1
|
Purnomo AF, Daryanto B, Seputra KP, Budaya TN, Lutfiana NC, Nurkolis F, Chung S, Suh JY, Park MN, Seo BK, Kim B. Methylenetetrahydrofolate Reductase C677T (rs1801133) Polymorphism Is Associated with Bladder Cancer in Asian Population: Epigenetic Meta-Analysis as Precision Medicine Approach. Cancers (Basel) 2023; 15:4402. [PMID: 37686678 PMCID: PMC10487222 DOI: 10.3390/cancers15174402] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
The etiology of bladder cancer remains unclear. This study investigates the impact of gene polymorphisms, particularly methylenetetrahydrofolate reductase gene (MTHFR), on bladder cancer susceptibility, focusing on the rs1801133 single-nucleotide polymorphism (SNP). A meta-analysis was conducted after systematically reviewing the MTHFR gene literature, adhering to PRISMA guidelines and registering in PROSPERO (CRD42023423064). Seven studies were included, showing a significant association between the MTHFR C677T (rs1801133) polymorphism and bladder cancer susceptibility. Individuals with the T-allele or TT genotype had a higher likelihood of bladder cancer. In the Asian population, the overall analysis revealed an odds ratio (OR) of 1.15 (95% CI 1.03-1.30; p-value = 0.03) for T-allele versus C-allele and an OR of 1.34 (95% CI 1.04-1.72; p-value = 0.02) for TT genotype versus TC+CC genotype. The CC genotype, however, showed no significant association with bladder cancer. Notably, epigenetic findings displayed low sensitivity but high specificity, indicating reliable identified associations while potentially overlooking some epigenetic factors related to bladder cancer. In conclusion, the MTHFR T-allele and TT genotype were associated with increased bladder cancer risk in the Asian population. These insights into genetic factors influencing bladder cancer susceptibility could inform targeted prevention and treatment strategies. Further research is warranted to validate and expand these findings.
Collapse
Affiliation(s)
- Athaya Febriantyo Purnomo
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
- Department of Urology, Faculty of Medicine, Universitas Brawijaya, Malang 65142, Indonesia
| | - Besut Daryanto
- Department of Urology, Faculty of Medicine, Universitas Brawijaya, Malang 65142, Indonesia
| | - Kurnia Penta Seputra
- Department of Urology, Faculty of Medicine, Universitas Brawijaya, Malang 65142, Indonesia
| | - Taufiq Nur Budaya
- Department of Urology, Faculty of Medicine, Universitas Brawijaya, Malang 65142, Indonesia
| | - Nurul Cholifah Lutfiana
- Department of Biosciences and Biomedicine, Faculty of Medicine, Universitas Muhammadiyah Surabaya, Surabaya 36201, Indonesia
| | - Fahrul Nurkolis
- Department of Biological Sciences, State Islamic University of Sunan Kalijaga (UIN Sunan Kalijaga), Yogyakarta 55281, Indonesia;
| | - Sanghyun Chung
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, Republic of Korea
- Kyung Hee Myungbo Clinic of Korean Medicine, Hwaseong-si 18466, Republic of Korea
| | - Jin Young Suh
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, Republic of Korea
- Seoul Forest Korean Medicine Clinic, Ttukseomro 312, Seongdong-gu, Seoul 04773, Republic of Korea
| | - Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, Republic of Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Byung-Kwan Seo
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, Republic of Korea
- Department of Acupuncture and Moxibustion Medicine, Kyung Hee University College of Korean Medicine, Kyung Hee University Hospital at Gangdong, Seoul 05278, Republic of Korea
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, Republic of Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
2
|
Touala-Chaila Z, Abderrahmane RK, Benseddik K, Meroufel DN. A meta-analysis on the susceptibility to the development of bladder cancer in the presence of DNMT3A, DNMT3B, and MTHFR gene polymorphisms. AFRICAN JOURNAL OF UROLOGY 2022. [DOI: 10.1186/s12301-022-00301-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The etiology of bladder cancer is not yet well known. In this study, we want to evaluate the effect of polymorphisms of genes that have an epigenetic effect (MTHFR, DNMT3A/B) on the susceptibility to develop bladder cancer (BC).
