1
|
Wróblewska B, Kuliga A, Wnorowska K. Bioactive Dairy-Fermented Products and Phenolic Compounds: Together or Apart. Molecules 2023; 28:8081. [PMID: 38138571 PMCID: PMC10746084 DOI: 10.3390/molecules28248081] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Fermented dairy products (e.g., yogurt, kefir, and buttermilk) are significant in the dairy industry. They are less immunoreactive than the raw materials from which they are derived. The attractiveness of these products is based on their bioactivity and properties that induce immune or anti-inflammatory processes. In the search for new solutions, plant raw materials with beneficial effects have been combined to multiply their effects or obtain new properties. Polyphenols (e.g., flavonoids, phenolic acids, lignans, and stilbenes) are present in fruit and vegetables, but also in coffee, tea, or wine. They reduce the risk of chronic diseases, such as cancer, diabetes, or inflammation. Hence, it is becoming valuable to combine dairy proteins with polyphenols, of which epigallocatechin-3-gallate (EGCG) and chlorogenic acid (CGA) show a particular predisposition to bind to milk proteins (e.g., α-lactalbumin β-lactoglobulin, αs1-casein, and κ-casein). Reducing the allergenicity of milk proteins by combining them with polyphenols is an essential issue. As potential 'metabolic prebiotics', they also contribute to stimulating the growth of beneficial bacteria and inhibiting pathogenic bacteria in the human gastrointestinal tract. In silico methods, mainly docking, assess the new structures of conjugates and the consequences of the interactions that are formed between proteins and polyphenols, as well as to predict their action in the body.
Collapse
Affiliation(s)
- Barbara Wróblewska
- Institute of Animal Reproduction and Food Research, Polish Academy of Science, 10-748 Olsztyn, Poland; (A.K.); (K.W.)
| | | | | |
Collapse
|
2
|
She Y, Wang K, Makarowski A, Mangat R, Tsai S, Willing BP, Proctor SD, Richard C. Low-fat dairy consumption improves intestinal immune function more than high-fat dairy in a diet-induced swine model of insulin resistance. Eur J Nutr 2023; 62:699-711. [PMID: 36197467 DOI: 10.1007/s00394-022-03013-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/22/2022] [Indexed: 11/04/2022]
Abstract
PURPOSE To understand the effects of consuming high-fat and low-fat dairy products on postprandial cardiometabolic risk factors and intestinal immune function, we used an established low birthweight (LBW) swine model of diet-induced insulin resistance. METHODS LBW piglets were randomized to consume one of the 3 experimental high fat diets and were fed for a total of 7 weeks: (1) Control high fat (LBW-CHF), (2) CHF diet supplemented with 3 servings of high-fat dairy (LBW-HFDairy) and (3) CHF diet supplemented with 3 servings of low-fat dairy (LBW-LFDairy). As comparison groups, normal birthweight (NBW) piglets were fed a CHF (NBW-CHF) or standard pig grower diet (NBW-Chow). At 11 weeks of age, all piglets underwent an established modified oral glucose and fat tolerance test. At 12 weeks of age, piglets were euthanized and ex vivo cytokine production by cells isolated from mesenteric lymph node (MLN) stimulated with mitogens was assessed. RESULTS Dairy consumption did not modulate postprandial plasma lipid, inflammatory markers and glucose concentrations. A lower production of IL-2 and TNF-α after pokeweed mitogen (PWM) stimulation was observed in LBW-CHF vs NBW-Chow (P < 0.05), suggesting impaired MLN T cell function. While feeding high-fat dairy had minimal effects, feeding low-fat dairy significantly improved the production of IL-2 and TNF-α after PWM stimulation (P < 0.05). CONCLUSIONS Irrespective of fat content, dairy had a neutral effect on postprandial cardiometabolic risk factors. Low-fat dairy products improved intestinal T cell function to a greater extent than high-fat dairy in this swine model of obesity and insulin resistance.
Collapse
Affiliation(s)
- Yongbo She
- Division of Human Nutrition, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
- Metabolic and Cardiovascular Diseases Laboratory, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Kun Wang
- Division of Human Nutrition, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
- Metabolic and Cardiovascular Diseases Laboratory, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Alexander Makarowski
- Division of Human Nutrition, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
- Metabolic and Cardiovascular Diseases Laboratory, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Rabban Mangat
- Division of Human Nutrition, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
- Metabolic and Cardiovascular Diseases Laboratory, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Sue Tsai
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Benjamin P Willing
- Division of Human Nutrition, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Spencer D Proctor
- Division of Human Nutrition, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
- Metabolic and Cardiovascular Diseases Laboratory, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Caroline Richard
- Division of Human Nutrition, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada.
- Metabolic and Cardiovascular Diseases Laboratory, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada.
