang R, Yan J, Li C, Liu Q, Wang L, Wang H. High-Speed and Accurate Diagnosis of Gastrointestinal Disease: Learning on Endoscopy Images Using Lightweight Transformer with Local Feature Attention. Bioengineering (Basel) 2023; 10:1416. [PMID: 38136007 PMCID: PMC10741161 DOI: 10.3390/bioengineering10121416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/04/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023] Open
Abstract
In response to the pressing need for robust disease diagnosis from gastrointestinal tract (GIT) endoscopic images, we proposed FLATer, a fast, lightweight, and highly accurate transformer-based model. FLATer consists of a residual block, a vision transformer module, and a spatial attention block, which concurrently focuses on local features and global attention. It can leverage the capabilities of both convolutional neural networks (CNNs) and vision transformers (ViT). We decomposed the classification of endoscopic images into two subtasks: a binary classification to discern between normal and pathological images and a further multi-class classification to categorize images into specific diseases, namely ulcerative colitis, polyps, and esophagitis. FLATer has exhibited exceptional prowess in these tasks, achieving 96.4% accuracy in binary classification and 99.7% accuracy in ternary classification, surpassing most existing models. Notably, FLATer could maintain impressive performance when trained from scratch, underscoring its robustness. In addition to the high precision, FLATer boasted remarkable efficiency, reaching a notable throughput of 16.4k images per second, which positions FLATer as a compelling candidate for rapid disease identification in clinical practice.
Collapse
Affiliation(s)
- Shibin Wu
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (S.W.); (R.Z.); (J.Y.)
| | - Ruxin Zhang
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (S.W.); (R.Z.); (J.Y.)
| | - Jiayi Yan
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (S.W.); (R.Z.); (J.Y.)
| | - Chengquan Li
- School of Clinical Medicine, Tsinghua University, Beijing 100084, China;
| | - Qicai Liu
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China;
| | - Liyang Wang
- School of Clinical Medicine, Tsinghua University, Beijing 100084, China;
| | - Haoqian Wang
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (S.W.); (R.Z.); (J.Y.)
| |
Collapse
|
5
|
Khan SH, Alahmadi TJ, Alsahfi T, Alsadhan AA, Mazroa AA, Alkahtani HK, Albanyan A, Sakr HA. COVID-19 infection analysis framework using novel boosted CNNs and radiological images. Sci Rep 2023; 13:21837. [PMID: 38071373 PMCID: PMC10710448 DOI: 10.1038/s41598-023-49218-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023] Open
Abstract
COVID-19, a novel pathogen that emerged in late 2019, has the potential to cause pneumonia with unique variants upon infection. Hence, the development of efficient diagnostic systems is crucial in accurately identifying infected patients and effectively mitigating the spread of the disease. However, the system poses several challenges because of the limited availability of labeled data, distortion, and complexity in image representation, as well as variations in contrast and texture. Therefore, a novel two-phase analysis framework has been developed to scrutinize the subtle irregularities associated with COVID-19 contamination. A new Convolutional Neural Network-based STM-BRNet is developed, which integrates the Split-Transform-Merge (STM) block and Feature map enrichment (FME) techniques in the first phase. The STM block captures boundary and regional-specific features essential for detecting COVID-19 infectious CT slices. Additionally, by incorporating the FME and Transfer Learning (TL) concept into the STM blocks, multiple enhanced channels are generated to effectively capture minute variations in illumination and texture specific to COVID-19-infected images. Additionally, residual multipath learning is used to improve the learning capacity of STM-BRNet and progressively increase the feature representation by boosting at a high level through TL. In the second phase of the analysis, the COVID-19 CT scans are processed using the newly developed SA-CB-BRSeg segmentation CNN to accurately delineate infection in the images. The SA-CB-BRSeg method utilizes a unique approach that combines smooth and heterogeneous processes in both the encoder and decoder. These operations are structured to effectively capture COVID-19 patterns, including region-homogenous, texture variation, and border. By incorporating these techniques, the SA-CB-BRSeg method demonstrates its ability to accurately analyze and segment COVID-19 related data. Furthermore, the SA-CB-BRSeg model incorporates the novel concept of CB in the decoder, where additional channels are combined using TL to enhance the learning of low contrast regions. The developed STM-BRNet and SA-CB-BRSeg models achieve impressive results, with an accuracy of 98.01%, recall of 98.12%, F-score of 98.11%, Dice Similarity of 96.396%, and IOU of 98.85%. The proposed framework will alleviate the workload and enhance the radiologist's decision-making capacity in identifying the infected region of COVID-19 and evaluating the severity stages of the disease.