Methods
A systematic review was performed for MTHFR, DNMT3A, and DNMT3B, followed by a meta-analysis conducted for rs1801131, rs1801133, rs2274976, rs1550117, and rs1569686 SNPs. A sensitivity and a subgroup analysis were then used.
Results
20 studies were included, where no statistically significant association between any of the analyzed SNPs and the occurrence of BC was detected. Subgroup analysis revealed a statistically significant association in North African population with rs1801133: TT vs. TC + CC (P = 0.013; OR 95% CI = 0.52 [0.311–0.872]); TT vs.TC (P = 0.003; OR 95% CI = 0.448 [0.261–0.769]) and in North American population with rs1801131: CC vs. CA (P = 0.039; OR 95% CI = 0.71 [0.523–0.984]). A sensitivity analysis revealed that there is a statistically significant association between rs1801131 and the occurrence of BC (OR = 0.79, 95%CI [0.65–0.97]), (OR = 0.80, 95%CI [0.65–0.98]) and (OR = 0.78, 95%CI [0.63–0.96]) which correspond to CC vs. CA + AA; CC vs. CA; and CC vs. AA genetic models.
Conclusion
This is the first study to assess the effect of DNMTs on bladder cancer risk. No statistically significant association was found between polymorphisms of MTHFR, DNMT3A/B genes and bladder cancer development, except for the North African and the North American populations with rs1801133 and rs1801131, respectively, with a protective effect of rs1801131 based on a sensitivity analysis.
Collapse
|
3
|
Vidaurre T, Casavilca S, Montenegro P, Gomez H, Calderón M, Navarro J, Aramburu J, Poquioma E, Tsuchiya Y, Asai T, Ajioka Y, Sato A, Ikoma T, Nakamura K. Tumor Protein p53 and K-ras Gene Mutations in Peruvian Patients with Gallbladder Cancer. Asian Pac J Cancer Prev 2019; 20:289-294. [PMID: 30678452 PMCID: PMC6485555 DOI: 10.31557/apjcp.2019.20.1.289] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Background: Recent studies have shown that genetic alterations are associated with the effect of patient geographic
location on gallbladder cancer development. Peru has a high incidence of gallbladder cancer, but causative factors
have not yet been identified. We examined the frequency of mutations in TP53 and K-ras genes in Peruvian patients
with gallbladder cancer, and compared this with data from Bolivia, Hungary, Chile, and Japan, which have a high
gallbladder cancer incidence. Methods: DNA was extracted from formalin-fixed paraffin-embedded gallbladder tissue
sections of 30 gallbladder cancer patients (9 men and 21 women) obtained using microdissection. Mutations in exons
5 to 8 of TP53 and codons 12, 13, and 61 of K-ras were examined using direct sequencing. Results: TP53 mutations
were observed in 10 (33.3%) of patients, but K-ras mutations were absent. Nine (90%) TP53 mutations were point
mutations (7 missense and 2 silent mutations), and the most frequent substitution was a G:C to A:T transition. G:C to
A:T transitions at the CpG site or G:C to T:A transversions were found in one patient each. No significant differences
were found in the frequency of TP53 and K-ras mutations among patients in the 5 countries. Conclusions: Our findings
suggest that endogenous mechanisms and exogenous carcinogens may affect the carcinogenic process in Peruvian
gallbladder cancer patients, similar to that in Bolivian patients. Further studies with a larger sample size are needed
to clarify these findings.
