1
|
Ramzan R, Kadenbach B, Vogt S. Multiple Mechanisms Regulate Eukaryotic Cytochrome C Oxidase. Cells 2021; 10:cells10030514. [PMID: 33671025 PMCID: PMC7997345 DOI: 10.3390/cells10030514] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 02/07/2023] Open
Abstract
Cytochrome c oxidase (COX), the rate-limiting enzyme of mitochondrial respiration, is regulated by various mechanisms. Its regulation by ATP (adenosine triphosphate) appears of particular importance, since it evolved early during evolution and is still found in cyanobacteria, but not in other bacteria. Therefore the "allosteric ATP inhibition of COX" is described here in more detail. Most regulatory properties of COX are related to "supernumerary" subunits, which are largely absent in bacterial COX. The "allosteric ATP inhibition of COX" was also recently described in intact isolated rat heart mitochondria.
Collapse
Affiliation(s)
- Rabia Ramzan
- Cardiovascular Research Laboratory, Biochemical-Pharmacological Center, Philipps-University Marburg, Karl-von-Frisch-Strasse 1, D-35043 Marburg, Germany;
| | - Bernhard Kadenbach
- Fachbereich Chemie, Philipps-University, D-35032 Marburg, Germany
- Correspondence:
| | - Sebastian Vogt
- Department of Heart Surgery, Campus Marburg, University Hospital of Giessen and Marburg, D-35043 Marburg, Germany;
| |
Collapse
|
2
|
Gladyck S, Aras S, Hüttemann M, Grossman LI. Regulation of COX Assembly and Function by Twin CX 9C Proteins-Implications for Human Disease. Cells 2021; 10:197. [PMID: 33498264 PMCID: PMC7909247 DOI: 10.3390/cells10020197] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 12/29/2022] Open
Abstract
Oxidative phosphorylation is a tightly regulated process in mammals that takes place in and across the inner mitochondrial membrane and consists of the electron transport chain and ATP synthase. Complex IV, or cytochrome c oxidase (COX), is the terminal enzyme of the electron transport chain, responsible for accepting electrons from cytochrome c, pumping protons to contribute to the gradient utilized by ATP synthase to produce ATP, and reducing oxygen to water. As such, COX is tightly regulated through numerous mechanisms including protein-protein interactions. The twin CX9C family of proteins has recently been shown to be involved in COX regulation by assisting with complex assembly, biogenesis, and activity. The twin CX9C motif allows for the import of these proteins into the intermembrane space of the mitochondria using the redox import machinery of Mia40/CHCHD4. Studies have shown that knockdown of the proteins discussed in this review results in decreased or completely deficient aerobic respiration in experimental models ranging from yeast to human cells, as the proteins are conserved across species. This article highlights and discusses the importance of COX regulation by twin CX9C proteins in the mitochondria via COX assembly and control of its activity through protein-protein interactions, which is further modulated by cell signaling pathways. Interestingly, select members of the CX9C protein family, including MNRR1 and CHCHD10, show a novel feature in that they not only localize to the mitochondria but also to the nucleus, where they mediate oxygen- and stress-induced transcriptional regulation, opening a new view of mitochondrial-nuclear crosstalk and its involvement in human disease.
Collapse
Affiliation(s)
- Stephanie Gladyck
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA; (S.G.); (S.A.); (M.H.)
| | - Siddhesh Aras
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA; (S.G.); (S.A.); (M.H.)
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland and Detroit, MI 48201, USA
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA; (S.G.); (S.A.); (M.H.)
| | - Lawrence I. Grossman
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA; (S.G.); (S.A.); (M.H.)