Collapse
Affiliation(s)
- Saddam Hussain Khan
- Department of Computer Systems Engineering, University of Engineering and Applied Science, Swat, 19060, Pakistan
| | - Tahani Jaser Alahmadi
- Department of Information Systems, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia.
| | - Tariq Alsahfi
- Department of Information Systems and Technology, College of Computer Science and Engineering, University of Jeddah, Jeddah, Saudi Arabia
| | - Abeer Abdullah Alsadhan
- Computer Science Department, Applied College, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia.
| | - Alanoud Al Mazroa
- Department of Information Systems, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia
| | - Hend Khalid Alkahtani
- Department of Information Systems, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia
| | - Abdullah Albanyan
- College of Computer Engineering and Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Hesham A Sakr
- Nile Higher Institute for Engineering and Technology, Mansoura, Egypt
| |
Collapse
|
6
|
Pramanik P, Pramanik R, Schwenker F, Sarkar R. DBU-Net: Dual branch U-Net for tumor segmentation in breast ultrasound images. PLoS One 2023; 18:e0293615. [PMID: 37930947 PMCID: PMC10627442 DOI: 10.1371/journal.pone.0293615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/16/2023] [Indexed: 11/08/2023] Open
Abstract
Breast ultrasound medical images often have low imaging quality along with unclear target boundaries. These issues make it challenging for physicians to accurately identify and outline tumors when diagnosing patients. Since precise segmentation is crucial for diagnosis, there is a strong need for an automated method to enhance the segmentation accuracy, which can serve as a technical aid in diagnosis. Recently, the U-Net and its variants have shown great success in medical image segmentation. In this study, drawing inspiration from the U-Net concept, we propose a new variant of the U-Net architecture, called DBU-Net, for tumor segmentation in breast ultrasound images. To enhance the feature extraction capabilities of the encoder, we introduce a novel approach involving the utilization of two distinct encoding paths. In the first path, the original image is employed, while in the second path, we use an image created using the Roberts edge filter, in which edges are highlighted. This dual branch encoding strategy helps to extract the semantic rich information through a mutually informative learning process. At each level of the encoder, both branches independently undergo two convolutional layers followed by a pooling layer. To facilitate cross learning between the branches, a weighted addition scheme is implemented. These weights are dynamically learned by considering the gradient with respect to the loss function. We evaluate the performance of our proposed DBU-Net model on two datasets, namely BUSI and UDIAT, and our experimental results demonstrate superior performance compared to state-of-the-art models.