Collapse
|
4
|
Kuo CS, Huang CY, Kuo HT, Cheng CP, Chen CH, Lu CL, Yang FL, Syu Huang RF. Interrelationships among genetic C677T polymorphism of 5,10-methylenetetrahydrofolate reductase, biochemical folate status, and lymphocytic p53 oxidative damage in association with tumor malignancy and survivals of patients with hepatocellular carcinoma. Mol Nutr Food Res 2013; 58:329-42. [PMID: 23996892 DOI: 10.1002/mnfr.201200479] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 06/20/2013] [Accepted: 06/21/2013] [Indexed: 12/13/2022]
Abstract
SCOPE Metabolic genotypes of 5,10-methylenetetrahydrofolate reductase (MTHFR) and folate status on oxidative DNA lesions in hepatocellular carcinoma (HCC) has not been elucidated. The aims of the study were to investigate the folate-polymorphic interactions on genetic oxidative damage in association with advanced HCC malignancy and prognosis. METHODS AND RESULTS The study included 232 HCC patients with folate nutrition, MTHFR C677T polymorphic, p53 genetic and tumour pathological data collected and analyzed for their survivals after a 7.8-years following up. By adjustment for oxidative risk factors of HCC, the compound CT and TT genotypes in relative to the CC wild-type were associated with 83% reduced lymphocytic p53 oxidative lesions of HCC patients with RBC folate lower than 688 ng/mL (OR: 0.17, 95%CI: 0.07-0.43). Such genetic protective effects by the CT/TT genotypes were 2-fold enhanced among those with high RBC folate (OR: 0.08, 95% CI: 0.03-0.21, P for interaction < 0.001). For those with non-folate-deficient status, the compound CT and TT vs. CC genotypes were associated with 80% reduced risks of advanced HCC stages (III&IV) (OR: 0.2, 95%CI: 0.08-0.56). Such protection was negated either by adjustment of lymphocytic p53 oxidative lesions or by 3-fold increased risks among those with high RBC status (OR: 0.6, 95%CI; 0.31-1.41, P for interaction = 0.009). Multivariate Cox proportional hazards analysis showed that the CT/TT genotypes vs. CC wild-type were the independent predictable factor for better survival outcome of HCC patients (HR: 0.48, CI = 0.30-0.79). For CC homozygote, the second vs. the bottom tertile levels of RBC status were associated with 2-fold increased mortality rate of HCC patients (HR: 2.05, CI = 1.0-4.1). CONCLUSION Our data demonstrated that reduced MTHFR activities associated with the MTHFR T allele may interact with RBC folate as the risk modifiers of lymphocytic p53 oxidative lesions of HCC patients. The CT/TT genotypes correlated with lower risks of late-stage HCC and a favorable survival of HCC patients, depending on p53 oxidative lesions or RBC folate status.
Collapse
Affiliation(s)
- Chang-Sheng Kuo
- Ph.D. Program in Nutrition and Food Science, Fu Jen Catholic University, HsinChuang, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Dwivedi RS, Herman JG, McCaffrey TA, Raj DSC. Beyond genetics: epigenetic code in chronic kidney disease. Kidney Int 2010; 79:23-32. [PMID: 20881938 DOI: 10.1038/ki.2010.335] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Epigenetics refers to a heritable change in the pattern of gene expression that is mediated by a mechanism specifically not due to alterations in the primary nucleotide sequence. Well-known epigenetic mechanisms encompass DNA methylation, chromatin remodeling (histone modifications), and RNA interference. Functionally, epigenetics provides an extra layer of transcriptional control and plays a crucial role in normal physiological development, as well as in pathological conditions. Aberrant DNA methylation is implicated in immune dysfunction, inflammation, and insulin resistance. Epigenetic changes may be responsible for 'metabolic memory' and development of micro- and macrovascular complications of diabetes. MicroRNAs are critical in the maintenance of glomerular homeostasis and hence RNA interference may be important in the progression of renal disease. Recent studies have shown that epigenetic modifications orchestrate the epithelial-mesenchymal transition and eventually fibrosis of the renal tissue. Oxidative stress, inflammation, hyperhomocysteinemia, and uremic toxins could induce epimutations in chronic kidney disease. Epigenetic alterations are associated with inflammation and cardiovascular disease in patients with chronic kidney disease. Reversible nature of the epigenetic changes gives a unique opportunity to halt or even reverse the disease process through targeted therapeutic strategies.