- Division of Human Nutrition, Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Science, 4-002G Li Ka Shing (LKS) Centre for Health Research Innovation, University of Alberta, Edmonton, AB, T6G 2E, Canada.
| |
Collapse
|
3
|
Azarcoya-Barrera J, Lewis ED, Field CJ, Goruk S, Makarowski A, Pouliot Y, Jacobs RL, Richard C. The Lipid-Soluble Forms of Choline Enhance Ex Vivo Responses from the Gut-Associated Immune System in Young Female Rat Offspring. J Nutr 2022; 152:2604-2614. [PMID: 36774126 DOI: 10.1093/jn/nxac180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/16/2022] [Accepted: 08/10/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND In humans, the development of gut-associated lymphoid tissue (GALT) occurs in the first years of life and can be influenced by diet. OBJECTIVES The objective of this study was to determine the effect of dietary choline on the development of gut-associated lymphoid tissue (GALT). METHODS Three feeding trials were conducted in female Sprague-Dawley rats. Beginning 3 d before parturition (studies 1 and 3) or at day 10 of gestation (study 2), control dams consumed a 100% free choline (FC) diet until the end of the lactation period. In studies 1 and 3, test dams consumed a high-glycerophosphocholine (HGPC) diet [75% glycerophosphocholine (GPC), 12.5% phosphatidylcholine (PC), 12.5% FC] and a 100% PC diet, respectively (both 1 g of choline/kg diet). In study 2, test dams consumed a high-sphingomyelin (SM) and PC (SMPC) diet (34% SM, 37% PC, 17% GPC, 7% FC, 5% phosphocholine) or a 50% PC diet (50% PC, 25% FC, 25% GPC), both 1.7 g of choline/kg diet. Immune cell phenotypes and ex vivo cytokine production by mitogen-stimulated immune cells were measured. RESULTS Feeding of the HGPC diet lowered T-cell IL-2 (44%), IFN-γ (34%), and TNF-α (55%) production in mesenteric lymph nodes (MLNs) compared with control. Feeding both SMPC and 50% PC diets during the lactation and weaning periods increased IL-2 (54%) and TNF-α (46%) production after T-cell stimulation compared with control. There was a lower production of IL-2 (46%), IL-6 (66%), and TNF-α (45%), and a higher production of IL-10 (44%) in both SMPC and 50% PC groups following ovalbumin stimulation compared with control in MLNs. Feeding a diet containing 100% PC increased the production of IFN-γ by 52% after T-cell stimulation compared with control. CONCLUSION Feeding a diet containing a mixture of choline forms with a high content of lipid-soluble forms during both the lactation and weaning periods enhances ex vivo immune responses from the GALT in female Sprague-Dawley offspring.
Collapse
Affiliation(s)
- Jessy Azarcoya-Barrera
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Erin D Lewis
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Catherine J Field
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Susan Goruk
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Alexander Makarowski
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Yves Pouliot
- STELA Dairy Research Center, Institute of Nutrition and Functional Foods, Université Laval, Québec, Canada
| | - René L Jacobs
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Caroline Richard
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
4
|
She Y, Wang K, Makarowski A, Mangat R, Tsai S, Willing BP, Proctor SD, Richard C. Effect of High-Fat and Low-Fat Dairy Products on Cardiometabolic Risk Factors and Immune Function in a Low Birthweight Swine Model of Diet-Induced Insulin Resistance. Front Nutr 2022; 9:923120. [PMID: 35782930 PMCID: PMC9247580 DOI: 10.3389/fnut.2022.923120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/19/2022] [Indexed: 01/24/2023] Open
Abstract
Although dairy intake has been shown to have a neutral or some beneficial effect on major cardiometabolic risk factors, the impact of dairy, and especially dairy fat, on immune function remains to be investigated. To understand the effect of consuming dairy fat on cardiometabolic risk factors and immune function, we used an established low birthweight (LBW) swine model of diet-induced insulin resistance to compare high-fat and low-fat dairy products to a control high-fat diet (CHF). LBW piglets were randomized to consume one of the 3 experimental HF diets: (1) CHF, (2) CHF diet supplemented with 3 servings/day of high-fat dairy (HFDairy) and (3) CHF diet supplemented with 3 servings/day of low-fat dairy (LFDairy). As comparison groups, normal birthweight (NBW) piglets were fed a CHF (NBW-CHF) or standard pig grower diet (NBW-Chow). A total of 35 pigs completed the study and were fed for a total of 7 weeks, including 1 week of CHF transition diet. At 12 weeks of age, piglets were euthanized. Fasting blood and tissue samples were collected. Ex vivo cytokine production by peripheral blood mononuclear cells (PBMCs) stimulated with pokeweed (PWM), phytohemagglutinin (PHA) and phorbol myristate acetate-ionomycin (PMA-I) were assessed. As expected, LBW-CHF piglets showed early signs of insulin resistance (HOMA-IR, P model = 0.08). Feeding high-fat dairy products improved fasting plasma glucose concentrations more than low-fat dairy compared to LBW-CHF (P < 0.05). Irrespective of fat content, dairy consumption had neutral effect on fasting lipid profile. We have also observed lower production of IL-2 after PWM and PHA stimulation as well as lower production of TNF-α and IFN-γ after PWM stimulation in LBW-CHF than in NBW-Chow (all, P < 0.05), suggesting impaired T cell and antigen presenting cell function. While feeding high-fat dairy had minimal effect on immune function, feeding low-fat dairy significantly improved the production of IL-2, TNF-α and IFN-γ after PWM stimulation, IL-2 and IFN-γ after PHA stimulation as well as TNF-α after PMA-I stimulation compared to LBW-CHF (all, P < 0.05). These data provide novel insights into the role of dairy consumption in counteracting some obesity-related cardiometabolic and immune perturbations.