Collapse
Affiliation(s)
- Payel Pramanik
- Department of Computer Science and Engineering, Jadavpur University, Kolkata, India
| | - Rishav Pramanik
- Department of Computer Science and Engineering, Jadavpur University, Kolkata, India
| | | | - Ram Sarkar
- Department of Computer Science and Engineering, Jadavpur University, Kolkata, India
| |
Collapse
|
7
|
Khan SH, Iqbal J, Hassnain SA, Owais M, Mostafa SM, Hadjouni M, Mahmoud A. COVID-19 detection and analysis from lung CT images using novel channel boosted CNNs. EXPERT SYSTEMS WITH APPLICATIONS 2023; 229:120477. [PMID: 37220492 PMCID: PMC10186852 DOI: 10.1016/j.eswa.2023.120477] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 05/10/2023] [Accepted: 05/10/2023] [Indexed: 05/25/2023]
Abstract
In December 2019, the global pandemic COVID-19 in Wuhan, China, affected human life and the worldwide economy. Therefore, an efficient diagnostic system is required to control its spread. However, the automatic diagnostic system poses challenges with a limited amount of labeled data, minor contrast variation, and high structural similarity between infection and background. In this regard, a new two-phase deep convolutional neural network (CNN) based diagnostic system is proposed to detect minute irregularities and analyze COVID-19 infection. In the first phase, a novel SB-STM-BRNet CNN is developed, incorporating a new channel Squeezed and Boosted (SB) and dilated convolutional-based Split-Transform-Merge (STM) block to detect COVID-19 infected lung CT images. The new STM blocks performed multi-path region-smoothing and boundary operations, which helped to learn minor contrast variation and global COVID-19 specific patterns. Furthermore, the diverse boosted channels are achieved using the SB and Transfer Learning concepts in STM blocks to learn texture variation between COVID-19-specific and healthy images. In the second phase, COVID-19 infected images are provided to the novel COVID-CB-RESeg segmentation CNN to identify and analyze COVID-19 infectious regions. The proposed COVID-CB-RESeg methodically employed region-homogeneity and heterogeneity operations in each encoder-decoder block and boosted-decoder using auxiliary channels to simultaneously learn the low illumination and boundaries of the COVID-19 infected region. The proposed diagnostic system yields good performance in terms of accuracy: 98.21 %, F-score: 98.24%, Dice Similarity: 96.40 %, and IOU: 98.85 % for the COVID-19 infected region. The proposed diagnostic system would reduce the burden and strengthen the radiologist's decision for a fast and accurate COVID-19 diagnosis.
Collapse
Affiliation(s)
- Saddam Hussain Khan
- Department of Computer Systems Engineering, University of Engineering and Applied Science, Swat 19060, Pakistan
| | - Javed Iqbal
- Department of Computer Systems Engineering, University of Engineering and Applied Science, Swat 19060, Pakistan
| | - Syed Agha Hassnain
- Ocean College, Zhejiang University, Zheda Road 1, Zhoushan, Zhejiang 316021, China
| | - Muhammad Owais
- KUCARS and C2PS, Department of Electrical Engineering and Computer Science, Khalifa University, UAE
| | - Samih M Mostafa
- Computer Science Department, Faculty of Computers and Information, South Valley University, Qena 83523, Egypt
- Faculty of Industry and Energy Technology, New Assiut Technological University (N.A.T.U.), New Assiut City, Egypt
| | - Myriam Hadjouni
- Department of Computer Sciences, College of Computer and Information Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Amena Mahmoud
- Faculty of Computers and Information, Department of Computer Science, KafrElSkeikh University, Egypt
| |
Collapse
|
8
|
Liu R, Liu T, Dan T, Yang S, Li Y, Luo B, Zhuang Y, Fan X, Zhang X, Cai H, Teng Y. AIDMAN: An AI-based object detection system for malaria diagnosis from smartphone thin-blood-smear images. PATTERNS (NEW YORK, N.Y.) 2023; 4:100806. [PMID: 37720337 PMCID: PMC10499858 DOI: 10.1016/j.patter.2023.100806] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/02/2023] [Accepted: 07/07/2023] [Indexed: 09/19/2023]
Abstract
Malaria is a significant public health concern, with ∼95% of cases occurring in Africa, but accurate and timely diagnosis is problematic in remote and low-income areas. Here, we developed an artificial intelligence-based object detection system for malaria diagnosis (AIDMAN). In this system, the YOLOv5 model is used to detect cells in a thin blood smear. An attentional aligner model (AAM) is then applied for cellular classification that consists of multi-scale features, a local context aligner, and multi-scale attention. Finally, a convolutional neural network classifier is applied for diagnosis using blood-smear images, reducing interference caused by false positive cells. The results demonstrate that AIDMAN handles interference well, with a diagnostic accuracy of 98.62% for cells and 97% for blood-smear images. The prospective clinical validation accuracy of 98.44% is comparable to that of microscopists. AIDMAN shows clinically acceptable detection of malaria parasites and could aid malaria diagnosis, especially in areas lacking experienced parasitologists and equipment.