Collapse
Affiliation(s)
- Rama S Dwivedi
- Division of Renal Diseases and Hypertension, The George Washington University, Washington, District of Columbia 20037, USA
| | | | | | | |
Collapse
|
6
|
Wettergren Y, Odin E, Carlsson G, Gustavsson B. MTHFR, MTR, and MTRR polymorphisms in relation to p16INK4A hypermethylation in mucosa of patients with colorectal cancer. Mol Med 2010. [PMID: 20549016 DOI: 10.2119/molmed.2009-00156] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We recently analyzed the hypermethylation status of the p16INK4a (p16) gene promoter in normal-appearing mucosa obtained from patients with colorectal cancer. Hypermethylation of p16 was associated with reduced survival of these patients. In the present study, germ line polymorphisms in the folate- and methyl-associated genes, methylenetetrahydrofolate reductase (MTHFR), methionine synthase (MTR) and methionine synthase reductase (MTRR), were analyzed in the same patient cohort to find a possible link between these genetic variants and p16 hypermethylation. Genomic DNA was extracted from blood of patients (n = 181) and controls (n = 300). Genotype analyses were run on an ABI PRISM(®) 7900HT sequence-detection system (Applied Biosystems), using real-time polymerase chain reaction and TaqMan chemistry. The results showed that the genotype distributions of the patient and control groups were similar. No significant differences in cancer-specific or disease-free survival of stage I-III patients according to polymorphic variants were detected, nor were any differences in cancer-specific or disease-free survival detected when patients were subgrouped according to the MTHFR or MTR genotype groups and dichotomized by p16 hypermethylation status in mucosa. However, patients with the MTRR 66 AA/AG genotypes were found to have a significantly worse cancer-specific survival when the mucosa were positive, compared with negative, for p16 hypermethylation (hazard ratio 2.7; 95% confidence interval 1.2-6.4; P = 0.023). In contrast, there was no difference in survival among patients with the MTRR 66 GG genotype stratified by p16 hypermethylation status. These results indicate a relationship between genetic germ-line variants of the MTRR gene and p16 hypermethylation in mucosa, which may affect the clinical outcome of patients with colorectal cancer.
Collapse
Affiliation(s)
- Yvonne Wettergren
- Department of General Surgery, University of Gothenburg, Sahlgrenska University Hospital/Ostra, Gothenburg, Sweden.
| | | | | | | |
Collapse
|
7
|
Wettergren Y, Odin E, Carlsson G, Gustavsson B. MTHFR, MTR, and MTRR polymorphisms in relation to p16INK4A hypermethylation in mucosa of patients with colorectal cancer. Mol Med 2010; 16:425-32. [PMID: 20549016 DOI: 10.2119/molmed.2009.00156] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Accepted: 06/10/2010] [Indexed: 12/17/2022] Open
Abstract
We recently analyzed the hypermethylation status of the p16INK4a (p16) gene promoter in normal-appearing mucosa obtained from patients with colorectal cancer. Hypermethylation of p16 was associated with reduced survival of these patients. In the present study, germ line polymorphisms in the folate- and methyl-associated genes, methylenetetrahydrofolate reductase (MTHFR), methionine synthase (MTR) and methionine synthase reductase (MTRR), were analyzed in the same patient cohort to find a possible link between these genetic variants and p16 hypermethylation. Genomic DNA was extracted from blood of patients (n = 181) and controls (n = 300). Genotype analyses were run on an ABI PRISM(®) 7900HT sequence-detection system (Applied Biosystems), using real-time polymerase chain reaction and TaqMan chemistry. The results showed that the genotype distributions of the patient and control groups were similar. No significant differences in cancer-specific or disease-free survival of stage I-III patients according to polymorphic variants were detected, nor were any differences in cancer-specific or disease-free survival detected when patients were subgrouped according to the MTHFR or MTR genotype groups and dichotomized by p16 hypermethylation status in mucosa. However, patients with the MTRR 66 AA/AG genotypes were found to have a significantly worse cancer-specific survival when the mucosa were positive, compared with negative, for p16 hypermethylation (hazard ratio 2.7; 95% confidence interval 1.2-6.4; P = 0.023). In contrast, there was no difference in survival among patients with the MTRR 66 GG genotype stratified by p16 hypermethylation status. These results indicate a relationship between genetic germ-line variants of the MTRR gene and p16 hypermethylation in mucosa, which may affect the clinical outcome of patients with colorectal cancer.