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland and Detroit, MI 48201, USA
| |
Collapse
|
3
|
Kadenbach B. Complex IV - The regulatory center of mitochondrial oxidative phosphorylation. Mitochondrion 2020; 58:296-302. [PMID: 33069909 DOI: 10.1016/j.mito.2020.10.004] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/01/2020] [Accepted: 10/12/2020] [Indexed: 12/19/2022]
Abstract
ATP, the universal energy currency in all living cells, is mainly synthesized in mitochondria by oxidative phosphorylation (OXPHOS). The final and rate limiting step of the respiratory chain is cytochrome c oxidase (COX) which represents the regulatory center of OXPHOS. COX is regulated through binding of various effectors to its "supernumerary" subunits, by reversible phosphorylation, and by expression of subunit isoforms. Of particular interest is its feedback inhibition by ATP, the final product of OXPHOS. This "allosteric ATP-inhibition" of phosphorylated and dimeric COX maintains a low and healthy mitochondrial membrane potential (relaxed state), and prevents the formation of ROS (reactive oxygen species) which are known to cause numerous diseases. Excessive work and stress abolish this feedback inhibition of COX by Ca2+-activated dephosphorylation which leads to monomerization and movement of NDUFA4 from complex I to COX with higher rates of COX activity and ATP synthesis (active state) but increased ROS formation and decreased efficiency.
Collapse
|
4
|
Kadenbach B. Regulation of cytochrome c oxidase contributes to health and optimal life. World J Biol Chem 2020; 11:52-61. [PMID: 33024517 PMCID: PMC7520645 DOI: 10.4331/wjbc.v11.i2.52] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/01/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023] Open
Abstract
The generation of cellular energy in the form of ATP occurs mainly in mitochondria by oxidative phosphorylation. Cytochrome c oxidase (CytOx), the oxygen accepting and rate-limiting step of the respiratory chain, regulates the supply of variable ATP demands in cells by “allosteric ATP-inhibition of CytOx.” This mechanism is based on inhibition of oxygen uptake of CytOx at high ATP/ADP ratios and low ferrocytochrome c concentrations in the mitochondrial matrix via cooperative interaction of the two substrate binding sites in dimeric CytOx. The mechanism keeps mitochondrial membrane potential ΔΨm and reactive oxygen species (ROS) formation at low healthy values. Stress signals increase cytosolic calcium leading to Ca2+-dependent dephosphorylation of CytOx subunit I at the cytosolic side accompanied by switching off the allosteric ATP-inhibition and monomerization of CytOx. This is followed by increase of ΔΨm and formation of ROS. A hypothesis is presented suggesting a dynamic change of binding of NDUFA4, originally identified as a subunit of complex I, between monomeric CytOx (active state with high ΔΨm, high ROS and low efficiency) and complex I (resting state with low ΔΨm, low ROS and high efficiency).
Collapse
Affiliation(s)
- Bernhard Kadenbach
- Department of Chemistry/Biochemistry, Fachbereich Chemie, Philipps-Universität Marburg, Marburg D-35043, Hessen, Germany
| |
Collapse
|
5
|
Wu M, Gu J, Zong S, Guo R, Liu T, Yang M. Research journey of respirasome. Protein Cell 2020; 11:318-338. [PMID: 31919741 PMCID: PMC7196574 DOI: 10.1007/s13238-019-00681-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 12/11/2019] [Indexed: 12/11/2022] Open
Abstract
Respirasome, as a vital part of the oxidative phosphorylation system, undertakes the task of transferring electrons from the electron donors to oxygen and produces a proton concentration gradient across the inner mitochondrial membrane through the coupled translocation of protons. Copious research has been carried out on this lynchpin of respiration. From the discovery of individual respiratory complexes to the report of the high-resolution structure of mammalian respiratory supercomplex I1III2IV1, scientists have gradually uncovered the mysterious veil of the electron transport chain (ETC). With the discovery of the mammalian respiratory mega complex I2III2IV2, a new perspective emerges in the research field of the ETC. Behind these advances glitters the light of the revolution in both theory and technology. Here, we give a short review about how scientists 'see' the structure and the mechanism of respirasome from the macroscopic scale to the atomic scale during the past decades.