Collapse
Affiliation(s)
- Ruicun Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Tuoyu Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Tingting Dan
- School of Computer Science and Engineering, South China University of Technology, Guangzhou 510600, China
| | - Shan Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Yanbing Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Boyu Luo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Yingtan Zhuang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Xinyue Fan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Xianchao Zhang
- Key Laboratory of Medical Electronics and Digital Health of Zhejiang Province, Jiaxing University, Jiaxing 314001, China
- Engineering Research Center of Intelligent Human Health Situation Awareness of Zhejiang Province, Jiaxing University, Jiaxing 314001, China
| | - Hongmin Cai
- School of Computer Science and Engineering, South China University of Technology, Guangzhou 510600, China
| | - Yue Teng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| |
Collapse
|
9
|
Rauf Z, Sohail A, Khan SH, Khan A, Gwak J, Maqbool M. Attention-guided multi-scale deep object detection framework for lymphocyte analysis in IHC histological images. Microscopy (Oxf) 2023; 72:27-42. [PMID: 36239597 DOI: 10.1093/jmicro/dfac051] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/21/2022] [Accepted: 10/13/2022] [Indexed: 11/14/2022] Open
Abstract
Tumor-infiltrating lymphocytes are specialized lymphocytes that can detect and kill cancerous cells. Their detection poses many challenges due to significant morphological variations, overlapping occurrence, artifact regions and high-class resemblance between clustered areas and artifacts. In this regard, a Lymphocyte Analysis Framework based on Deep Convolutional neural network (DC-Lym-AF) is proposed to analyze lymphocytes in immunohistochemistry images. The proposed framework comprises (i) pre-processing, (ii) screening phase, (iii) localization phase and (iv) post-processing. In the screening phase, a custom convolutional neural network architecture (lymphocyte dilated network) is developed to screen lymphocytic regions by performing a patch-level classification. This proposed architecture uses dilated convolutions and shortcut connections to capture multi-level variations and ensure reference-based learning. In contrast, the localization phase utilizes an attention-guided multi-scale lymphocyte detector to detect lymphocytes. The proposed detector extracts refined and multi-scale features by exploiting dilated convolutions, attention mechanism and feature pyramid network (FPN) using its custom attention-aware backbone. The proposed DC-Lym-AF shows exemplary performance on the NuClick dataset compared with the existing detection models, with an F-score and precision of 0.84 and 0.83, respectively. We verified the generalizability of our proposed framework by participating in a publically open LYON'19 challenge. Results in terms of detection rate (0.76) and F-score (0.73) suggest that the proposed DC-Lym-AF can effectively detect lymphocytes in immunohistochemistry-stained images collected from different laboratories. In addition, its promising generalization on several datasets implies that it can be turned into a medical diagnostic tool to investigate various histopathological problems. Graphical Abstract.
Collapse
Affiliation(s)
- Zunaira Rauf
- Pattern Recognition Lab, Department of Computer and Information Sciences, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad 45650, Pakistan.,PIEAS Artificial Intelligence Center, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad 45650, Pakistan
| | - Anabia Sohail
- Pattern Recognition Lab, Department of Computer and Information Sciences, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad 45650, Pakistan.,Department of Computer Science, Faculty of Computing and Artificial Intelligence, Air University, E-9, Islamabad 44230, Pakistan
| | - Saddam Hussain Khan
- Pattern Recognition Lab, Department of Computer and Information Sciences, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad 45650, Pakistan.,Department of Computer Systems Engineering, University of Engineering and Applied Sciences, Swat, Khyber Pakhtunkhwa 19130, Pakistan
| | - Asifullah Khan