Collapse
Affiliation(s)
- Yvonne Wettergren
- Department of General Surgery, University of Gothenburg, Sahlgrenska University Hospital/Ostra, Gothenburg, Sweden.
| | | | | | | |
Collapse
|
8
|
Verginelli F, Bishehsari F, Napolitano F, Mahdavinia M, Cama A, Malekzadeh R, Miele G, Raiconi G, Tagliaferri R, Mariani-Costantini R. Transitions at CpG dinucleotides, geographic clustering of TP53 mutations and food availability patterns in colorectal cancer. PLoS One 2009; 4:e6824. [PMID: 19718455 PMCID: PMC2730577 DOI: 10.1371/journal.pone.0006824] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Accepted: 07/14/2009] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Colorectal cancer is mainly attributed to diet, but the role exerted by foods remains unclear because involved factors are extremely complex. Geography substantially impacts on foods. Correlations between international variation in colorectal cancer-associated mutation patterns and food availabilities could highlight the influence of foods on colorectal mutagenesis. METHODOLOGY To test such hypothesis, we applied techniques based on hierarchical clustering, feature extraction and selection, and statistical pattern recognition to the analysis of 2,572 colorectal cancer-associated TP53 mutations from 12 countries/geographic areas. For food availabilities, we relied on data extracted from the Food Balance Sheets of the Food and Agriculture Organization of the United Nations. Dendrograms for mutation sites, mutation types and food patterns were constructed through Ward's hierarchical clustering algorithm and their stability was assessed evaluating silhouette values. Feature selection used entropy-based measures for similarity between clusterings, combined with principal component analysis by exhaustive and heuristic approaches. CONCLUSION/SIGNIFICANCE Mutations clustered in two major geographic groups, one including only Western countries, the other Asia and parts of Europe. This was determined by variation in the frequency of transitions at CpGs, the most common mutation type. Higher frequencies of transitions at CpGs in the cluster that included only Western countries mainly reflected higher frequencies of mutations at CpG codons 175, 248 and 273, the three major TP53 hotspots. Pearson's correlation scores, computed between the principal components of the datamatrices for mutation types, food availability and mutation sites, demonstrated statistically significant correlations between transitions at CpGs and both mutation sites and availabilities of meat, milk, sweeteners and animal fats, the energy-dense foods at the basis of "Western" diets. This is best explainable by differential exposure to nitrosative DNA damage due to foods that promote metabolic stress and chronic inflammation.
Collapse
Affiliation(s)
- Fabio Verginelli
- Department of Oncology and Neurosciences, “G. d'Annunzio” University, and Center of Excellence on Aging (CeSI), “G. d'Annunzio” University Foundation, Chieti, Italy
| | - Faraz Bishehsari
- Department of Oncology and Neurosciences, “G. d'Annunzio” University, and Center of Excellence on Aging (CeSI), “G. d'Annunzio” University Foundation, Chieti, Italy
- Digestive Disease Research Center (DDRC), Shariati Hospital, University of Tehran, Tehran, Iran
| | - Francesco Napolitano
- Department of Mathematics and Informatics, University of Salerno, Salerno, Italy
| | - Mahboobeh Mahdavinia
- Department of Oncology and Neurosciences, “G. d'Annunzio” University, and Center of Excellence on Aging (CeSI), “G. d'Annunzio” University Foundation, Chieti, Italy
- Digestive Disease Research Center (DDRC), Shariati Hospital, University of Tehran, Tehran, Iran
| | - Alessandro Cama
- Department of Oncology and Neurosciences, “G. d'Annunzio” University, and Center of Excellence on Aging (CeSI), “G. d'Annunzio” University Foundation, Chieti, Italy
| | - Reza Malekzadeh
- Digestive Disease Research Center (DDRC), Shariati Hospital, University of Tehran, Tehran, Iran
| | - Gennaro Miele
- Department of Physical Sciences, University of Naples, Naples, Italy
| | - Giancarlo Raiconi
- Department of Mathematics and Informatics, University of Salerno, Salerno, Italy
| | - Roberto Tagliaferri
- Department of Mathematics and Informatics, University of Salerno, Salerno, Italy
| | - Renato Mariani-Costantini
- Department of Oncology and Neurosciences, “G. d'Annunzio” University, and Center of Excellence on Aging (CeSI), “G. d'Annunzio” University Foundation, Chieti, Italy
| |
Collapse
|
9
|
One-carbon metabolism and breast cancer: an epidemiological perspective. J Genet Genomics 2009; 36:203-14. [PMID: 19376481 DOI: 10.1016/s1673-8527(08)60108-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Revised: 12/12/2008] [Accepted: 01/08/2009] [Indexed: 12/21/2022]
Abstract
One-carbon metabolism is a network of biological reactions that plays critical role in DNA methylation and DNA synthesis, and in turn, facilitates the cross-talk between genetic and epigenetic processes. Genetic polymorphisms and supplies of cofactors (e.g. folate, vitamins B) involved in this pathway have been shown to influence cancer risk and even survival. In this review, we summarized the epidemiological evidence for one-carbon metabolism, from both genetics and lifestyle aspects, in relation to breast cancer risk. We also discussed this pathway in relation to breast cancer survival and the modulation of one-carbon polymorphism in chemotherapy. Emerging evidence on modulation of DNA methylation by one-carbon metabolism suggests that disruption of epigenome might have been the underlying mechanism. More results are expected and will be translated to guidance to the general population for disease prevention as well as to clinicians for treatment and management of the disease.