Collapse
Affiliation(s)
- Yongbo She
- Division of Human Nutrition, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
- Metabolic and Cardiovascular Diseases Laboratory, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Kun Wang
- Division of Human Nutrition, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
- Metabolic and Cardiovascular Diseases Laboratory, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Alexander Makarowski
- Division of Human Nutrition, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
- Metabolic and Cardiovascular Diseases Laboratory, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Rabban Mangat
- Division of Human Nutrition, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
- Metabolic and Cardiovascular Diseases Laboratory, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Sue Tsai
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Benjamin P. Willing
- Division of Human Nutrition, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Spencer D. Proctor
- Division of Human Nutrition, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
- Metabolic and Cardiovascular Diseases Laboratory, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Caroline Richard
- Division of Human Nutrition, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
- Metabolic and Cardiovascular Diseases Laboratory, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
5
|
She Y, Mangat R, Tsai S, Proctor SD, Richard C. The Interplay of Obesity, Dyslipidemia and Immune Dysfunction: A Brief Overview on Pathophysiology, Animal Models, and Nutritional Modulation. Front Nutr 2022; 9:840209. [PMID: 35252310 PMCID: PMC8891442 DOI: 10.3389/fnut.2022.840209] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/20/2022] [Indexed: 12/14/2022] Open
Abstract
Obesity has emerged as a leading global health concern. It is characterized by chronic low-grade inflammation, which impairs insulin signaling, lipid metabolism and immune function. Recent findings from animal and clinical studies have begun to elucidate the underlying mechanisms of immune dysfunction seen in the context of obesity. Here, we provide a brief review on the current understanding of the interplay between obesity, dyslipidemia and immunity. We also emphasize the advantages and shortcomings of numerous applicable research models including rodents and large animal swine that aim at unraveling the molecular basis of disease and clinical manifestations. Although there is no perfect model to answer all questions at once, they are often used to complement each other. Finally, we highlight some emerging nutritional strategies to improve immune function in the context of obesity with a particular focus on choline and foods that contains high amounts of choline.
Collapse
Affiliation(s)
- Yongbo She
- Division of Human Nutrition, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
- Metabolic and Cardiovascular Diseases Laboratory, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Rabban Mangat
- Division of Human Nutrition, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
- Metabolic and Cardiovascular Diseases Laboratory, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Sue Tsai
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Spencer D. Proctor
- Division of Human Nutrition, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
- Metabolic and Cardiovascular Diseases Laboratory, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Caroline Richard
- Division of Human Nutrition, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
- Metabolic and Cardiovascular Diseases Laboratory, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
6
|
Azarcoya-Barrera J, Wollin B, Veida-Silva H, Makarowski A, Goruk S, Field CJ, Jacobs RL, Richard C. Egg-Phosphatidylcholine Attenuates T-Cell Dysfunction in High-Fat Diet Fed Male Wistar Rats. Front Nutr 2022; 9:811469. [PMID: 35187037 PMCID: PMC8847771 DOI: 10.3389/fnut.2022.811469] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/10/2022] [Indexed: 12/12/2022] Open
Abstract