- Pattern Recognition Lab, Department of Computer and Information Sciences, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad 45650, Pakistan.,PIEAS Artificial Intelligence Center, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad 45650, Pakistan.,Center for Mathematical Sciences, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad 45650, Pakistan
| | - Jeonghwan Gwak
- Department of Software, Korea National University of Transportation, Chungju 27469, Republic of Korea
| | - Muhammad Maqbool
- The University of Alabama at Birmingham, 1720 2nd Ave South, Birmingham, AL 35294, USA
| |
Collapse
|
10
|
Elmhamudi A, Abubakar A, Ugail H, Thomson B, Wilson C, Turner M, Manas D, Tingle S, Colenutt S, Sen G, Hunter J, Sun M, Scully J. Deep Learning Assisted Kidney Organ Image Analysis for Assessing the Viability of Transplantation. 2022 14TH INTERNATIONAL CONFERENCE ON SOFTWARE, KNOWLEDGE, INFORMATION MANAGEMENT AND APPLICATIONS (SKIMA) 2022:204-209. [DOI: 10.1109/skima57145.2022.10029406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Affiliation(s)
- Ali Elmhamudi
- University of Bradford,Centre for Visual Computing, Faculty of Engineering and Informatics,Bradford,United Kingdom
| | - Aliyu Abubakar
- University of Bradford,Centre for Visual Computing, Faculty of Engineering and Informatics,Bradford,United Kingdom
| | - Hassan Ugail
- University of Bradford,Centre for Visual Computing, Faculty of Engineering and Informatics,Bradford,United Kingdom
| | - Brian Thomson
- University of Bradford,Centre for Visual Computing, Faculty of Engineering and Informatics,Bradford,United Kingdom
| | - Colin Wilson
- NIHR Blood and Transplant Research Unit in Organ Donation and Transplantation at Cambridge and Newcastle Universities,Newcastle upon Tyne,United Kingdom
| | - Mark Turner
- NIHR Blood and Transplant Research Unit in Organ Donation and Transplantation at Cambridge and Newcastle Universities,Newcastle upon Tyne,United Kingdom
| | - Derek Manas
- NIHR Blood and Transplant Research Unit in Organ Donation and Transplantation at Cambridge and Newcastle Universities,Newcastle upon Tyne,United Kingdom
| | - Samuel Tingle
- NIHR Blood and Transplant Research Unit in Organ Donation and Transplantation at Cambridge and Newcastle Universities,Newcastle upon Tyne,United Kingdom
| | - Sam Colenutt
- NIHR Blood and Transplant Research Unit in Organ Donation and Transplantation at Cambridge and Newcastle Universities,Newcastle upon Tyne,United Kingdom
| | - Gourab Sen
- NIHR Blood and Transplant Research Unit in Organ Donation and Transplantation at Cambridge and Newcastle Universities,Newcastle upon Tyne,United Kingdom
| | - James Hunter
- University of Oxford,Nuffield Department of Surgical Sciences,Oxford,United Kingdom
| | - Meng Sun
- University of Oxford,Nuffield Department of Surgical Sciences,Oxford,United Kingdom
| | - Jackie Scully
- Disability Innovation Institute UNSW, University of New South Wales,Kensington,Australia
| |
Collapse
|
11
|
Lee J, Lee SM, Ahn JM, Lee TR, Kim W, Cho EH, Ki CS. Development and performance evaluation of an artificial intelligence algorithm using cell-free DNA fragment distance for non-invasive prenatal testing (aiD-NIPT). Front Genet 2022; 13:999587. [DOI: 10.3389/fgene.2022.999587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/09/2022] [Indexed: 11/30/2022] Open
Abstract
With advances in next-generation sequencing technology, non-invasive prenatal testing (NIPT) has been widely implemented to detect fetal aneuploidies, including trisomy 21, 18, and 13 (T21, T18, and T13). Most NIPT methods use cell-free DNA (cfDNA) fragment count (FC) in maternal blood. In this study, we developed a novel NIPT method using cfDNA fragment distance (FD) and convolutional neural network-based artificial intelligence algorithm (aiD-NIPT). Four types of aiD-NIPT algorithm (mean, median, interquartile range, and its ensemble) were developed using 2,215 samples. In an analysis of 17,678 clinical samples, all algorithms showed >99.40% accuracy for T21/T18/T13, and the ensemble algorithm showed the best performance (sensitivity: 99.07%, positive predictive value (PPV): 88.43%); the FC-based conventional Z-score and normalized chromosomal value showed 98.15% sensitivity, with 40.77% and 36.81% PPV, respectively. In conclusion, FD-based aiD-NIPT was successfully developed, and it showed better performance than FC-based NIPT methods.
Collapse
|