Collapse
|
10
|
Ulrich CM, Reed MC, Nijhout HF. Modeling folate, one-carbon metabolism, and DNA methylation. Nutr Rev 2009; 66 Suppl 1:S27-30. [PMID: 18673484 DOI: 10.1111/j.1753-4887.2008.00062.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Affiliation(s)
- Cornelia M Ulrich
- The Cancer Prevention Program, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA.
| | | | | |
Collapse
|
11
|
Folate and Cancer Prevention—Where to Next? Counterpoint: Figure 1. Cancer Epidemiol Biomarkers Prev 2008; 17:2226-30. [DOI: 10.1158/1055-9965.epi-07-2952] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
12
|
Luebeck EG, Moolgavkar SH, Liu AY, Boynton A, Ulrich CM. Does folic acid supplementation prevent or promote colorectal cancer? Results from model-based predictions. Cancer Epidemiol Biomarkers Prev 2008; 17:1360-7. [PMID: 18539928 DOI: 10.1158/1055-9965.epi-07-2878] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Folate is essential for nucleotide synthesis, DNA replication, and methyl group supply. Low-folate status has been associated with increased risks of several cancer types, suggesting a chemopreventive role of folate. However, recent findings on giving folic acid to patients with a history of colorectal polyps raise concerns about the efficacy and safety of folate supplementation and the long-term health effects of folate fortification. Results suggest that undetected precursor lesions may progress under folic acid supplementation, consistent with the role of folate role in nucleotide synthesis and cell proliferation. To better understand the possible trade-offs between the protective effects due to decreased mutation rates and possibly concomitant detrimental effects due to increased cell proliferation of folic acid, we used a biologically based mathematical model of colorectal carcinogenesis. We predict changes in cancer risk based on timing of treatment start and the potential effect of folic acid on cell proliferation and mutation rates. Changes in colorectal cancer risk in response to folic acid supplementation are likely a complex function of treatment start, duration, and effect on cell proliferation and mutations rates. Predicted colorectal cancer incidence rates under supplementation are mostly higher than rates without folic acid supplementation unless supplementation is initiated early in life (before age 20 years). To the extent to which this model predicts reality, it indicates that the effect on cancer risk when starting folic acid supplementation late in life is small, yet mostly detrimental. Experimental studies are needed to provide direct evidence for this dual role of folate in colorectal cancer and to validate and improve the model predictions.
Collapse
Affiliation(s)
- E Georg Luebeck
- Fred Hutchinson Cancer Research Center, Biostatistics and Biomathematics, 1100 Fairview Avenue North, M2-B500, Seattle, WA 98109-1024, USA.
| | | | | | | | | |
Collapse
|
13
|
Verma M, Seminara D, Arena FJ, John C, Iwamoto K, Hartmuller V. Genetic and epigenetic biomarkers in cancer : improving diagnosis, risk assessment, and disease stratification. Mol Diagn Ther 2007; 10:1-15. [PMID: 16646573 DOI: 10.1007/bf03256438] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Gene expression patterns change during the initiation, progression, and development of cancer, as a result of both genetic and epigenetic mechanisms. Genetic changes arise due to irreversible changes in the nucleotide sequence, whereas epigenetic changes occur due to changes in chromatin conformation, histone acetylation, and methylation of the CpG islands located primarily in the promoter region of a gene. Both genetic and epigenetic markers can potentially be utilized to identify different stages of tumor development. Several such markers exhibit high sensitivity and specificity for different tumor types and can be assayed in biofluids and other specimens collected by noninvasive technologies. In spite of the availability of large numbers of diagnostic markers, only a few have been clinically validated so far. The current status and the challenges in the field of genetic and epigenetic markers in cancer diagnosis, risk assessment, and disease stratification are discussed.