Obesity is associated with immune dysfunction including an impaired T-cell function characterized by a lower IL-2 (proliferation marker) production after stimulation. Phosphatidylcholine (PC), a form of choline mostly found in eggs, has been shown to beneficially modulate T-cell responses during the lactation period by increasing the production of IL-2. To determine the impact of egg-PC as part of a high-fat diet on immune function we randomly fed male Wistar rats one of three diets containing the same amount of total choline but differing in the form of choline: 1-Control low fat [CLF, 10% wt/wt fat, 100% free choline (FC)]; 2- Control high-fat (CHF, 25% wt/wt fat, 100% FC); 3- PC high-fat (PCHF, 25% wt/wt, 100% PC). After 9 weeks of feeding, rats were euthanized. Cell phenotypes and ex vivo cytokine production by splenocytes stimulated with phorbol 12-myristate 13-acetate plus ionomycin (PMA+I), lipopolysaccharide (LPS) and pokeweed (PWM) were measured by flow cytometry and ELISA, respectively. Rats fed the PCHF diet had a lower proportion of CD3+ cells when compared to both the CLF and the CHF. Following PMA+I stimulation, splenocytes from the CHF group produced less IL-2 and TNF-α compared to CLF and PCHF groups. No significant differences in cytokine production were found among groups after LPS and PWM stimulation. Our results show that feeding a high-fat diet impairs T-cell responses, as measured by ex vivo cytokine production, which can be attenuated by providing egg-PC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Caroline Richard
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
7
|
Azarcoya-Barrera J, Field CJ, Goruk S, Makarowski A, Curtis JM, Pouliot Y, Jacobs RL, Richard C. Buttermilk: an important source of lipid soluble forms of choline that influences the immune system development in Sprague-Dawley rat offspring. Eur J Nutr 2021; 60:2807-2818. [PMID: 33416979 DOI: 10.1007/s00394-020-02462-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/07/2020] [Indexed: 12/24/2022]
Abstract
PURPOSE To determine the effect of feeding buttermilk-derived choline metabolites on the immune system development in Sprague-Dawley rat pups. METHODS Sprague-Dawley dams were randomized to one of the three diets containing 1.7 g/kg choline: 1-Control (100% free choline (FC)), 2-Buttermilk (BM, 37% phosphatidylcholine (PC), 34% sphingomyelin (SM), 17% glycerophosphocholine (GPC), 7% FC, 5% phosphocholine), and 3-Placebo (PB, 50% PC, 25% FC, 25% GPC) until the end of the lactation period. At weaning, pups continued on the same diet as their mom. Cell phenotypes and cytokine production by mitogen-stimulated splenocytes isolated from 3- and 10-week-old pups were measured. RESULTS At 3 weeks, BM-pups had a higher proportion of cytotoxic T cells (CTL; CD3 + CD8 +) while both BM- and PB-pups had an increased proportion of cells expressing CD28 + , CD86 + and CD27 + (all p > 0.05). Following ConA stimulation, splenocytes from BM- and PB-pups produced more TNF-α and IFN-γ and after LPS stimulation produced more IL-10 and TNF-α (all p > 0.05). Starting at week 6 of age, BM-pups had a higher body weight. At 10 weeks, both the BM- and PB-pups had a higher proportion of CTL expressing CD27 + . After ConA stimulation, splenocytes from BM- and PB-pups produced more IL-2, IFN-γ and IL-6 and more IL-10 after LPS stimulation (all p > 0.05). CONCLUSION The proportion of lipid soluble forms of choline in the diet during lactation and weaning periods influence the immune system development in rat offspring.
Collapse
Affiliation(s)
- Jessy Azarcoya-Barrera
- Department of Agricultural, Food and Nutritional Science, Center for Health Research Innovation, University of Alberta, 4-002G Li Ka Shing, Edmonton, AB, T6G 2E1, Canada
| | - Catherine J Field
- Department of Agricultural, Food and Nutritional Science, Center for Health Research Innovation, University of Alberta, 4-002G Li Ka Shing, Edmonton, AB, T6G 2E1, Canada
| | - Susan Goruk
- Department of Agricultural, Food and Nutritional Science, Center for Health Research Innovation, University of Alberta, 4-002G Li Ka Shing, Edmonton, AB, T6G 2E1, Canada
| | - Alexander Makarowski
- Department of Agricultural, Food and Nutritional Science, Center for Health Research Innovation, University of Alberta, 4-002G Li Ka Shing, Edmonton, AB, T6G 2E1, Canada
| | - Jonathan M Curtis
- Department of Agricultural, Food and Nutritional Science, Center for Health Research Innovation, University of Alberta, 4-002G Li Ka Shing, Edmonton, AB, T6G 2E1, Canada
| | - Yves Pouliot
- STELA Dairy Research Center, Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, Canada
| | - René L Jacobs
- Department of Agricultural, Food and Nutritional Science, Center for Health Research Innovation, University of Alberta, 4-002G Li Ka Shing, Edmonton, AB, T6G 2E1, Canada
| | - Caroline Richard
- Department of Agricultural, Food and Nutritional Science, Center for Health Research Innovation, University of Alberta, 4-002G Li Ka Shing, Edmonton, AB, T6G 2E1, Canada.
| |
Collapse
|