Collapse
Affiliation(s)
- Meng Wu
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jinke Gu
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Shuai Zong
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Runyu Guo
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Tianya Liu
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Maojun Yang
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
6
|
Ramzan R, Vogt S, Kadenbach B. Stress-mediated generation of deleterious ROS in healthy individuals - role of cytochrome c oxidase. J Mol Med (Berl) 2020; 98:651-657. [PMID: 32313986 PMCID: PMC7220878 DOI: 10.1007/s00109-020-01905-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/24/2020] [Accepted: 03/30/2020] [Indexed: 12/18/2022]
Abstract
Psychosocial stress is known to cause an increased incidence of coronary heart disease. In addition, multiple other diseases like cancer and diabetes mellitus have been related to stress and are mainly based on excessive formation of reactive oxygen species (ROS) in mitochondria. The molecular interactions between stress and ROS, however, are still unknown. Here we describe the missing molecular link between stress and an increased cellular ROS, based on the regulation of cytochrome c oxidase (COX). In normal healthy cells, the "allosteric ATP inhibition of COX" decreases the oxygen uptake of mitochondria at high ATP/ADP ratios and keeps the mitochondrial membrane potential (ΔΨm) low. Above ΔΨm values of 140 mV, the production of ROS in mitochondria increases exponentially. Stress signals like hypoxia, stress hormones, and high glutamate or glucose in neurons increase the cytosolic Ca2+ concentration which activates a mitochondrial phosphatase that dephosphorylates COX. This dephosphorylated COX exhibits no allosteric ATP inhibition; consequently, an increase of ΔΨm and ROS formation takes place. The excess production of mitochondrial ROS causes apoptosis or multiple diseases.
Collapse
Affiliation(s)
- Rabia Ramzan
- Cardiovascular Research Lab, Biochemical Pharmacological Center, Philipps-University Marburg, Karl-von-Frisch-Strasse 2, D-35043, Marburg, Germany
- Department of Heart Surgery, The University Hospital of Giessen and Marburg, Baldinger Strasse 1, D-35043, Marburg, Germany
| | - Sebastian Vogt
- Cardiovascular Research Lab, Biochemical Pharmacological Center, Philipps-University Marburg, Karl-von-Frisch-Strasse 2, D-35043, Marburg, Germany
- Department of Heart Surgery, The University Hospital of Giessen and Marburg, Baldinger Strasse 1, D-35043, Marburg, Germany
| | - Bernhard Kadenbach
- Department of Chemistry/Biochemistry, Philipps-University Marburg, Hans-Meerwein-Strasse, D-35032, Marburg, Germany.
| |
Collapse
|
7
|
Ramzan R, Rhiel A, Weber P, Kadenbach B, Vogt S. Reversible dimerization of cytochrome c oxidase regulates mitochondrial respiration. Mitochondrion 2019; 49:149-155. [PMID: 31419492 DOI: 10.1016/j.mito.2019.08.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 08/05/2019] [Accepted: 08/12/2019] [Indexed: 12/31/2022]
Abstract
Almost all energy consumed by higher organisms, either in the form of ATP or heat, is produced in mitochondria by respiration and oxidative phosphorylation through five protein complexes in the inner membrane. High-resolution x-ray analysis of crystallized cytochrome c oxidase (CytOx), the final oxygen-accepting complex of the respiratory chain, isolated by using cholate as detergent, revealed a dimeric structure with 13 subunits in each monomer. In contrast, CytOx isolated with non-ionic detergents appeared to be monomeric. Our data indicate in vivo a continuous transition between CytOx monomers and dimers via reversible phosphorylation. Increased intracellular calcium, as a consequence of stress, dephosphorylates and monomerises CytOx, whereas cAMP rephosphorylates and dimerises it. Only dimeric CytOx exhibits an "allosteric ATP-inhibition" which inhibits respiration at high cellular ATP/ADP-ratios and could prevent oxygen radical formation and the generation of diseases.