Collapse
Affiliation(s)
- Mukesh Verma
- Analytic Epidemiology Research Branch, Epidemiology and Genetics Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, Rockville, Maryland 20852, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Curtin K, Ulrich CM, Samowitz WS, Bigler J, Caan B, Potter JD, Slattery ML. Thymidylate synthase polymorphisms and colon cancer: Associations with tumor stage, tumor characteristics and survival. Int J Cancer 2007; 120:2226-32. [PMID: 17290389 DOI: 10.1002/ijc.22603] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Thymidylate synthase (TS) is a key enzyme in folate metabolism, a pathway that is important in colorectal carcinogenesis. We investigated the role of functional polymorphisms in the TS 5'-UTR promoter enhancer region (TSER, 3 or 2 repeats of a 28-bp sequence) and the 3'-UTR (1494delTTAAAG) and their association with colon tumor characteristics, including tumor stage and acquired mutations in p53, Ki-ras and microsatellite instability. Data from a population-based incident case-control colon cancer study in northern California, Utah and Minnesota (1,206 cases, 1,962 controls) was analyzed using unordered polytomous logistic regression models. In both men and women, individuals with variant TS alleles were at reduced risk of having an advanced stage tumor (metastatic disease: OR = 0.35, 95% CI: 0.2-0.6 vs. wildtype TSER and 3'-UTR). Stage-adjusted survival did not differ by genotype. Men with 1 or 2 variant alleles in both the TSER and 3'-UTR genotypes had a 50% reduced risk of a p53-positive tumor (OR = 0.5, 95% CI: 0.3-0.9 vs. homozygous wildtype TSER and 3'-UTR). Women with 1 or 2 variant alleles for either the TSER or 3'-UTR polymorphism had reduced risk of having any colon tumor that did not vary by mutation status. This study provides some support for associations between TS genotype and colon cancer tumor characteristics.
Collapse
Affiliation(s)
- Karen Curtin
- Department of Internal Medicine, University of Utah Health Sciences Center, Salt Lake City, UT, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Brockton NT. Localized depletion: the key to colorectal cancer risk mediated by MTHFR genotype and folate? Cancer Causes Control 2007; 17:1005-16. [PMID: 16933051 DOI: 10.1007/s10552-006-0051-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Accepted: 06/15/2006] [Indexed: 10/24/2022]
Abstract
Dietary folate has been consistently associated with reduced risk of colorectal cancer (CRC). One of the known biochemical roles of folate is donation of methyl moieties. DNA hypomethylation is an early and almost ubiquitous occurrence in tumor tissue. Therefore, it was originally suggested that adequate folate intake contributed to reduced risk of CRC by facilitating methyl-mediated silencing of oncogenes. Methylene tetrahydrofolate reductase (MTHFR) metabolizes 5,10-MTHF (important in DNA synthesis) to 5-MTHF (contributes to downstream methylation reactions by regeneration of methionine from homocysteine). A common polymorphism in the MTHFR gene (C677T) results in a thermolabile phenotype associated with increased homocysteine levels and DNA hypomethylation. Consistent with the folate/methylation hypothesis, it was originally proposed that C677T may increase risk of CRC due to hypomethylation of oncogenes. However, most subsequent studies have reported a reduced risk associated with this polymorphism. This is inconsistent with methylation as the mechanism by which folate and MTHFR genotype mediate CRC risk. The hypothesis presented here proposes that localized folate depletion combined with the effect of the C677T polymorphism on enzyme stability, impacts on the DNA synthesis pathway and accounts for the observed variation in risk associated with genotype and folate status.
Collapse
Affiliation(s)
- N T Brockton
- University of Dundee, Maternal and Child Health Sciences, Ninewells Hospital, Dundee, UK.
| |
Collapse
|