Collapse
Affiliation(s)
- Rabia Ramzan
- Cardiovascular Research Laboratory, Biochemical-Pharmacological Center, Philipps- University Marburg, Karl-von-Frisch-Strasse 1, D-35043 Marburg, Germany; Department of Heart Surgery, University Hospital of Giessen and Marburg, Campus Marburg, D-35043, Germany
| | - Annika Rhiel
- Cardiovascular Research Laboratory, Biochemical-Pharmacological Center, Philipps- University Marburg, Karl-von-Frisch-Strasse 1, D-35043 Marburg, Germany
| | - Petra Weber
- Cardiovascular Research Laboratory, Biochemical-Pharmacological Center, Philipps- University Marburg, Karl-von-Frisch-Strasse 1, D-35043 Marburg, Germany
| | | | - Sebastian Vogt
- Cardiovascular Research Laboratory, Biochemical-Pharmacological Center, Philipps- University Marburg, Karl-von-Frisch-Strasse 1, D-35043 Marburg, Germany; Department of Heart Surgery, University Hospital of Giessen and Marburg, Campus Marburg, D-35043, Germany
| |
Collapse
|
8
|
Zong S, Wu M, Gu J, Liu T, Guo R, Yang M. Structure of the intact 14-subunit human cytochrome c oxidase. Cell Res 2018; 28:1026-1034. [PMID: 30030519 DOI: 10.1038/s41422-018-0071-1] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 06/23/2018] [Accepted: 07/03/2018] [Indexed: 01/14/2023] Open
Abstract
Respiration is one of the most basic features of living organisms, and the electron transport chain complexes are probably the most complicated protein system in mitochondria. Complex-IV is the terminal enzyme of the electron transport chain, existing either as randomly scattered complexes or as a component of supercomplexes. NDUFA4 was previously assumed as a subunit of complex-I, but recent biochemical data suggested it may be a subunit of complex-IV. However, no structural evidence supporting this notion was available till now. Here we obtained the 3.3 Å resolution structure of complex-IV derived from the human supercomplex I1III2IV1 and assigned the NDUFA4 subunit into complex-IV. Intriguingly, NDUFA4 lies exactly at the dimeric interface observed in previously reported crystal structures of complex-IV homodimer which would preclude complex-IV dimerization. Combining previous structural and biochemical data shown by us and other groups, we propose that the intact complex-IV is a monomer containing 14 subunits.
Collapse
Affiliation(s)
- Shuai Zong
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Meng Wu
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jinke Gu
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Tianya Liu
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Runyu Guo
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Maojun Yang
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China. .,School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
9
|
Affiliation(s)
- Joseph A Lyons
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.,DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark
| | - Poul Nissen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.,DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
10
|
Shimada S, Shinzawa-Itoh K, Baba J, Aoe S, Shimada A, Yamashita E, Kang J, Tateno M, Yoshikawa S, Tsukihara T. Complex structure of cytochrome c-cytochrome c oxidase reveals a novel protein-protein interaction mode. EMBO J 2016; 36:291-300. [PMID: 27979921 PMCID: PMC5286356 DOI: 10.15252/embj.201695021] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 10/21/2016] [Accepted: 11/16/2016] [Indexed: 12/21/2022] Open
Abstract
Mitochondrial cytochrome c oxidase (CcO) transfers electrons from cytochrome c (Cyt.c) to O2 to generate H2O, a process coupled to proton pumping. To elucidate the mechanism of electron transfer, we determined the structure of the mammalian Cyt.c–CcO complex at 2.0‐Å resolution and identified an electron transfer pathway from Cyt.c to CcO. The specific interaction between Cyt.c and CcO is stabilized by a few electrostatic interactions between side chains within a small contact surface area. Between the two proteins are three water layers with a long inter‐molecular span, one of which lies between the other two layers without significant direct interaction with either protein. Cyt.c undergoes large structural fluctuations, using the interacting regions with CcO as a fulcrum. These features of the protein–protein interaction at the docking interface represent the first known example of a new class of protein–protein interaction, which we term “soft and specific”. This interaction is likely to contribute to the rapid association/dissociation of the Cyt.c–CcO complex, which facilitates the sequential supply of four electrons for the O2 reduction reaction.
Collapse
Affiliation(s)
- Satoru Shimada
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, Akoh, Hyogo, Japan
| | - Kyoko Shinzawa-Itoh
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, Akoh, Hyogo, Japan
| | - Junpei Baba
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, Akoh, Hyogo, Japan
| | - Shimpei Aoe
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, Akoh, Hyogo, Japan
| | - Atsuhiro Shimada
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, Akoh, Hyogo, Japan
| | - Eiki Yamashita
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Jiyoung Kang
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, Akoh, Hyogo, Japan
| | - Masaru Tateno
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, Akoh, Hyogo, Japan
| | - Shinya Yoshikawa
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, Akoh, Hyogo, Japan
| | - Tomitake Tsukihara
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, Akoh, Hyogo, Japan .,Institute for Protein Research, Osaka University, Suita, Osaka, Japan.,JST, CREST, Kawaguchi, Saitama, Japan
| |
Collapse
|